Course Materials - Climate

Course 1: CLIMATE (6 hours)
Basics of Climate Science


by Prof. Eli Tziperman, Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, USA.


Compressed file (tgz) joining all the materials for the course. Accessible in separate parts from the links in the outline below.


Supporting materials and assignments at Profesor Tziperman web site:
http://www.seas.harvard.edu/climate/eli/Courses/misc/201209-Mallorca/

Course outline:

Day 1: Energy balance and ocean

(1) Energy balance and climate bifurcations, Snowball Earth

    1.1 Energy balance (1-energy-balance.ppt)
    1.2 Energy balance model, solutions, graphic method stability
        (2-energy_balance_0d.pdf). Matlab functions.
    1.3 Saddle node bifurcation (3-lecture_02_bif1d1.pdf), two saddle
        nodes & hysteresis.
    1.4 Snowball earth (4-Boyle-snowball-MIT12.842-abbreviated.pdf)

Assignment: question 1



(2) Ocean meridional overturning circulation (MOC)/ thermohaline
    circulation (THC)

    2.1 Motivation
        (from EPS131: 1a-THC-belt.jpeg
          1c-THC-cfc-animation-horizontal.gif
          1d-THC-cfc-animation-vertical.mpg
          1e-YouTube - The Day After Tomorrow.webloc
          1g-Surface_air-T_deviations-from-zonal-mean-Rahmstrof.jpg)
    2.2 Stommel 1961 model, bifurcations, multiple equilibria, hysteresis
        (from EPS131: 3-notes-THC-Stommel-model.pdf
      1h-vellinga-wood-THC-collapse-Hadley-model.pdf
      4b-Rahmstorf-et-al-2005-Stommel-bifurcation-GCM-intercomparison.pdf
         6c-THC-in-global-warming-Bryden_etal_2005.pdf)
    2.3 THC variability
    motivation: present day and past climate variability
        (from EPS131: 2a-rapid_transports2.png
         little ice age: slide #33, EPS-131-lecture-01-intro-2-phys-oceanogr.pptx)
    non-normal transient growth, optimal i.c.
    non normal excitation of THC variability
        (slides #2,3,5,6,7,9 from nonormal_THC_short.pdf)
    2.3 THC during Snowball Earth events

Assignment: question 2


Day 2: Atmosphere

(3) Atmospheric superrotation and permanent El Nino

     3.1 Pliocene intro (slides)
     3.2 vorticity, solid body rotation, planetary vs relative
          vorticity, Coriolis parameter, beta plane, Rossby waves
          heuristic based on propagation of highs and lows on a beta
          plane, group & phase velocities (ripples animation),
          teleconnections via R.W (Shaman paper);
          [quasi-geostrophy-didn't cover eventually, see
          notes-shallow-water-quasigeostrophy.pdf] ,
     3.2 atmospheric superrotation: momentum flux u'v' vs energy flux
          c_g for Rossby waves.
     3.3 permanent El Nino in the Pliocene (2-5 Myr, and in the
         future?)  (slides)

     Assignment: question 3



(4) Convection, clouds, radiation and equable climate

     4.1 Arctic cloud feedback, multiple equilibria, warm climate of
        the Eocene (50 Million years ago) and relevance to global
        warming.  (slides, and see also slides under 3-superrotation)
     4.2 time permitting: simple convection model

     Assignment: question 4