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Abstract

We analyze a model of social interaction in one- and two-dimensional lattices for a moderate
number of features. We introduce an order parameter as a function of the overlap between
neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a
second-order transition, where the order parameter changes continuously and the average domain
diverges at the transition point. However, in a two-dimensional lattice the order parameter is
discontinuous at the transition point characteristic of a 4rst-order transition between an ordered
and a disordered state.
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1. Introduction

There has been some recent work addressing the issue of consensus formation
[1–3]. In the context of cultural globalization, Axelrod [4] proposed a simple model for
the analysis of how cultural features disseminate. The model is based on the premise
that by an interaction the similarity of the two interacting individuals is increased.
A more detailed analysis has shown that depending on the initial diversity there is a
phase transition between an ordered monocultural state and a disordered multicultural
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state [5]. Further analyses of this model have been devoted to checking the robust-
ness of the transition in the presence of noise [6], changing the range and topology
of interactions (e.g., in small-world and scale-free networks) [7,8], and modifying the
interaction probability [9]. In the present paper, we show that the order of the phase
transition depends on the spatial dimensionality of the problem.

2. The model

The model we study is de4ned by considering N agents as the sites of a lattice [4].
The state of agent i is a vector of F components (cultural features) (�i1; �i2; : : : ; �iF).
Each �if can take any of the q integer values (cultural traits) 1; : : : ; q, initially assigned
independently and with equal probability 1=q. The time-discrete dynamics is de4ned as
iterating the following steps:

(1) Select at random a pair of neighboring sites of the network connected by a bond
(i; j).

(2) Calculate the overlap (number of shared features) l(i; j) =
∑F

f=1 ��if;�jf .
(3) If 0¡l(i; j)¡F , the bond is said to be active and sites i and j interact with

probability l(i; j)=F . In case of interaction, choose g randomly such that �ig �= �jg
and set �ig = �jg.

By de4nition, adjacent sites i and j cannot interact if either they share all traits
(l(i; j) = F) or none of them (l(i; j) = 0). Then, we call the bond between i and
j inactive. A given con4guration is absorbing if all bonds are inactive. The qF com-
pletely homogeneous con4gurations, where l(i; j)=F for all i and j, are absorbing. In
large systems, most absorbing con4gurations contain both kinds of inactive bonds:
while the saturated bonds (l(i; j) = F) connect sites belonging to a homogeneous
cluster, the non-overlapping bonds (l(i; j) = 0) form the borders between clusters. In
order to characterize the absorbing con4gurations, we introduce the order parameter

L= 2(zNF)−1
∑

bonds (i; j)

(F − l(i; j)) ; (1)

where z is the coordination number of the lattice and the sum is performed over all
bonds. L assumes values in the interval [0,1]. The minimum value L = 0 is reached
only by the completely homogeneous con4gurations. Note that in one-dimensional lat-
tices with z = 2, the dynamics always decreases the value of L. This role of L as
a Lyapunov function has been proven rigorously [10]. Furthermore, L can be written
as L ˙

∑F
f=1

∑
bonds (i; j) ��if;�jf which is the negative energy of F uncoupled Potts

models.

3. Transitions in one and two dimensions

Fig. 1 compares the behavior of the order parameter in one- and two-dimensional
systems. For the one-dimensional lattice with bonds between nearest neighbors
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Fig. 1. (a) Dependence of the average order parameter 〈L〉 on the parameter q in one-dimensional lattices of
sizes N = 100 (circles), 1000 (squares), and 10 000 (diamonds), using F = 10. (b) Distributions of L using
the same setup as in (a) with N = 10 000 and q = 10 (solid), q = 12 (dotted), and q = 15 (dashed line).
(c) Dependence of the average order parameter 〈L〉 on the parameter q in two-dimensional lattices of sizes
N = 102 (circles), 302 (squares), and 1002 (diamonds), using F = 10. (d) Distribution of L using the same
setup as in (c) with N = 10 000 and q = 55; 58; 60 (top to bottom). Averages and distributions in (a)–(d)
are based on 100 independent realizations for each value of q.

(Fig. 1(a)), the averaged order parameter remains zero for parameter values q¡qc,
then for q growing beyond qc increases continuously. For a given value of q, values
of L for diLerent realizations are narrowly distributed around the mean value, with
unimodal distributions for L.
For the two-dimensional lattices (coordination number z=4) quite a diLerent behav-

ior is observed. The order parameter undergoes a discontinuity at a transition point qc
(Fig. 1(c)). At this parameter value, the cumulative distribution of L shows peaks at
two distinct values (Fig. 1(d)). The distribution of the order parameter is bimodal
amounting to bistability of the system.
The transitions in d=1 and 2 are furthermore distinguishable by the distributions of

cluster sizes at the transition, plotted in Fig. 2. While in both dimensions these distri-
butions decay as a power law p(S) ∼ S−�d , the observed exponents � are clearly
diLerent. In the one-dimensional system, �1 ≈ 1:4 is found. For d = 2, we have
�2 ≈ 2:85.
The values of the exponents hint at qualitatively diLerent scenarios for d=1 and 2.

In the one-dimensional case the transition is similar to percolation [11]. Then we have
an exponent �1¡ 2 for the power law regime of the cluster size distribution such
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Fig. 2. Cumulative distributions of cluster sizes at the transition point (thick curves). For the one-dimensional
system (d= 1) q= 9, for the two-dimensional system (d= 2) q= 62 has been used. In both cases N = 104

and F = 10. The thin lines have slopes −0:4 and −1:85.

that—in the limit of in4nite system size—the 4rst moment 〈S〉 diverges with the cut-oL
Smax as q approaches qc from above. At the critical value of the parameter q the system
is still disordered. In the case d = 2 there is no divergence of 〈S〉 with Smax because
here the cluster size distribution has the exponent �2¿ 2. It is worth noting that a
similar behavior has been observed in the case F = 2 and d = 2 where the exponent
is smaller than 2 in contrast to the case F ¿ 2 studied here [5].
Previous studies have employed the average fraction of sites occupied by the largest

cluster 〈Smax〉=N as an order parameter [5,6,8,12]. We have observed that the distribu-
tion of Smax shows bistability only for the two-dimensional system, while it is unimodal
in d= 1.

4. Conclusions

We have analyzed Axelrod’s model for cultural dissemination by extensive numerical
simulations. We have introduced the average relative overlap between neighbors as a
measure of the order in the system. We have found that while in a one-dimensional
chain the system shows a second-order transition, in a two-dimensional lattice the
transition is 4rst order. We have also obtained numerically the distribution of domains
close to the transition points, showing that in the one-dimensional case the average
size of a cultural domain diverges. These results stress the role of the topology of the
interaction network [8].
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