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Scaling of Rough Surfaces: Effects of Surface Diffusion on Growth and Roughness
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Random deposition model with surface diffusion over several next nearest neighbours is studied.
The results agree with the results obtained by Family for the case of nearest neighbour diffusion [F.
Family, J. Phys. A 19(8), L441, 1986]. However for larger diffusion steps, the growth exponent and
the roughness exponent show interesting dependence on diffusion length.

I. INTRODUCTION

The growth of rough surfaces and interfaces plays a
major role in numerous phenomena of scientific inter-
est and practical importance. There are many impor-
tant aspects to the growth of surfaces. Growing surfaces
can evolve into many forms. Flat, faceted, cusped and
disorderly surfaces are familiar forms. In addition, sur-
faces may also develop grooves, solid or hollow whiskers,
platelets, dendrites and other interesting structures. The
problem of understanding the physical processes that
control these morphologies is a major challenge with
important practical implications. The processes taking
place in, on, and around disorderly interfaces are also
of interest for describing several microscopic phenomena.
A comprehensive study of growth surfaces is necessary
to understand the internal structure of a wide range of
objects. The morphology, structure, other physical and
chemical properties of growing interfaces have been a sub-
ject of great interest in recent years. The study of these
properties finds applications in various physical, chemical
and biological systems and processes such as film growth
by vapour deposition1,2,3,4,5, bacterial growth6,7,8, prop-
agation of reaction fronts in catalyzed reactions9, propa-
gation of forest fires10 etc.

Most of the simple models like Eden growth models11,
ballistic deposition models12, solid-on-solid models13, re-
active interface models14, directed polymers15, polynu-
clear growth16,17,18, directed percolation19 etc. were
originally developed to simulate natural processes as di-
verse as growth of cell colonies, sedimentation of col-
loids and crystallization of polymers. Some models
were also developed theoretically such as surface growth
with weak nonlinearity20 and surface growth with noise
correlations21. Computer simulations have played a ma-
jor role in the development of better understanding of
surface growth phenomena under both equilibrium and
non-equilibrium conditions.

The simplest surface growth model is the random de-
position model where particles fall vertically on randomly
chosen sites and are deposited on top of the respective
columns22. The roughness of the interface increases in-
definitely without any saturation. A modification of this
model to better describe surface growth phenomenon,

namely, random deposition model with surface diffusion
was introduced by Family23. Here, the particles diffuse
or relax to the nearest neighbouring site. The roughness
of the interface increases initially and then saturates fol-
lowing dynamic scaling relations.

In this present work, we report the results of our study
of generalized random deposition models with surface dif-
fusion for different diffusion lengths. In each of our mod-
els, the saturation widths and scaling exponents show a
characteristic dependence on the diffusion or relaxation
length.

II. RANDOM DEPOSITION WITH SURFACE

DIFFUSION

A quantitative investigation of surface growth involves
study of interface width W , characterizing the rough-
ness of the interface, as a function of system size L and
the growth time t. W (L, t) is defined by the root-mean-
square (rms) fluctuation of the height of the interface.
According to the dynamic scaling relation24, the inter-
face width W (L, t) satisfies,

W (L, t) = Lαf(t/Lz) (1)

where z = α/β and f is a scaling function satisfying
f(∞) ∼ const and f(x) ∼ xβ for small x. Thus, for inter-
mediate times 1 ≪ t ≪ τ , where τ is a model-dependent
saturation time, the interface width for a fixed system
size L has a power law dependence on t,

W ∼ tβ . (2)

And for t ≫ τ , it saturates to a time-independent value,
Wsat, which scales with the system size L as

Wsat ∼ Lα. (3)

The asymptotic scaling properties of the surface fluctu-
ations of a given growth model are characterized com-
pletely by the growth exponent β and roughness expo-
nent α described above.

The model of random deposition with surface diffusion
was introduced by Family23, in which a particle dropped
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in column i sticks to the top of the column i, i+1 or i−1
depending on which of the three columns has the small-
est height. In case, i, i + 1 and i− 1 columns have equal
heights, then the particle sticks to the top of either i+1 or
i−1 column, with equal probability. In the said study, it
was claimed that there is no dependence of exponents on
diffusion length. In the same paper, the growth exponent
β was found to converge to a value of 0.25± 0.01 asymp-
totically with increase in system size and the roughness
exponent α was estimated to be 0.48 ± 0.02. It may be
noted that the simulations were performed for relatively
small system sizes between L = 24 and L = 384.

In our present work, we study three variants of random
deposition models with surface diffusion. Each of these
models reduce to Family’s model for single step diffusion
(N = 1). For larger system sizes between L = 128 and
L = 2048, we observe significant and characteristic de-
pendence of various exponents on the allowed number of
diffusion steps N .

A. Description of the models

The models studied in this work can be described as
follows.

Model A: In this deposition model, particles are al-
lowed to fall sequentially, one at a time, on randomly
chosen sites on the growing surface and are deposited on
top of the selected columns. After this deposition, the
particle remains at this site if it is the only minimum
among N-nearest neighbours on both sides. Otherwise,
the particle diffuses to the nearest local minimum within
the prescribed neighbourhood. If the nearest minima on
two sides are equidistant from the selected site, the par-
ticle moves to either of these sites with equal probability.

However, in all of the models studied in this article, the
particle cannot jump over any local maximum to reach a
local minimum within the prescribed neighbourhood.

FIG. 1: Schematic diagram showing the rules of
deposition for Model A. Probable sites for deposition
are shown in different shades for different situations

with maximum diffusion length N = 2.

Model B: This model differs from Model A, in diffu-

sion of the particle to the farthest local minimum within
the prescribed neighbourhood. If the farthest minima on
two sides are equidistant from the selected site, the par-
ticle moves to either of these sites with equal probability.

FIG. 2: Schematic diagram showing the rules of
deposition for Model B. Probable sites for deposition
are shown in different shades for different situations

with maximum diffusion length N = 2.

Model C: In this model, the particle moves to a min-
imum within N-nearest neighbours on both sides if this
minimum is unique, otherwise, the particle moves ran-
domly to one of the several minima with equal probabil-
ity.

FIG. 3: Schematic diagram showing the rules of
deposition for Model C. Probable sites for deposition
are shown in different shades for different situations

with maximum diffusion length N = 2.

In all the above variants of random deposition model
with surface diffusion, two random number generators
were used, one for selecting the site on the growing sur-
face and, another for depositing the particle with equal
probability when there are multiple minima. These two
random number generators are completely independent
and uncorrelated to each other. These random number
generators are based on linear congruential method25,26.
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III. RESULTS

The interface widths W (L, t) were computed for dif-
ferent time-steps and for different system sizes between
L = 128 and L = 2048. When presented graphically in
log-log scale, these graphs show distinct growth and sat-
uration regions. One such graph for Model A, for system
sizes between L = 128 and L = 2048 with diffusion step
N = 15 is shown in Fig.4. The saturation widths Wsat

for various system sizes and diffusion lengths were calcu-
lated for all the models by means of a straight line fit of
lnWsat versus ln L. One such characteristic linear fit for
finding the roughness exponent α is shown for Model A
with diffusion step N = 15 in Fig.5. The related data for
the same is shown in Table I.
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FIG. 4: lnW (t) vs ln t showing the growth and
saturation regions for Model A, L = 128 to L = 2048

and N = 15.

TABLE I: Wsat as function of system size L for Model
A with diffusion step N = 15.

L ln L ln Wsat

256 5.5452 -0.7690
384 5.9506 -0.6496
512 6.2383 -0.5656
640 6.4615 -0.4991

The roughness exponent α shows an interesting de-
pendence on the number of diffusion steps N in all of the
models studied. It shows a sharp decrease initially reach-
ing a minimum around N = 15. With further increase in
diffusion steps, it increases slowly. The relevant data is
given in Table II and the dependence is shown in Fig.6,
7 and 8.

The growth exponent β was calculated from the slope
of the growth region in lnW (t) versus ln t graph. With
increase in system size, the growth exponent approaches
a saturation value βsat. It is further observed that this
saturation value also shows a strong dependence on the
number of diffusion steps N . With increase in N , βsat

asymptotically approaches a steady value βsteady . The
relevant data showing this behaviour is given in Table
III and the dependence is shown in Fig.9, 10 and 11.
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FIG. 5: lnWsat vs ln L with straight line fit for α.

TABLE II: Roughness exponent α for various diffusion
steps.

N Model A Model B Model C
1 0.4957 0.4957 0.4957
2 0.4910 0.4788 0.4869
3 0.4802 0.4520 0.4699
5 0.4446 0.3886 0.4206
10 0.3412 0.2733 0.3216
15 0.2942 0.2636 0.2861
20 0.2968 0.2668 0.2868
25 0.3106 0.2738 0.2993
30 0.3258 0.2813 0.3127
35 0.3425 0.2906 0.3269
40 0.3606 0.3010 0.3421

To study the saturation behaviour βsat with N , two
empirical forms of dependence were assumed and data
were fitted to these non-linear forms.

βsat = b0 + b1e
−νN (4)

βsat = b0 + b1e
−νN

− b2e
−µN2

(5)

where βsteady = b0 for the corresponding expression. The
values estimated for b’s are shown in Table IV. Both the
above forms show saturation with increase in diffusion
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FIG. 6: Dependence of roughness exponent α on
number of diffusion steps N for Model A.
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FIG. 7: Dependence of roughness exponent α on
number of diffusion steps N for Model B.
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FIG. 8: Dependence of roughness exponent α on
number of diffusion steps N for Model C.

length. As the fit with single exponential function, Eq.(4)
was not very faithful over the entire range of values of
diffusion length, particularly for Model A, a fit was also
made to include data only corresponding to higher values
of diffusion length. The empirical form of Eq.(5) however,
shows an improved fit for Model A over the entire range
of data points.

TABLE III: Saturation growth exponent βsat for
various diffusion steps.

N Model A Model B Model C
1 0.241 0.241 0.241
2 0.232 0.219 0.234
3 0.227 0.204 0.222
5 0.212 0.167 0.203
10 0.169 0.132 0.167
15 0.143 0.125 0.140
20 0.126 0.121 0.128
25 0.116 0.119 0.123
30 0.114 0.116 0.117

TABLE IV: Values of coefficients b for different curves
fitted to βsat versus N data

Fitted curves for Model A Model B Model C
different models

All data fitted to Eq.(4) b0 0.0925 0.1179 0.1069
(Curve 1) b1 0.1644 0.1532 0.1511

Large diffusion length b0 0.1063 0.1167 0.1151
data fitted to Eq.(4) b1 0.1979 0.1138 0.2099

(Curve 2)
All data fitted to Eq.(5) b0 0.1056 0.1187 0.1100

(Curve 3) b1 0.1912 0.1636 0.1555
b2 0.0396 0.0123 0.0135
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FIG. 9: Dependence of growth exponent β on number
of diffusion steps N for Model A.
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FIG. 10: Dependence of growth exponent β on number
of diffusion steps N for Model B.
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FIG. 11: Dependence of growth exponent β on number
of diffusion steps N for Model C.
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IV. CONCLUSION

It was claimed in the study by Family23 that the satu-
ration widths and the exponents were independent of the
diffusion length. However, in our study, we have found
that both the growth exponent β and the roughness expo-
nent α depend on the diffusion length. It may be noted
that in the said reference, the simulations were carried
out for relatively small system sizes between L = 24 and
L = 384. The study was therefore limited to smaller dif-
fusion lengths, and perhaps the dependence on number
of diffusion steps N was missed.

When the system size is large, the extent of diffusion
of a deposited particle is limited only by the diffusion
length. As the diffusion length is increased, faster and
more uniform smoothening of the interface is observed.
As a result, Wsat decreases with both system size L and
time t, thereby decreasing the exponents α and β. As
a mechanism we propose that, as the diffusion length

is further increased, the most jagged boundaries have
smoothened to give a series of wide shallow valleys sepa-
rated by crests. When the diffusion length becomes com-
parable to the width of these shallow valleys, a deposit-
ing particle has a higher probability of encountering the
boundary of these valleys, i.e., the crests, before reaching
the diffusion limit. As none of the models studied here
allow surmounting any hill or crest while approaching a
minimum on the other side, the diffusion of a particle
gets restricted if it encounters a valley boundary before
reaching its diffusion limit. This happens predominantly
when the valley width is comparable with the diffusion
length. In these cases, the dynamics is dominated by the
existence of valley boundaries rather than the diffusion
length. This is observed as a saturation in the growth
exponent β and decrease in roughness exponent α fol-
lowed by a slow increase. This behaviour needs to be
investigated in further detail.
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