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OVERVIEW

One appealing aspect of the Edwards-Wilkinson (EW)
equation is that almost everything can be done exactly.
In the following, results are presented for the Edwards-
Wilkinson equation in one dimension with an extra drift
term, for periodic and fixed boundary conditions. The key
points are:

e Contrary to suggestions in the literature, there is
no smoothing.

e Although the problem is linear, with fixed bound-
ary conditions, the extra drift term produces
anomalous dimensions.

e Dimensional analysis, in conjunction with coarse graining
arguments, fails.

INTRODUCTION

We start out with an Edwards-Wilkinson equation with drift
term living on the interval |0, L|:

Op(x,t) = DOyp(x, 1) + vy (x,t) +n(x, 1) (1)

where v denotes the drift velocity (pointing in the “wrong” direction).
The noise, n, is chosen to be delta-correlated as usual:

(n(a, tin(a’ 1)) = T%6(x — 2")é(t — ¢) (2)

The whole problem is much more conveniently expressed in terms of di-
mensionless variables, 7 = t/(L?/D), y = /L, ¢ = vL/D and
especially

o(y,7) =\ ool 1) 3)

PERIODIC BOUNDARIES

The propagator of this problem is a Gaussian wrapped around the unit
circle, 1.e. essentially Jacobi’s 153 function:

1 i (y+q7+n)? i Ko ) —k?
Spo(yj 7‘) — e AT — 67/ n y‘|‘q7- 6_ nT . (4)
VAarT N S

The dimensionless correlator is then simply
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where 7 > 71. This time-order enters the exponentials when the inte-
gration runs over the §(7 — 7/)-function of the correlator.

The exponents usually derived for intertaces are the roughness expo-
nent «, the growth exponent 5 and the dynamical exponent z. They
are all based on the dimensionful (physical) equal-time correlation
function in the thermodynamic limit:

L—o0

lim ((¢(x1,8) — P(x2,1))%) = (z1 — 22)**G ((m _t@)z) (6)

At equal times (5) becomes independent of the velocity.

Without velocity and with divergent L, dimensional analysis is sufficient
for the determination of the exponents, because they are a physical
necessity

a=1/2, z=2, f=a/z=1/4 PBC independent of v (7)

Of course, the calculation can be done explicitly in order to determine
the proper behaviour of the scaling function G in (6).

Exponents from roughness

Alternatively, the exponents can be derived from the width of the
interface:

2

w(L,t) = (¢, 1)2) — (d(x,8)) | (8)

where A denotes the spatial average. Again,

t

w?(L,t) = L*°G (ﬁ) . (9)

An equal-time average destroys all velocity dependence. One finds
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and therefore the same set of exponents as in (7). The exponents
can also be derived from dimensional analysis.

The drift is irrelevant in case of periodic boundary condi-
tions.

FIXED BOUNDARIES

The picture changes completely when the boundaries are fixed to
¢(x = 0,t) = ¢(x = L,t) = 0. The propagator is now “almost” the
mirror-charge version of (4):
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This time, the velocity does not dissappear in the correlator. It is not
possible to simply gauge it away. This velocity gives rise to a second
length scale, namely D /v, which in turn can give rise to anomalous
dimensions.

v =20

From the outset it i1s clear that the exponents are those derived above.
Explicit calculation gives again
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and therefore

a=1/2, 2=2, f=a/z=1/4 FBwithofv=0 (15)
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Now an anomalous dimension could occur — and so it does. After some
algebra one finds by a saddle-point approximation
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and therefore the anomalous dimensions are

Moreover

a=1/4, z=1, f=a/z=1/4 FBwithof v #0 (18)

The crossover-time is given by L/v. This should happen before the
interface reaches its saturation in normal roughening, i.e. the crossover-
length for the system to show anomalous scaling of the roughness is given
by

L/v< L?/D . (19)

DIMENSIONAL ANALYSIS

The textbook or rather armchair analysis goes as follows. Assume a
self-affine solution ¢(bx, b*t) = b%¢(x,t) and plug it into Eq. (1), to
obtain a simple relation of the exponents:
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Of course they cannot be satisfied simultaneously. But satistying all but

« — 2 renders this one, by coarse graining with parameter b, irrelevant.
Thus

a=0,2=1,=a/z=0 by coarse graining arguments (21)
This is wrong and there is no reason why it should work.
Dimensional analysis does not fail, what fails is the coarse graining argu-
ment. It is worth noting that dropping the diffusion term leads to random
deposition.

PHYSICAL EXPLANATION

With fixed boundaries, a non-zero velocity leads to a continuous reini-
tialisation of the interface. Only if it manages to stay under the influence
of the noise betore it disappears on the other end, can it develop its full
roughness. However, it stays only for L/v, while it takes L? /D until
the roughness is fully developed. Due to the velocity, the space coordi-
nate becomes a time coordinate; the roughness exponent of the
interface with drift is the growth exponent of the interface
without drift.
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Upper panel: An example of an interface profile
with fixed boundaries and drift term. Lower panel:
The local width squared (numerical data, circles)

is proportional to z1/2 (fitted, dashed line), so that
a=1/4

CONCLUSION

e The real thrill may have been missed in the literature: Appearance of
an anomalous dimension in a linear problem based on EW.

e 'xponents are not derivable by dimensional analysis, and violate
a=2z—d/2.

e ['xponents are easily derivable by intuitive physical arguments.

e Coarse graining suggests the diffusion term becomes irrelevant, but it
does not.

e A warning: Exponents can easily depend on boundary conditions.

Finally: Is the same mechanism present in the quenched Edwards-
Wilkinson equation (qEW)? It does not seem so:

Boundaries Drift |« for EW |« for qgEW
Periodic boundaries|v = 0|  1/2 ~ 5/4
Periodic boundaries|v # 0|  1/2 1/27
Fixed boundaries |v =0 1/2 ~ 5/4
Fixed boundaries |v#0| 1/4 1/2




