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large-scale simulations of dynamic scaling in
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Abstract

Using extensive simulations of surface growth in the 2+1 dimensional atomistic model of
Edwards and Wilkinson (EW), we have calculated both interfacial width and the structure factor,
to extract the dynamic exponent z. In contrast to theoretical expectations, �nite-size scaling of
the data for both surface properties is achieved using z ∼ 1:63, instead of the predicted value of
2:0. A restricted variant of the EW model gives z ∼ 2:0. Clarifying these non-trivial di�erences
in dynamical correlations, now represents an intriguing theoretical challenge. c© 1999 Elsevier
Science B.V. All rights reserved.
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The general study of surface phenomena and surface characterization has been an
exciting �eld of research over several decades. E�orts to understand microscopic,
non-equilibrium behavior at growing surfaces are, however, more recent and are
attributable to rapid technological advances. In recent years there has been tremen-
dous activity in the study of surface growth models, as part of an attempt to produce
a theoretically complete and robust description of non-equilibrium growth behavior
[1,2]. One motivation for such studies is the desire to determine what factors a�ect the
essential properties of surface uctuations which, in turn, decide the dynamic univer-
sality classes. In this regard, atomistic models, which include deposition and some
form of accompanying di�usion, have been used with some degree of success. Apart
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from the use of such models, which can be most e�ectively solved using computer
simulations, an alternative approach that has been pursued is the construction of dif-
ferential equations for surface uctuations, as growth proceeds in the continuum limit.
Although most studies are in general helpful in understanding the dynamical behav-
ior of a growing surface, our knowledge of the nature (or mechanism) behind such
observed dynamical behavior is incomplete.
We have studied two forms of the Edwards–Wilkinson surface growth model, using

slightly di�erent hopping (di�usion) rules, which produce markedly di�erent behav-
ior of the long-time and large-scale properties. By exploiting the di�erences between
these two models, we show how the interplay of the external ux, and local hop-
ping rules can, in some cases, induce non-trivial dynamical correlations at a growing
surface. The Edwards–Wilkinson (EW) model plays an important role in the study
of non-equilibrium surface growth due to the simplicity of its growth process. In a
seminal paper [3] the lattice model was introduced for the study of uctuations in
a surface, growing by random deposition of particles with immediate relaxation to
nearest-neighbor sites. Based on the lattice model, Edwards and Wilkinson derived an
equation which is purported to describe the surface uctuations during growth. The
EW equation is written as

@h
@t
= �∇2h+ � ; (1)

where h(r; t) is the height of the surface at position r and time t, � is the surface
tension, and � is the stochastic contribution to the surface uctuations. Note that in
the original EW formulation �= Fa2, F is the ux, and a is the lattice constant. The
noise � has zero mean i.e. 〈�(r; t)〉=0, and correlations are de�ned as 〈�k; !�k′ ; !′〉=
FL2�v2 exp(−k2a2)�(k + k ′)�(! + !′), where � is the maximum time up to which
particles are deposited, v is the volume of each particle, L is the lateral extent of the
system, and k is the surface wave vector. It is unclear if this form of the noise–noise
correlations correctly describes the development of dynamical correlations arising due
to deposition and relaxation of incident particles as envisaged by EW; however, it
is interesting that such an approach was used to incorporate the e�ects of ux and
relaxation, i.e. to describe the system in a non-equilibrium state. The irreversibility in
surface uctuations during growth is essentially reected through the correlated noise.
(To see how correlations can build up during deposition, see some recent experiments
on sedimentation [4].)
The EW model was the �rst manifestly non-equilibrium model used to attempt to

understand surface uctuations in a non-equilibrium system, although it was inappro-
priately characterized as a model that represents the equilibrium scenario [5–7]. (This
conclusion was based on the simulation results of a 1+1 dimensional EW model,
and the comparison with a continuum equation that represents equilibrium surface
uctuations.)
In this paper, we report large-scale Monte Carlo simulations, which are used to

study the dynamic �nite-size scaling relation of the physical model of EW in 2+1
dimensions. Our primary aim is to characterize its non-equilibrium behavior through
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the determination of the dynamic exponent z, and to classify it in an appropriate
non-equilibrium universality class. In addition, we study a restricted variant of the
EW model (REW), with slightly modi�ed local dynamics, which we believe sheds
some light on the origin of noise correlations. The surface properties are characterized
by measuring the structure factor, and the root mean square of surface uctuations,
(commonly de�ned as the interfacial width.) For su�ciently long times t, and large
substrate sizes L, the interfacial width W (L; t) is expected to satisfy the dynamic scaling
relation [8]

W 2(L; t) = A ln
[
Lf

( t
Lz

)]
; (2)

where f(x) is the scaling function, and z is the dynamic exponent. The scaling function
has the property f(x) ∼ x�, for x. 1 and f(x)→ constant, for x/ 1. The exponents
z and � satisfy the relation z�=1. This identity, along with the particular form of the
scaling function ensures that for small times the interfacial width behaves as W 2 ∼
A� ln t, and at very long times the saturated value of the interfacial width (W∞) satis�es
the relationship W 2

∞ − A ln L ∼ constant.
The structure factor S(L; kL; t) can be obtained by measuring the Fourier transform

of the spatial correlation function, and should satisfy the dynamic scaling law [9],

S(L; kL; t) = L(2−�)g(t=Lz; kL) ; (3)

where kL=2n�, n being an integer, and z is the dynamic exponent. The long-wavelength
behavior of the surface can be probed by using a small value of k. In this limit, and
for large lattice sizes, the structure factor obeys the scaling function g(x; kL) ∼ x,
for x. 1 and g(x; kL)→ constant, for x/ 1. Note that kL is kept �xed during the
simulation, and only L is varied. The exponent  is related to the dynamic exponent
by = (2− �)=z.
To simulate the physical model of EW, particles are randomly deposited on an

initially at substrate of size L × L with periodic boundary conditions. A deposited
particle is allowed to move only once to the nearest-neighbor column with minimum
height, indicating a relaxation similar to that in the presence of a gravitational �eld.
Each particle can move to a nearest-neighbor column after hitting the surface, only
if the nearest-neighbor columns are at a lower height. In case there are two or more
sites of equal height to which a particle can hop, the �nal site is chosen randomly.
The REW model can be made by modifying the EW model, such that an adatom
has the only choice to move into a single nearest-neighbor column of largest depth
that is uniquely de�ned, i.e. if two or more sites are in competition, then the move
is rejected. If a unique site is not available, the adatom loses its chance to move and
remains at its initially deposited site. We measure the interfacial width and the structure
factor along the (1,0) direction for the EW model to characterize the roughness of the
growing surface. For the REW model we report only the results for the structure factor.
The interfacial width is de�ned as W (L; t)= [〈h2(r; t)〉− 〈h(r; t)〉2]1=2, where 〈h(r; t)〉=
L−2

∑
r h(r; t), while the structure factor can be written as S(k; t)=〈hk(t)h−k(t)〉, where

hk(t) = L−1
∑

r(h(r; t)− 〈h(r; t)〉)exp(ik:r). Lattice sizes ranging from L=20 to 1280
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Fig. 1. The square of the interfacial width for the EW model vs. the number of deposited layers for several
lattice sizes 406L61280, on a semi-logarithmic scale. (Error bars are roughly the size of the points.)
A linear �t through the data has a slope A� = 0:040± 0:001 (shown as a dotted line). The inset shows the
saturated interfacial width (W∞) for various lattice sizes in a semi-logarithmic scale. A �t through the data
points has a slope A= 0:0662± 0:0004. Note that the x-axis needs to be converted to natural logarithm, to
obtain the slopes reported here.

were used for the simulations, and data were averaged over multiple runs (starting with
di�erent random number seeds.) The number of runs varied from 50 for L= 1280 to
2000 for L=40 lattices. Because of the need for both large lattices and large numbers
of runs, each of which required growth to a large number of layers, this study was
computationally demanding: The computer time invested in this accurate study of both
the EW and the REW model totaled about 30,000 Workstation CPU hours.
The evolution of the interfacial width for the EW model is shown in Fig. 1 on

a semi-logarithmic scale. For the largest lattice size, the data can be well �tted by a
straight line starting from ≈ 20 layers up to 104 layers. A similar plot on a log–log
scale did not produce linear behavior over substantial time scales. Thus the square of
the interface width evolves logarithmically with time (t), i.e. W 2 ∼ A� ln(t) where t
is proportional to the number of deposited layers. By �tting a straight line through the
linear portion of the graph, the slope is estimated to be A�=0:040±0:001. The square
of the saturated interface width, i.e. (W 2(L; t → ∞) ≡ W 2

∞), is also found to depend
logarithmically on substrate sizes L, (shown as an inset). A linear �t through the data
points yields an estimated slope of A=0:0662±0:0004. Hence using the identity z�=1,
we determine the dynamic exponent to be z=1:65± 0:05. This dynamic exponent can
be veri�ed self-consistently by attempting full �nite-size scaling of the data points
according to Eq. (2). Excellent scaling of data (shown in Fig. 2) is obtained by using
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Fig. 2. Dynamic scaling plot of the interfacial width for z = 1:63 is shown in a semi-logarithmic scale for
the EW model. A is chosen as 0:066. The data show good scaling, which self-consistently agrees with the
scaling equation.

z=1:63, which is well within the estimates from the previous analysis. Note that with
the increase in lattice size, the region over which the data scale, becomes larger, and
L = 1280 obeys asymptotic scaling from ≈ 50 layers to more than 104 layers. When
we use z = 2:0, scaling fails.
We now consider the behavior of the structure factor. Note that the exact solution

of the linear EW equation [7] gives the following expression for the structure fac-
tor: n2S(L; kL; t) = L2(D=�)(1− exp(−8n2�2�L−2t)), where D and � are constants. For
L→∞, and short times S(L; kL; t) ∼ t while at large times S(L; kL; t→∞)→L2. We
have calculated the structure factor for both the EW and the REW model for several
lattice sizes. As time increases, large-scale structures develop and �nally the structure
factor saturates due to �nite-size e�ects. We �nd that for the EW model S(L; kL; t) ∼ t
where =1:23± 0:01, while for the REW model =1:01± 0:02. For both the models,
the saturated structure factor scale as L�, with �=2:02± 0:03, and �=2:03± 0:04 for
the EW and REW models, respectively.
Based on our observations we propose the following dynamic scaling equation for

the structure factor, S(L; kL; t) = L2f(t=Lz; kL), where z is the dynamic exponent. The
scaling function f → constant, for t → ∞, and in the limit of small times and large
lattice sizes, the scaling function approaches the general form (as shown in Eq. (3)).
This can be written as f ∼ (L−zt), where z=2 and �=0. This gives, z=1:64±0:04
for the EW model, and z = 2:01 ± 0:08 for the REW model. The results for the EW
model are in good agreement with our earlier observation, and also agrees well with
the scaled structure factor data as shown in Fig. 3. Fig. 4 shows scaling of the structure
factor data for the REW model with z=2:0, a value which agrees quite well with the
solution of the linear EW equation.
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Fig. 3. Dynamic scaling plot of the structure factor for the EW model. The lattice sizes range from 40 to
640, and the data points represent averages ranging from 2000 to 250 runs, respectively. Excellent scaling
is obtained over several decades with a log–log plot using z = 1:63.

Fig. 4. Dynamic scaling plot of the structure factor is shown for the REW model in a log–log scale, using
z = 2:0. As the lattice size is increased, the quality of collapse in the scaled data improves substantially,
with L = 160, and 320 showing very nice scaling. This indicates that asymptotic scaling is obeyed for the
REW model using z = 2:0.

The fact that data for both the EW and REW model show good scaling but with
di�erent dynamic exponents is intriguing. Certainly the REW model can be described
by the linear Langevin equation, with uncorrelated noise. One might intuitively expect
that the addition of apparently uncorrelated randomness (in the di�usion) to the REW
model would not introduce any new correlation e�ects and thus should not e�ect the
dynamic behavior. The subtle change in the local dynamics has resulted in completely
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di�erent scaling behavior. We do not presently understand why this is the case and view
the need for a clear, convincing explanation to be an important theoretical challenge!
One speculative argument for the origin of this apparent violation of dynamic uni-

versality is the following. A standard approach in critical phenomena to study the
long-time, large length-scale properties of a dynamical system is to begin with a
semi-phenomenological equation of motion in a small set of semi-macroscopic vari-
ables � i, i=1; 2; : : : ; N , whose dynamical evolution is slow compared to the remaining
microscopic degrees of freedom. In these equations the remaining “fast” variables enter
only in the form of random forces (usually called the noise �i) as shown:

@� i
@t
=−

∑
Mij

�F
�� j

+ �i ; (4)

where F is the Ginzburg–Landau coarse-grained free energy functional, and M is the
matrix of generalized Onsager coe�cients. The EW equation is a simple example of
this approach in which the noise is delta correlated in time. It may be that in the
atomistic EW model, noise in the ux is somehow coupled to the local dynamics to
produce non-trivial, temporal noise correlations in the dynamical equation. These are
missing, of course, from the REW model.
In previous studies, the non-trivial dynamical correlations have been accounted for

by assuming the presence of a non-linear term in the linear Langevin equation [10].
This equation is then solved perturbatively using the dynamic renormalization group
methods. The anomaly in such a procedure is that the surface shape resulting from
such a growth equation still remains invariant in time [11], although it is well known
that non-equilibrium systems are generally irreversible, and consequently do not remain
invariant under time translation. The irreversiblity in the evolution of dynamic proper-
ties can be taken into account by assuming that the stochastic noise has correlations
in time. By introducing such a construct, the apparently-linear hydrodynamic equation
can exhibit non-linearities through the noise correlations, thus altering the value of the
dynamic exponent z from the linearized hydrodynamic value of 2:0.
In conclusion, we have performed large-scale simulations of the atomistic model

of EW to extract the dynamic exponent z from calculations of both the interfacial
width and the structure factor. Contrary to the expected theoretical value of 2:0, we
obtained z≈ 1:63 from the simulations. We show that when all randomness in the
di�usion is removed, the dynamic exponent convincingly changes to z∼ 2:0. The study
provides a tantalizing hint of the e�ect of dynamical correlations, and suggests that
more complex correlations are needed in the linear Langevin (EW) equation if it is to
accurately describe surface uctuations under the combined inuence of external ux
and di�usion.
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