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The surface statistics of a granular aggregate
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The problem of the surface fluctuations in a settled granular material is
posed. A simple model is given which describes the process by which a
particle settles and comes to rest on the existing surface of the packing
and from this a set of Langevin equations for the Fourier modes of the
surface are derived. These equations imply that the Fourier amplitudes
behave like the velocities of a set of independent Brownian particles. We
show that this results in logarithmically divergent surface fluctuations if
the flux of particles onto the surface is random, the divergence being
removed by a more accurate description of the settling material, for
example by having the granules fall through a sieve.

1. INTRODUCTION

Suppose that we take a bin and gently and uniformly pour in a granular material.
As the material in the bin builds up we can identify a surface and ask the question.
‘What is the magnitude of the fluctuation in the height of surface (measured from
the base of the bin)?’ Also of interest is the length scale of the surface fluctuations
and how they behave dynamically as more material is added.

The statement that the material is added gently and uniformly is a statement
about the flux of material into the bin. This statement will have to be mathematized
eventually but we make the following assumptions which lead to the simplest
problem, but which are physically realizable:

(i) The flux is sufficiently weak so that one can ignore any correlation between
incoming particles.

(ii) The particles settle gently (as if sedimenting from a viscous liquid) in such a
way that once each particle has settled under gravity it does not then move when
other particles settle above it. Clearly a packing made according to this prescription
will be more dilute than one which is shaken where a cooperative reorganization
of the particles is allowed to take place.

These assumptions can be considered as part of the definition of the problem.

In §2 we go on to develop a model of the surface behaviour but first we must
define the surface and the probability of finding it in some particular shape.

It is possible to devise an operational definition for a surface e.g. for each triplet
of particles in the ensemble construct the plane joining the three centres of mass (the
plane is not extended to infinity but is a finite triangle whose vertices are the centres
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of mass). The surface is formed by those portions of each plane which do not lie
vertically below part of another plane.

Having defined the surface we describe it using a single valued function z(p, N),
where z is the height of the surface vertically above a point on the base of the bin,
defined by the two dimensional vector p = z,y and N is the number of spheres in
the bin at the time the surface is described.

After N spheres have been added to the bin there will be some probability of
finding the surface described by a function z(p). This probability is a function of the
value of z at every point p, i.e. it depends on the whole function z(p). The probability
is a functional of z and is denoted

plz(p), N].

In addition we can define a Gireen functional by asking for the probability that the
surface is z(p) after N spheres have been added given that after N’ spheres it was

2'(p). This is denoted by
Glz(p), N; 2'(p), N'].

In the usual way we can write down a functional integral equation which expresses
the law of compound probabilities

P[z(p), N] = f32'(p) Glz(p), N; 2'(p), N']p[%' (p), N'], (1.1)

where the integral is over all possible functions z'(p).

In §2 we construct a microscopic model of the Green functional for N = N’ +1.
From this we derive a Langevin equation and hence derive the statistics of the
surface following the theory of Brownian motion.

2. THE BLOB MODEL

When a particle lands and settles on the existing ensemble of particles, the
surface changes. Consider the addition to the surface as a blob. Some of this blob
will be made up of particle and some of the blob will consist of space. Ignore the
distinction between particle and space and think only of blobs being added to the
surface. The shape of blobs added to the surface will depend on the shape of the
surface, just before the moment the blob lands, as well as the shape of the particle
landing. Also the position of each blob added will depend on the shape of the surface
locally because newly added particles will tend to seek favourable locations on the
surface.

All the information relating the probable shape and position of a blob added to
the surface to the shape of the surface just before the blob is added is contained in

the Green functional
) Glz(p), N; 2'(p), N — 1]
introduced in §1.
Now the Green functional cannot depend on N explicitly as the laws which

determine the behaviour of the system do not change with N. (The Green functional
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may depend on the number of particles in the bin but only in as much as 2’(p) is a
funection of that number.) We also define a variable v(p) as 2(p) —2'(p), which repre-
sents the shape of a blob. Thus the Green functional becomes

Glz(p), N; 2'(p), N — 1] = W(v(p); 2'(p)],

where W[v(p); 2’(p)] is the probability functional that a blob added to a surface
described by 2'(p) will have shape v(p). The functional equation (1.1) for AN equal
to 1 becomes

plz(p), N+1] = ft?v(p) Wlv(p); 2(p) —v(p)]1 p[2(p) — v(p), N]. (2.1)

At this point we must input the microscopic physics of the process of building up the
surface one particle at a time and hence find a model for the functional W. The
crudest possible form of W is obtained by completely ignoring the dependence of
the function v(p), which describes the blob, on the function z(p) which describes the
surface. In these circumstances v(p) becomes a random variable. A suitable model
for W[v(p)] would then be

WIlp)] = 73 [ d%0(0(0) 1o = po) 22)

The interpretation of this equation is as follows.

Each blob is a shape f(p) centred at a point p,, where p, is a random point in the
bin, whose area is L2 The function f(p — p,) might be some given function or it may
itself be distributed with some probability functional. The only important feature
of f(p — p,) is that it must have a sharp cut off at |p — py| = @, where a is the width of
the blob. For example

—p.)2
1o=p0) = gexp (- L555), (23)
where % is the total volume of .each blob, would be a suitable model for the blob
shape.

In §3, we shall show that the crude model of W given by (2.2) gives rise to an
indefinite increase in the magnitude of the surface fluctuations as the packing builds
up. The root mean square fluctuations increase like the square root of the depth of
the packing, in fact. This behaviour stems purely from the fact that we have put
v(p) equal to a random variable, uncorrelated with z(p).

The crucial difference between the real system and the one represented by (2.2)
is the fact that particles will tend to settle in local minima of the existing surface.
If a particle descends centred at p, its final resting place on the surface will be near
po but will be in a local minimum of z(p). We might, at first sight, expect that
particles will tend to find resting positions of low potential energy in a global sense,
i.e. will tend to sit in regions of the surface where z(p) is smaller than average. This,
however, is not the case. The phenomenon of settling is entirely local as we have
assumed that the particles settle without kinetic energy and they move, on the
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surface, only so far as to find a resting position in which they are stable under
gravity; i.e. a local minimum of the surface. Thus v(p) which describes the blob
added to the surface is no longer a random variable but depends on 2(p).

A very simple model for W which describes this situation can be obtained by
dividing the bin into a square lattice. Thus z(p) becomes a discrete set of values z,
and similarly v(p). In this representation a model for W in which v(p) is uncorrelated
with z(p) would then be

Wi(e) = 5733 I, 80s) 000, (2.4)

where M2 is the number of lattice squares in the bin. For the function (2.4), the
value of z in the lattice square labelled by « increases by / and all the other values
of z are unchanged. The selected lattice square « is chosen randomly.

Suppose we allow a change in the values of 2,_y,, 241 %1, 80d %, (the four
nearest neighbours of the lattice square a), as well as z,, then we effectively allow
some local movement of the particle. If in addition we increase say z,_;, if 2., is
less than z, then this represents a net movement of the blob towards a local
minimum. For instance consider

1
W({va}; {za}) = M_z % ﬂlo-!a 3(2’/3) 8('0(: =+ %(4za —2g—1x ~ %a+1x " %a—1y za+1.v))

X 8(”:: —-1x %(za - za—-lx)) é‘('va-i»lx - %(za - za+1x))
X 3('011—13: - %(za - za—ly)) 8(va+1y - %(za - za+1y))' (2'5)

Notice that for (2.5) the total volume increase of the system is I multiplied by the
lattice spacing squared. Thus the form of W represented by (2.5) allows the move-
ment and spreading out of a fixed volume blob. Suppose that z, were large in com-
parison with its four neighbours, then (2.5) allows the blob to spread out equally
over the four neighbouring lattice squares, whereas a more physical model would
allow the blob to move at random to one of the four neighbours. The model is
therefore only crude but improving the details will not change the results derived
below except perhaps for numerical constants. Given the model function (2.5) we
need to relate the imaginary lattice spacing to a physical length. The lattice spacing
is the typical distance moved by the particle between landing on the surface and
finding a suitable resting place. For a packing of identical hard spheres this will be
approximately equal to the sphere radius.

At this point we could solve (2.1) with W given by (2.5), however it is more useful
to extract a Langevin equation from the model and then evoke the central limit
theorem to calculate the probability functionals which describe the surface. In this
way it is clear that the exact specifications of the model functional W[v(p);z(p)] are
unimportant.

We proceed by considering the finite set of complex fourier coefficients

2, = at Y etikady | (2.6)
a
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where a is the lattice spacing. Hence the number of lattice squares is given by
M? = L?/a?. The inverse of (2.6) is

1
2 = =5 S 2, 07k, (2.7)
a L2§ k

(There is never any ambiguity in using the same symbol z for these two functions.)
We now calculate W[{v,}; {z,}], the probability function for the set of v, given
the set of z,. This is given by

WL ] = [ T Wlfe)s 1 1000t Sty

where clearly the set of 2, is given if the set of 2, is.
The average of v, , for some particular fourier mode k;, is given by

(op) = IEI dv, Wl{vi}s {243 vy
For the function W[{v,}; {z.}] given by (2.5) this average is
(V) = —1‘5 Z ateloek (l + iz 2 & e~ ke 112 cos ka+ 2 cos k,a— 4])

k -k’ i

M2 Z alelaeky eiakw___ 2 e—ie* “%[1 e iakx]

plus three similar terms representing contributions from v,_;,, ¥,_1, and v,,4,.
Performing the sum over a« gives

(v, = la®8;, + a2z, [2L? [4(cos kya + cos by, a) — 8].

Now for | k| much smaller than 1/a we can expand the cosines to second order in k
to obtain

(Vg = hdy, —atkiz, /L2, (2.8)

where bk is the total volume increase of the System (i.e. b = la?).

For values of | k| ¢lose to 1/a the lattice model breaks down as it is not a precise
description, of the process of settling, over very short length scales. In the lattice
model wavelengths less than the lattice spacing are not included in the sum over k
in (2.7). In a blob model without a lattice the shortest wavelengths allowed cor-
respond to the width of the blob. Thus we conclude that (2.8) is a good approxima-
tion for most of the & modes of interest.

The first term on the right hand side of (2.8) represents the volume increase of the
system per particle added. The second term shows that for any z, which becomes
large there is a tendency for the arrival of additional spheres to reduce this value
of z,. This effect is most pronounced for large values of k (corresponding to short
wavelength fluctuations of the surface).
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We now rewrite (2.8) in real space. Multiplying by e~1'#/,2 and summing over
k, gives

1 . h . at .
T (e = 7 ) S e7hr— o7 2, k3 e~thae,
By 2
or (v(p)) = t1e 22(p)- (2.9)
At this point we introduce a time variable, £, and an average rate of landings per
unit time per unit area, r. Because of the assumptions about the flux of particles
being weak and particles not moving once settled we do not expect » to appear in
the final formula for the fluctuations.
The expected change in z(p) per unit time is thus

(0z(p) /oty = rL2(v(p)) = rh+ra* V2 2(p). (2.10)

This equation states that two effects contribute to the expected rate of change of
z(p). First there is the average steady increase in z(p) equal to the volume of blobs
added to the system per unit area per unit time (i.e. rh). Secondly for regions of p
where V2 is large we expect z(p) to increase more than average. This is because
where V22 is large there is a minimum in the function z(p) and particles are expected
to settle in minima and hence z(p) is expected to increase. In regions where V22 is
large and negative, z(p) has a maximum and is expected to increase more slowly than
average.

We could have written down (2.10), for the rate of change of z(p), from the original
discussion of what was required of the model functional W([v(p)]. The particular
model (2.5) merely shows that the coefficient of ra* V%2 is one. A slightly different
model would give a different coefficient of order one.

Returning to W[{v,}; {2;}], we can calculate the second moment given by

1 ; .
(vg, Vh,) = I %] [2gletie kit gHa-kya
+ terms much smaller than this for L/a large. (2.11)
Summing over a gives Vhy Vy) = P® kg
As above, values of k,; greater than 1/a are not allowed so we write
<’Uk 'U_k> = h2 e_k2 az.

The cut off is exact for the functional W given in (2.2) by using (2.3) for the blob
shape f(p — p,).
We are now in a position to write down a set of Langevin equations for the fourier

modes of the surface;
azk/at = h?’Lzé‘k—-ra‘lkzzk+§k, (2.12)

where £, is a random variable, uncorrelated with z, and with zero mean. The
variable £, for k = 0 is zero for identical blobs. (It will be non-zero for blobs with a
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volume distribution. The contribution to the surface fluctuations from &,_, is
discussed in §3, vi.)
Thus Erli> = hPexp (—Fk%a?), k+#0,
= O, k = 0.

The equivalent real space Langevin equation is
0z(p,t) /0t = rh+ratV2z(p,t)+£(p, t). (2.13)

The terms rh + &(p, t) represent the flux of particles onto the surface, where A is the
steady flux and £ is the zero mean, random fluctuation in the flux. The term in
V22(p, t) represents the fact that the change in the surface depends on the existing
surface as well as the flux, but note that this term is proportional to r and thus is
connected with the behaviour of incoming particles.

The discussion above gives some justification for what is essentially a phenomeno-
logical equation which describes the behaviour of the surface. There is some further
discussion in § 5 but we note here an important difference between the blob model
and the physical system of a granular material. The blob model allows local move-
ment of the blob on settling and allows a change of shape in the blob to accommodate
the existing surface. The volume of each blob is however independent of its surface
landing position whereas the increase in volume of the real system will depend on
where that particle settles.

3. THE CALCULATION OF THE SURFACE FLUCTUATIONS
FROM THE LANGEVIN EQUATION

The Langevin equations having been constructed for each of the fourier modes of
the surface the problem becomes mathematically equivalent to a set of independent
Brownian particles in which the fourier amplitude z, behaves like the velocity of a
Brownian particle with a viscous damping proportional to k2. Consequently many
results can be written down at once from the theory of Brownian motion (see for
instance Chandrasekhar (1943), Reif (1965) and Resibois & De Leener (1978 For
example the steady state probability distribution for the set of fourier amplitudes,
{1}, is given by ’

20%k? 2,2,

Z’({zk})“exp (_ - __Zz— <fk f-—k>) )

and hence changing variables (see for instance Edwards (1973))
pletpaexp (~at [ [t Vatp) Vatp) g 0-1)

where op=p) = gz [ SIS L.

Here we have ignored the distribution for the total volume of the system (Zr—o)-


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on January 12, 2015

24 S. F. Edwards and D. R. Wilkinson

Where this problem differs from that of Brownian motion is in the physical
interpretation of the moments of the probability distributions. We therefore derive
these now directly from the Langevin equation

02(p,t) /0t = rh+rat Vi +§(p,t). (2.13)

This can be simplified by redefining z so that it is measured relative to its average
value rather than the base of the bin. Thus the transformation

z+rht—>z
reduces the equation to
0z/0t = rat Vi + £(p, t). (3.1)

If we define the complex fourier coefficients z, , by

T [L[(L
=f dtf f d2pz(p,t)expi(k: p+ wi),
0 0Jo

where 7T is some very long time, then by the Wiener—Khintchine theorem (see for
instance Reif (1965)), in the limit of large L and 7', the correlation function
2p,t)2(p+p',t+1')) is given by

(p,t)z(p+p',t+2)) fd%fd Cro? "‘"‘” >expi(k~p'+wt'). (3.2)

Fourier transforming the Langevin equation (3.1) gives
iw & + 7’0,4]022," 0= gk, W
and hence the ensemble average required for (3.2) is given by

<€k, ) g—k', -—w'> (33)

o Zr, o) = w? +r2afkt

Thus to calculate the correlation function {(z(p,t)2(p+p’,t+1¢)) we require the
ensemble average (£, ,& i, ,)-
Consider a function £(p,t) given by

g(P’ t) = 2 3 t—t; fz(p pz)’ (34)
events ¢
which represents a series of incoming blobs, of shape f;, arriving centred at position
p; and at time ¢,. Initially we assume that each event (particle landing) can occur at
a time ¢, randomly distributed in 0 < #; < 7'. Similarly we assume that p;, = x,,y;
is found at random in 0 < x; < Land 0 < y, < L.
Then the average value of £, , is given by

d2p,

Eow> = jOLn f n *[zexpl(wuk pI1<ED,
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where (f,) is the k fourier component of the shape of a blob, averaged over all
possible blob shapes. To remove the average flux we put {f,_,> equal to zero and

hence
(€roy =0 forall kand w.

The average of £, ,£ ;. _, is

d?p;

Gl = ST f 1 S expi(w(ty— )+ klp, = p) oS - )

The integrals are only non zero in the case where 7 = j and hence
Erwbr—? = IPHIY S 8w —0') = rLAT{fo f_p) 6w — '),
v 7

where 7L2T is the total number of events under consideration.

The function {f, f_;) is equal to the average square volume of the blobs multiplied
by a sharp cut off at | k| equal to the reciprocal of a typical blob width. For identical
circularly symmetric Gaussian blobs for which f(p — p,) is given by

flo—po) = Q:az exp ( - ;ap2°)2) :
and {f, f_, ) is then given by
{fufr) = hPexp (- k*a?) d(k—F').
Thus the function <& ,£ 4 _,) is
Ehobir—o) = rL2Th*exp (—k%a?) 0(k— k') (0 — w’). (3.5)
Combining (3.2), (3.3) and (3.5) yields

, dwexpi(k:p’ + wt') exp (—k%a?)
=132
CGlp,t)2lp+p',t+1)) jd kf (? + r2atk?) :

Performing the w mtegral gives
’ ’ W2 d%k : ’ 2,2 )
(o, ) 2lp+p',t+1)) = oo | T oxPilk-p) exp (— a1 +18a¥).  (3.6)

The integral as it stands is divergent.

We must remember that (§,&_,> is zero for k = 0 reflecting the fact that the
average of the flux is treated separately (i.e. it is not included in £). The sum over
k is from |k| = n/L only. (The factor is = not 2r because we impose the boundary
conditions that Vz is zero at the edge of the box. Thus the first allowed fourier
components are cos (nz/L) and cos (ny/L). However this does not mean that we
have included only one quarter of the fourier components in the sum over k as we
have allowed negative k as well as positive. The only effect is to change the bottom
limit of the integral. Note also that one of the components of k is allowed to be zero
provided the other is not.) Thus we replace, what is correctly, the sum over k by an
integral over k with |k| > n/L.
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We proceed to evaluate the integral (3.6) for certain special cases:

(i) The mean square value of z(p) measured relative to its average value
Putting p’ = 0 and 7’ = 0in (3.6) gives

h? (> 2kdk
2y = —— —_— — k22
&) = g | T s (— ),
which evaluated gives an exponential integral. For a/L small we can replace the
Gaussian cut off by a top-hat cut-off to obtain

drat  \m

@y = (-Ii) (3.7)

The term A?/4nat is a quantity proportional to the square of the height of each blob,
as we might expect. The term In (L/ra) is at first sight somewhat surprising as the
bin size appears in the formula for the surface fluctuations. The result is due to the
assumption that each particle in the flux lands at random anywhere in the bin.
Suppose that the particles were dropping from a sieve above or sedimenting after
precipitation in a chemical reactor. In the sieve case the flux is uniform to the extent
that over a long period of time the flux of particles into a region of the bin (small
compared to the total area of the bin) is constrained to be equal to its expectation
value. It is possible to define a length b such that modes of wavelength greater than
b are constrained is such a way that the quantity ¢ f f) dt’g, (") f f) dt"€_,(t")) is not
allowed to increase indefinitely as the time, ¢, increases. Consequently the quantity
&k, b, _uy is zero for w = 0 for these constrained k modes, and the divergence of
the Wiener-Khintchine, integral over w and k, at w = 0, k = 0 is removed. The
effect is to replace the lower limit of the integral (3.6) by 2n/b instead of n/L. Thus
jthe quantity 2L (representing the longest allowed wavelength present in the flux)
in (3.7) should be replaced by the length b.

Returning to (3.7), it is interesting to insert some typical values to see just how
weak the logarithmic divergence is.

Consider particles of size 1mm in a bin of dimension 3m. Then the logarithmic
term in (3.7) gives rise to a factor of (2.6) in the root mean square fluctuation of the
surface. Now suppose we increase the bin size to 3 km, then the factor increases to
(3.7). Thus for a 1 million fold increase in the surface area of the bin the magnitude
of the fluctuations increases by only 50 %.

Notice that the result (3.7) does not imply a surface ‘roughness’ dependent on the
bin size. The result comes from very long wavelength fluctuations, in the surface,
which have a small slope but a large amplitude.

(ii) T'he static behaviowr of the fluctuations

Consider the function

((=(p,?) —2(0,1))?).
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This is the expectation value of the square of the height change observed when
moving on the surface, in a straight line, distance |p|. The origin, p = 0, is chosen
arbitrarily. From (3.6) the function is given by

(elo, 1) =200 = o [TF (1 —exp ik-p)lexp(~kad).  (39)

In this expression the divergence at the origin of the integral is removed because
(1 —Jy(k-p)) is of order k2 for small k. Hence the bottom limit of the integral can
again be replaced by zero provided |p| < L.

The integral is given approximately by

2 2 ¥
((elo,)=#(0,0)%) = gt [EE2T]. 9)

This is also a strange result. The value of {(2(p, t) —2(0,?))?) increases indefinitely as
p increases. In practice the function will reach a steady value when |p| is a length of
order L. Thus the fluctuations have no microscopic length scale.

Some physical justification for this result can be found as follows:

Consider a one dimensional surface in the lattice model. If the value of z, at each
lattice point were constrained to be z,_; + 1, then the function z(x) would make a
random walk and for large « we obtain

{(z(x) —2(0))%) = XP*/a,
which is Einstein’s famous result.

In two dimensions the equivalent constraint becomes that for each lattice square
the value of z differs by ! from the value of z in each of the four nearest neighbour
lattice squares. The lattice problem as posed is not easily soluble because the lattice
square at the origin effects the lattice square at p by every possible path of nearest
neighbours joining 0 to p. The effect of this is that the fluctuations are strongly
constrained as a result of the ‘frustration’ caused by all the paths. Thus the function
#/a in one dimension is replaced by the function In (|p|/a) in two dimensions. Note
that the equivalent problem in three dimensions which may represent temperature
fluctuations in a block of metal, for instance, shows none of the divergent behaviour.

The results (3.7) and (3.9) are directly related to the divergence at k equals 0 of
the integral (3.6). The long wavelength modes are not strongly damped because the
slope of the surface associated with such a mode is very small for a given amplitude.
The Langevin equation (4.1) implies that the system has a resistance to high slopes,
i.e. high values of |Vz|. A Langevin equation of the form

& (01) = —ry2lo, ) + ratViz(p, )+ Elp 1), (3.10)

would correspond to a resistance of the system to high values of 22. (Remember that
z here is defined relative to its average value.) The divergence of the integral (3.6)
would be removed and a new scale of length, given by a?/y%, would characterize
the fluctuations.
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The equation (3.10) would correspond to a tendency for incoming particles not to
settle in areas where z(p) is higher than average. Although this sounds reasonable it
is in fact unphysical because a particle settling can only tell whether it is on a steep
slope or at a minimum, etc. it has no ‘knowledge’ of its value of z(p) in a global sense.
The corresponding statement about the steady state probability functional p[z(p)],
is that it does not depend on z(p) explicitly, only on the derivatives of z(p).

The resistance of the system to high slopes is clearly related to the angle of repose
for a granular material. The tangent of the angle of repose is the steepest slope the
material can sustain under gravity.

(iii) The dynamical behaviour of the fluctuations
Consider the function {(=(p,t+1")—2(p,1))?,

where z is defined relative to its average value at time ¢. From (3.6) the function is

given by
(et +1)—2())%) =
The lower limit of the integral can be taken as zero provided ra%’ < L?/a®. The

integral can be evaluated to give

Lt +t') —2(t 2>=l‘—-1n(1+na2) (3.11)

2
8211:’;4 (2210 [exp (— k2a?) —exp (—k%a*(1 +ra’))].

For ¢ much less than the time to add just enough particles to cover one layer on the
packing (¢’ < 1/ra?) (3.11) reduces to

{@(E+1)—2(2)2) = (h?/4na®)rt'.

In other words for short times the functi®n 2(p,t) describes a random walk of the
usual kind, with the fluctuation increasing like t}. For longer times this walk is
constrained as the value of z at some point p ‘realizes’ that it is effected by neigh-
bouring values of z. The fluctuations then increase very slowly with time until ra2’
is of order L?/a2. (That is the number of monolayers added to the packing is of order
the number of particles in a monolayer.) After this very long time the fluctuation
reaches its steady value given by (3.7).

(iv) The fluctuations in the gradient of the surface

By analogy with the derivation of (3.2) the correlation function in the slope or
gradient of the surface is given by

’ ’ 1 <zk z—k' - ’> . ’ ’ ’ ’
= — 2 Y oTk, 7w/ . 2
(Va(p,t) Valp+p', t+1)) = Snafkkd kdo eestoe expi(k- p' + ot ) A%’ do’,

combining this equation with (3.3) and (3.5) and integrating over w and k gives

, , h2 I 2

where I is the unit tensor in two dimensions.
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Thus the fluctuations in Vz show none of the bad behaviour exhibited by the
fluctuations in 2. The fluctuations decay with a length scale and a timescale which
are well defined in terms of microscopic properties.

(v) The solution to the problem in which the blobs settle completely at random

The process by which a surface builds up by blobs landing at random and simply
resting where they land, is also of some interest. For instance if lumps of a substance,
such as clay, are deposited at random and just stick where they land, remaining
rigid, then the problem will be described by a blob model in which the settling
position of the blobs is uncorrelated with the existing surface.

In this case we can derive a Langevin equation without a drag term. The fourier
modes z, behave like the positions of Brownian particles and consequently the
surface fluctuations increase with time and are given by

{(z(p) = (2)*) = h<z)/4ma?, (3.13)
where (z) = rht.

Other problems of interest are those where the blobs really do exist, for example
blobs of a very viscous liquid. When these land their shape immediately changes to
accommodate the existing surface but then the surface slowly relaxes. In addition
a granular material may be added to a shaken container. In these problems a
Langevin equation of the form (2.13) may still be valid except that the coefficient of
V22 will no longer be proportional to the rate of addition of particles, 7. Consequently
as soon as the flux of particles onto the surface is turned off the steady state fluctu-
ations will die away exponentially leaving a flat surface.

(vi) The contribution of the mode k = 0 to the surface fluctuations

Within the blob model the volume of each blob added is a random variable
uncorrelated with the existing volume of the system. Consequently if the blobs
have a volume distribution we should expect the fluctuation in the fourier amplitude
24 _o to grow indefinitely with time and to be given by

{(z9—<202)%> = rLA( f3) — {fo)?)-

The k = 0 term should then be included in the Wiener-Khintchine sum and conse-

quently contributes a.term
(rt/L2) ({f5) = {fod®); (3.14)

to the mean square surface fluctuation.

However it is interesting to note the following points:

(@) For a packing whose average height is equal to its width (i.e. ¢ { fo) = L) this
term is of order {f;)/L and is consequently negligible in comparison with the
expression given in (3.7).

(b) If we are studying a single system at a single time rather than an ensemble of
systems we can measure the fluctuations in the surface relative to the average
height of the surface for this particular system (i.e. Z,/L?). Fluctuations measured
thus do not include a contribution of the form (3.14).
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(c) For a real system we might expect there to be a local correlation in ‘blob’
volumes. Thus particles will settle in such a way that the increase in volume of the
system is large or small depending on whether the recent volume increases oceurring
in the same neighbourhood were small or large respectively. Hence for a real system
we might expect the volume fluctuations to be smaller than predicted by the blob
theory.

4. CONCLUSIONS

The problem posed and the assumptions made in § 1 define a precisely specified
physical problem. We have solved this by deriving a Langevin equation in § 2. This
equation is of sufficiently simple structure to be soluble. Any criticism of the theory
will therefore be made in §§1 or 2. We should ask whether the precisely defined
physical problem, formulated in § 1, is the problem which is really of interest in
practical applications. The following assumptions have been made in deriving the
Langevin equation:

(i) That the local movement of particles on the surface is a sufficiently accurate
description of the settling process. So long as this process is truly local the Langevin
equations for the fourier amplitudes z, will remain an uncoupled set. We might
imagine the situation arising where a particle rolls a long way down a steep slope to
find a minimum in which to rest. If one argues that this behaviour is not well
described by a local movement of the particle, then the theory can be defended by
pointing out that the blob model predicts that the probability of finding a long steep
slope on the surface is very small. This is because the correlation function in the
gradient of z2(p) is short ranged. Hence the blob theory is in this respect self consistent.

(ii) That terms linear in z(p, t), and hence z,(t), are a sufficiently accurate descrip-
tion of the settling process. For instance one might argue that a term such as
—Vz(p)- Vz(p) should appear in the real space Langevin equation, in addition to
V2(p). Such terms make the problem considerably more difficult because fourier
transformation will not diagonalize the problem.

(iii) That the term — k22, or equivalently V2z(p) is a reasonable description of the
settling process. In fact k2 is only the leading term in an even power series in k. The
higher terms make no significant difference to the predictions of the blob theory
because the divergence of the integral over k is unaffected. A term independent of
k (ie. —z,)is ruled out for reasons explained in the text.

Of the various criticisms of the theory it is the question of linearity which is most
difficult to defend on physical grounds.

If we accept the Langevin equation we can rigorously show that, in the limit of
large bin area, the fourier modes behave as a set of independent Brownian quasi-
particles, where the mode amplitude, z,, corresponds to the velocity of the quasi-
particle. We can also show that the surface behaviour is dominated by the long
wavelength modes of the system. In a system in which the flux of particles has
fluctuation modes with wavelengths equal to the bin dimension, the effect is to give
surface fluctuations whose steady state, mean square value is proportional to the
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logarithm of the bin dimension. Any particular fourier mode, however, has a well
defined contribution to the fluctuations, which is independent of the bin dimensions.
It is only when the sum over the fourier modes is performed that the bin dimension
appears. The theory has a sort of self consistency in that it is most strictly valid for
the long wavelength modes.

If the flux of particles is uniform to the extent that long wavelength fluctuations
are not allowed to increase with time, then the bin size dependence of the surface
fluctuations is removed. However, the longarithmic behaviour, which is typical of
two dimensional systems, remains but only over a short range. The relevance of
this point to such systems as a solid precipitating from a chemical reaction and
settling is not clear. For practical purposes it makes very little difference whether
the logarithmic dependence on bin size is present or not because of the incredibly
slow increase in the root mean square surface fluctuation with bin area, which the
square root of the logarithm of the square root of the area represents.

The steady state probability functional which describes the surface is predicted
to be not explicitly dependent on the function z(p) but to depend on the slope of the
surface Vz(p). (With the proviso that the total volume of the system is given.) This
reflects the fact that a particle landing at a random position in the bin, p, is ‘unaware’
of the value of z(p). Thus there is no tendency for the surface to increase more than
expected in a region where z(p) is low, i.e. in a global minimum of the surface. It is
only the value of V2z(p), or the curvature of the surface, which is important.

The Langevin equation of §2 is a precise description of the behaviour of the
surface of a certain class of randomly deposited granular material and it is our
contention that it incorporates most of the essential physics of the problem and,
therefore, that its predictions are, at least qualitatively, correct for the more
difficult case where nonlinear terms matter. Various approximate methods are
available for handling this problem, but it is our belief that the precise definition of
improvements in the description of the physics of the problem is more difficult than
the resulting mathematical problem.
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in a CASE studentship, and Dr Peter Cardew for help and encouragement.

REFERENCES

Chandrasekhar, S. 1943 Rev. mod. Phys. 15, 1.

Edwards, S. F. 1976 Molecular fluids (eds. R. Balian and G. Weill). New York: Gordon and
Breach.

Reif, F. 1965 Statistical and thermal physics, ch. 15. New York: McGraw-Hill.

Resibois, P. & De Leener, M. 1978 Classical kinetic theory of fluids. Wiley.


http://rspa.royalsocietypublishing.org/

