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INTRODUCTION

T he question of what relatively simple model might describe forest fire propa-
gation and occurrence as well as frequency–area statistics has occupied a
number of authors [1-12] (not an exhaustive list). Except for the first citation,

these models fall into two classes: self-organized criticality (SOC) (second through
the sixth) [13] and percolation (seventh through twelfth) [14] models. A review [15] is
rather pessimistic regarding the interpretation of forest fire dynamics in the context
of percolation theory. The present conceptual development is based on percolation
theory but has some characteristics of SOC, and is not directly related to existing
percolation models.

There is certainly considerable evidence to support the SOC model that suggests
that the following equation for the (noncumulative) frequency f of forest fires of burn
area A is universal,

f�A� � A��, (1)

with the value of � being 1.3 (values of 1 to 1.3 are apparently considered acceptable)
[6]. Note that Eq. (1) is valid for binning discretely on a logarithmic scale, such as
would be obtained by integrating a continuous distribution from A� to 2A�; thus, the
exponent for a continuous distribution would be � � 1. Grassberger [4] obtains for
the Drossel–Schwabl [3] model � � 1 � 2.15, in the middle of the range cited in [6].
A (frequently) published graph [6] of 15,308 forest fires from Ontario, Canada (0.002
km2 � A � 1330 km2) clearly yields � � 1.38. These authors then state that “a number
of other authors (including several articles of Minnich and coauthors) have found
good correlation of the frequency-area distributions of forest fires and wildfires with
the power-law relation [Eq. (1)], although others [16, 17] disagree.” (An important
point of reference [16] is the introduction of a maximum size due to large-scale
heterogeneity in species distributions.) In Figure 1, I reproduce the statistics of fire
occurrence in Baja California from [18] (from Minnich and coauthors, but not
specifically cited in [6]), which also shows a power-law distribution of forest fire areas
as in Eq. (1), but with an exponent of � � 0.69. In this case, fire perimeters were
determined by analysis of series of aerial photographs. Analysis disclosed 865 fires of
size greater than 5 hectares. The authors [18] divided their data into four different
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time periods, 1925–1941, 1942–1955,

1956 –1971, and 1972–1990, with expo-

nents of 0.65, 0.56, 0.82, and 0.72, re-

spectively, and an arithmetic average of

these four values being 0.69. (The afore-

mentioned values were determined by

Excel fits of a slope on a log–log plot.) A

difference of this magnitude suggests a

possible relevance of other physics.

Consider the following quote from

the abstract of [19]. “Each site [] is either

vacant or occupied by a tree. Vacant

sites become occupied at rate 1. Fur-

ther, each site is hit by lightning at rate

�. This lightning instantaneously de-

stroys (makes vacant) the occupied

cluster of the site. This model is closely

related to the Drossel-Schwabl forest

fire model, which has received much

attention in the physics literature. The

most interesting behavior seems to oc-

cur when the lightning rate goes to zero.

In the physics literature it is believed

that then the system has so-called self-

organized critical behavior.” Later, in

the introduction, these authors com-

plete the reasoning, “This is a continu-

ous-time version of the Drossel-

Schwabl model [ . . . ]. The most

interesting questions are related to the

asymptotic behavior when the lightning

rate tends to 0. . . . it is believed that,

asymptotically, the cluster size distribu-

tion has a power-law behavior.” In con-

trast, however, consider the conclu-

sions from [20] regarding lightning

strikes. In the Sierra San Jacinto and the

Sierra San Bernardino, in southern Cal-

ifornia, only 3.1% and 3.8% of all light-

ning strikes generated fires of measured

size. “The efficiency of lightning in ini-

tiating fires required to account for re-

cent fire history is only 5% of discharges

in the San Jacinto and 2% of discharges

in the San Pedro Martir [Baja Califor-

nia].” Given that the occurrence of

lightning (in a region where lightning

strike frequency is two orders of magni-

tude lower than many areas east of the

Rocky Mountains) is nevertheless al-

most two orders of magnitude higher

than that required to set the observed

fires, it seems likely that the “most in-
teresting” limit is not the zero limit of
lightning occurrence, at least not if it is
intended to be relevant to observed fire
frequency relationships. In fact, the
number of lightning-caused fires is ar-
gued to be so high that the authors [20]
suggest that most lightning-caused fires
burn only very small areas, called “spot
fires,” (frequently as small as a single
tree) and that the landscape-scale
burns, which account for “most of the
disturbance and consumption of fu-
els,” are infrequent. Thus, most of the
lightning strikes occur at a time when
the fuel content of neighboring trees is
too small to burn and no spreading
occurs.

Note that an important element of
power-law statistics is the lack of a
characteristic size. Nevertheless, as long
ago as 1983 [21] it was clear that typical
southern California burns and northern
Baja California burns (with essentially
the same topography and climate) were
approximately an order of magnitude
different in size. This difference is even
evident visually on fire mosaic maps,
where individual US fires were some-
times large enough to span the mon-
tane ecotone bounded by the coastal
plain to the west and the inland desert
to the east. The difference was traced to
the effects of fire suppression on the US

side of the border [21]. By virtue of the

fundamental similarity of the landforms

and the climate, which do not respect

political boundaries, this distinct differ-

ence is not due solely to finite-size ef-

fects (which do introduce a characteris-

tic size), though on the US side of the

border such effects do appear to be im-

portant.

Thus, an important issue regarding

fire occurrence is suppression. By sys-

tematically suppressing small fires

when weather conditions are moderate

(relatively high humidity and low winds

in summer), the effects of fires under

extreme conditions (Santa Ana winds in

fall), when fire is impossible to sup-

press, are accentuated [21]. The number

of destructive lightning strikes (or

matches dropped) is reduced. At the

same time, such management policies

tend to homogenize the landscape,

making areas of stands of (particularly)

chaparral of the same age much larger

and less complex in shape. But, as the

same author points out, the most im-

portant factor on whether chaparral will

burn when exposed to flame is the age

of the individual; young plants do not

ignite under summer conditions. In

both its fundamental aspects, such a

suppression policy could well drive a

system toward SOC.

FIGURE 1

Frequency-area relationship: Baja California
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Logarithmic plot of the frequency of burns as a function of burn size for data from Baja California
collected for fires of size 5 hectares or larger [18].
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FUNDAMENTAL HYPOTHESIS
The question of whether percolation
theory is quantitatively suited to pre-
dicting the observed forest fire frequen-
cy–area distributions is rather complex
and will not be answered in general
here, although some tests, general and
specific, are proposed. Percolation the-
ory is based on the concept that if
bonds between grid sites are estab-
lished with probability p 	 pc, where pc

is a critical value, an infinite cluster of
connected grid sites will be established.
Critical path analysis [22, 23] is a means
to calculate the dominant contribution
to flow or conduction by analyzing a
fraction of an entire system just at the
percolation threshold, which is com-
posed of the most conductive elements.
In the present case, an analogue to crit-
ical path analysis is proposed; one con-
siders a time interval such that the mo-
saic of all burns just percolates. Thus,
instead of a landscape evolution perpet-
ually at critical conditions, one pro-
poses looking at a time window for
which the system is precisely at perco-
lation. First, this concept suggests defi-
nition of a landscape scale recurrence
time (discussed later) rather than a typ-
ical burn recurrence time for an indi-
vidual, or a stand. But, whether system
dynamics are actually constrained by
percolation at any given time is a ques-
tion that is, in this picture, difficult to
evaluate. If the hypothesis is quantita-
tively accurate, a necessary result is that
forest fire area statistics, at least over
the appropriate time interval, should be
consistent with percolation cluster sta-
tistics in two dimensions. To test the
predictions of this model precisely,
however, one must either know or be
able to determine from observation
what the value of pc is (making possible
the choice of the appropriate window in
time), necessitating some discussion of
finite-size and anisotropy effects on ex-
tracted values of pc. This question will
be addressed later, but first consider the
implications of this chief hypothesis.

In any case, there should be three
consequences of the hypothesis: (1) for-
est fire burn statistics taken over the
proper window in time should follow
percolation cluster statistics in two di-

mensions, (2) finite-size effects on the
percolation probability could, in princi-
ple, be relevant to apparent observed
values, and (3) in the case of either wind
(or topography)-controlled anisotropy
or elongated ecotones, the apparent
percolation probability would be differ-
ent for percolation in the orthogonal
directions.

In truth, one of the main factors gov-
erning the size of a given burn is its
proximity to prior burns. Here is a
quote from [18]: “the occurrence of fires
tends to be self-limiting, spatially non-
random, and with recurrence intervals
of 70 years related to the gradual, cu-
mulative development of fire hazard
during successions. Mosaics of fire-cre-
ated patches assume a nonrandom and
self-organizing spatial process where
the occurrence of fire is affected by pre-
existing burns” [note by the present au-
thor this implies the effect of spatial
correlations and memory, not SOC].
Note that in many individual cases
where suppression is not employed fire
boundaries are defined by the bound-
aries of drainage basins, partly because
it is difficult for fires burning under
nonideal conditions (in the absence of
suppression, the typical condition) to
burn across divides.

A frequently used statistic in fire
ecology is a burn recurrence time.
These time scales clearly vary from a
few years in grass fires through a few
decades in chaparral fires to centuries
in forest fires in the Pacific Northwest.
Burn recurrence times that one might
put into a model would relate to char-
acteristics of individuals, such as at
what age chaparral has accumulated
sufficient fuel to burn easily. But burn
recurrence times derived from large
scale observation may be more closely
related to the burn recurrence interval
proposed earlier and discussed later. In
any case, burn recurrence times are re-
lated in a complex way to climate vari-
ability on seasonal scales (grass fires) to
decades or centuries (in rainforests),
and thus also to drought statistics. For
typical forest and chaparral fires, there
may be an interaction of processes oc-
curring on these time scales, “In Cali-
fornian mixed-conifer forest, the Medi-

terranean climate of winter storms and
dry summers results in unfavourable
temperature and moisture conditions
for decomposition, [24] leading to fuel
build-up and fire hazard. [25, 26]” Burn
recurrence times may also be influ-
enced by climate change. If climate
changes significantly within a recur-
rence time, it may be impossible to de-
fine such a time consistently.

To provide a clear prediction of what
time scale to expect for burn recur-
rence, a consistent definition of this
time scale is required that is not influ-
enced by, e.g., extreme value statistics.
What I propose here is relatively
straightforward, though its most obvi-
ously useful application is to the Cali-
fornia peninsular and transverse ranges
(southern California and northern Baja
California mountain ranges). In this re-
gion, either previously burned areas or
the boundary of the region susceptible
to fire (in California, and particularly in
Baja California, these are basically the
coastal plain and the desert) limit spa-
tial extent of fires. The basic hypothesis
is that when, in a given isotropic and
quadratic climate and topographic re-
gion, the total burned area extends from
north to south and east to west without
breaks (i.e., the burned region perco-
lates), a recurrence time has been de-
fined. However, in California, the
mixed-conifer forest and chaparral re-
gions occur mostly in the mountain re-
gions mentioned, meaning that the spa-
tial distribution of fires is not uniform
and the regions of interest are not qua-
dratic. Furthermore, fires occur under
predominant climatic conditions sub-
ject to prevailing surface winds, most
frequently southwesterly winds, leading
to the tendency for burns to be elon-
gated across the mountain chains
rather than along them, accentuating
the anisotropy. A recent treatment of
anisotropy in critical path analysis [27]
provides a possible analytic means of
treating such anisotropy in fire mosaics
(discussed in more detail in the next
section).

When the burn recurrence time
frame has been identified, one can pre-
dict that the statistics of the size of for-
est fires that occur within that time
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frame in an infinite system should fol-

low the cluster statistics of percolation

theory (in two dimensions), which pre-

dicts a universal power law decay out to

infinite sizes. (At other time scales, even

in infinite systems, the cluster statistics

of percolation theory would predict an

exponential cut-off of burn sizes at a

size inversely proportional to the “dis-

tance” from the percolation threshold,

and it is useful to eliminate this compli-

cation.) In two dimensions, the critical

exponent for cluster areas is 2.05, which

is rather poor compared with the ob-

served value of � � 1 � 1.69. However,

SOC model values of � � 1 [4, 6] are

little bit further off at 2.15 or 2.3, respec-

tively. While it was not possible to check

the statistics at a time interval verified

to be appropriate for the definition of

critical percolation as proposed here, a

procedure designed to investigate this

hypothesis was designed. In particular,

the entire time interval investigated (65

years) was divided into subintervals (of

about 20 years each) and the power was

analyzed for both the subintervals and

the entire time period. There was no

obvious change in the power, i.e., the

power of 0.69 obtained (see Figure 1)

was approximately the average value of

the powers in the subintervals.

APPLYING PERCOLATION THEORY TO
LANDSCAPES: VALUE OF PC
The present application of percolation

theory to forest fires, hoped to generate

both a burn recurrence time and fire

area relationships, relates thus to both

the critical percolation probability,

which is system dependent, and to clus-

ter statistics of percolation theory, be-

lieved to be universal. It is supposed

that the percolation threshold is to be

obtained visually from fire mosaics con-

structed for various time intervals. If a

landscape is isotropic, winds are ran-

dom, and ecotones are equidimen-

sional, percolation will occur in an infi-

nite system from north to south and

from east to west simultaneously. None

of these conditions is met in the Cali-

fornia transverse and peninsular

ranges, however. So, some discussion of

how a critical percolation probability

should be independently obtained is

warranted.

Critical percolation probabilities for

a number of grid characteristics (or lat-

tice types) have been tabulated, but

such values are not so relevant to natu-

ral landscape applications, for which

continuum percolation is better

adapted conceptually. So, even though

site percolation on a square lattice has

often been used as a basis to interpret

ecological problems (e.g., [28]) it is pro-

posed here to use continuum percola-

tion theory formulation to represent

real landscapes. Continuum percola-

tion theory applied to two-dimensional

(2D) problems employs fractional sur-

face area (or coverage) as the variable p.

The difficulty is that in continuum per-

colation there is little theoretical guid-

ance for predicting a percolation

threshold, pc. This particular parameter

must be left as an unknown, to be re-

vealed by analysis.

The next fundamental question that

arises is, “to what scale percolation the-

ory should be applied, whether to the

individual tree (or bush) scale, or to a

larger scale.” If to the individual tree

scale, then the fundamental length

scale, �0, which appears in the quanti-

ties from percolation theory, is simply a

typical distance between trees. For such

an application, finite-size effects may

not be visible even in relatively small

systems. However, this does not appear

to be the appropriate scale of applica-

tion in real systems, particularly in the

context of the definition of (landscape)

burn recurrence times proposed here.

Consider that, e.g., many lightning-

caused fires burn only a single tree, and

other analyses [20] have suggested that

the statistics of single tree burns do not

have any relationship with the statistics

of larger burns, occurring far more fre-

quently than otherwise expected. In a

percolation sense, this appears to indi-

cate that the majority of lightning-

caused fires originate under conditions

that are not conducive to the spread of

fires (when p � 0). Thus, I suggest using

�0 also as a parameter to be extracted

from analysis. It would be very conve-

nient to have a simple procedure to ex-

tract both �0 and pc simultaneously, but
such a procedure is not given here.

Given �0 as a parameter, it is known
[29] that the correlation length scale
from percolation theory diverges ac-
cording to the following power law:

� � �0�p � pc��v, (2)

where p is the fractional area of cover-
age, pc is the critical area fraction for
percolation, and � is a universal expo-
nent from percolation theory, which
takes the value of 1.33 in two dimen-
sions[30]. If p is effectively a linearly
increasing function of time, then it
would be possible, in principle, to ex-
tract �0 independently from spatial im-
ages representing the total burnt area as
a function of time. However, aerial pho-
tos are only available at widely spaced
intervals, leaving little intermediate
data to perform the analysis. Physically,
the correlation length represents the
size of the largest cluster of intercon-
nected area of a particular type, e.g.,
either burned or unburned (permitted
by using the absolute value of p � pc),
depending on the value of pc applied.
The correlation length is thus particu-
larly useful for defining finite area ef-
fects on percolation because of the con-
finement of a particular type of
vegetation to the elongated shapes of
climate zones in mountainous topogra-
phy, such as in the Basin and Range
province, or in the peninsular and
transverse ranges of Southern Califor-
nia or Baja California. In the case of
anisotropy (because of the effects of
prevailing winds), �0 cannot be used as
a single parameter, valid for either di-
rection. Nevertheless, one can in this
case use the shape anisotropy of indi-
vidual burns to define a typical ratio R
of burn lengths in the long and short
directions. If, as in Southern and Baja
California, the long burn direction is
across the mountain range, then the
product R�0 must be compared with the
width of the ecotone.

When p is close enough to pc (but
less than pc) and � is greater than the
width of the peninsular ranges, then
percolation across the mountain range
will occur somewhere in a long enough
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range. Such a value of p would be an
observed pc for transverse percolation,
and can be called pc�.

W � R�0�pc � p�c�
�v. (3)

Here W is the width of the mountain
range (more accurately, the ecotone).

p must be larger than pc for percola-
tion to occur along the length of such
mountain ranges. Above pc, the corre-
lation length represents the largest un-
burned break in the percolation cluster.
If such a hole can be larger than the
width of an ecotone, then percolation
along its length is unlikely. Thus, for
percolation to occur along the length of
the ecotone, the correlation length must
be smaller than or equal to the width of
the ecotone,

W � R�0�p 
c � pc�
�v, (4)

where pc
 is the fractional area for
which longitudinal percolation occurs.

Identification of a time scale, for
which the fractional burn area would be
pc (in a quadratic region under isotropic
climatic conditions), then yields the
proposed landscape burn recurrence
time, tc. Clearly, such an analysis re-
quires that the climate zones be station-
ary. If one is in possession of a suffi-
ciently long record of burn areas,
violation of the conditions of this anal-
ysis might be used to identify nonsta-
tionary statistics and thus perhaps the
influence of climate change in that the
relationship of pc to tc is not constant.

If finite-size effects are important,
then one also has complications be-
cause percolation does not occur for the
same value of pc (thus p� or p
) in every
realization, but this complication is ne-
glected.

p� and p
 as determined from spatial
analysis may then be related through
Eqs. (3) and (4) to pc,

p� � pc � �R�0

w �
1
v

p
 � pc � �R�0

w �
1
v .

(5)

RESULTS AND DISCUSSION
The potential problem with the afore-
mentioned analysis is that if the forest
fire burn areas just percolate, but the
burn areas do not obey the cluster sta-
tistics of percolation theory (with an ex-
ponent of � � 1 � 2.05), we appear to
have a contradiction. In fact, the burn
area statistics in Baja California (see
Figure 1) at least appear to follow a
power law, but with exponent approxi-
mately � � 1 � 1.7 rather than 2.05. The
value of this exponent does not appear
to have any dependence on the length
of the time interval chosen (results not
shown), though there was a limited po-
tential to investigate this variable. Any
cause for this discrepancy, other than
the failure of the percolation model, has
not been identified here, and it is pos-
sible that a completely different model,
such as random fragmentation, would
be relevant. Note, however, that one of
the conditions for the derivation of a
critical exponent greater than 2 is the
requirement in an infinite system that
the fractional area covered by burns (as
given by an integral over Af(A) out to
infinite A) does not diverge[29]. Such an
argument applies equally to SOC. More-
over, the discrepancy is not smaller
there; rather, it is slightly larger.

Alternate Hypotheses
As noted, an alternate possibility is that
a landscape fragmentation model
would be more appropriate. A second

alternate hypothesis could be that what
is actually being observed relates to the
statistics of drainage basins rather than
to fire characteristics, since the divides
between basins restrict the spread of
fire. One potential means to investigate
this is to check what the statistics of fire
occurrence in terms of the length of a
drainage basin turns out to be. The
length of a drainage basin is not neces-
sarily a well-defined object, but the
length of a stream can be defined. The
most commonly quoted experimental
relationship between stream length, S,
and drainage basin area, A, is S � A0.6, a
relationship known as Hack’s law[31].
Using S as the independent variable
(see Figure 2) generates a power of � �

1 � 2.06 for the frequency of forest fire
lengths. Note that the cluster statistics
of percolation theory in 1D imply an
exponent of 2, however, rather than
2.05. This could mean that percolation
theory is relevant to the arrangement of
at least the smaller drainage basins
along 1D transects across the range and
that the behavior of fires is largely con-
trolled by the interaction of this topog-
raphy with the prevailing winds.

CONCLUSIONS
A new conceptual framework for ana-
lyzing the effects of anisotropy in land-
scape as well as climatic conditions on
fire statistics has been proposed. This
framework is analogous to critical path
analysis for the electrical or hydraulic

FIGURE 2

Frequency-length relationship: Baja California
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Logarithmic plot of the frequency of burns (as in Figure 1), but with respect to a length scale
appropriate for a river drainage (proportional to A0.6).
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conductivity, and is thus based on per-

colation theory. In a test to determine

whether it is applicable to burn area

statistics in Baja California, however, it

was impossible to confirm that the clus-

ter statistics of percolation theory are

relevant to the fire frequency–area sta-

tistics observed.

On the other hand, it also appears

obvious that there are serious concep-

tual problems with the application of

concepts from SOC to forest fire burn

areas, at least in Baja California, thus

implying that a search for an appropri-

ate conceptual understanding is still

relevant. Further, discrepancy between

the predicted power law from SOC and

the observed statistics appears to be

somewhat greater than for percolation

theory. The principal conceptual objec-

tions here are (1) that the observed fires

do appear to have a relevant length

scale and (2) that the “interesting” limit

of a zero lightning rate frequency is

never approached in nature.

A third hypothesis, that the chief

controlling factors were topography

and wind direction, and that the fire

area statistics might actually relate to

percolation in basin lengths, appeared

to perform a little better than the first
two, but this alternative should prob-
ably be regarded at this time as an
unsubstantiated conjecture.

Related Web sites

● http://www1.coe.neu.edu/�emelas/
forestFire.htm (site with simple ap-
plet tool).

● http://polymer.bu.edu/java/java/blaze/
blaze.html (laboratory protocol, evi-
dently from Gene Stanley’s group).

● http://www.cof.orst.edu/org/usiale/
lasvegas2004/swapmeet.htm.
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