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Abstract

Williams and Bjerknes proposed a simple stochastic growth model to describe the
tumor growth in the basal layer of an epithelium. In this work we generalize this
model by including the possibility of saturation in the tumor growth as it is clinically
observed. The time evolution of the average number of tumor cells and its variance
for both the original and extended models are studied by analytical methods and
numerical simulations. The generated growth patterns can be compact, connected
or disconnected depending on the model parameters used, and their geometrical
properties are characterized through the gyration radius, the number of interfacial
cells and the density of empty sites inside the patterns.

Key words: Tumor growth, Stochastic process, Computer simulations
PACS: 87.10+e, 02.50.Ey, 87.16.Ac

1 Introduction

The population dynamics, including the growth of normal and tumor cells,
is a traditional problem investigated in Physics and Biology [1]. In their orig-
inal work, Williams and Bjerknes [2] built a model (WB model) to describe
the tumor growth in the basal layer of an epithelium. In their model, one
phase (the tumor cells) grows faster than the other (normal cells) by a factor
κ, which represents the carcinogenic advantage. This model exhibits two dis-
tinct behaviors: unrestricted growth (κ > 1) and complete regression of the
tumor (κ ≤ 1). In the special case κ = 1 the tumor always disappears due
to the fluctuations. It is worthwhile to mention that the WB model can also
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be applied to describe the growth of many systems involving two competing
phases. Using an adequate time step, the WB model can be interpreted as a
‘birth and death’ process [3] with constant division and death rates. Thus, all
the well known results for stochastic processes can be used to understand this
model.

However, real tumors exhibit, in addition to the two distinct behaviors pre-
viously described, a quiescent state in which the tumor size remains constant
for a long time [4]. The underlying aspects of tumoral biodynamic diversity
involve a complex set of biochemical processes and environmental constraints
such as local nutrient availability, mechanical stress, immune response, etc. [4].
Numerous models of cancer growth have been recently proposed in order to
describe the tumor progression, providing auxiliary tools for cancer diagnosis
and therapy [5].

In this paper, we are proposing a generalization of the WB model in which
the division and death rates of tumor cells depend on their total number.
Specifically, the probability of cell division decreases whereas the cell death
probability increases as the number of cancer cells increases. The paper is or-
ganized as follows. In section 2, the original and the extended WB models are
defined. Sections 3 and 4 are dedicated to the analytical study of both discrete
and continuous time versions of these models. In section 5, the geometrical
properties of the growth patterns generated by the extended model are char-
acterized through computer simulations. Finally, some conclusions are drawn
in section 6.

2 The extended Williams and Bjerknes models

In the original WB model [2] the tissue is represented by a two-dimensional
lattice where occupied sites represent tumor and empty sites normal cells. All
the sites are initially empty, except the center of the lattice, since the tumor
grows from a single malignant cell, in agreement with the theory of clonal
origin of cancer [6]. The interfacial cells are defined as those that have one
or more nearest-neighbor sites of the opposite type. The growth rule is very
simple: one of the bonds between two opposite cell types is chosen at random
with equal probability; the normal cell of this chosen bond is replaced by a
tumor cell, with probability g, or the tumor cell is replaced by a normal one,
with the complementary probability r = 1 − g. In terms of the carcinogenic
advantage κ, these probabilities can be written as:

g =
κ

κ + 1
(1)
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and

r =
1

κ + 1
. (2)

The limit κ = ∞ corresponds to the Eden model [7], more specifically, the
Eden model type B according to the definitions given by Vicsek [8].

There are many variations of the WB model [9], but we shall consider only
the cases that exclude the steps that do not change the pattern configuration.
Therefore, in all time steps the number of tumor cells increases or decreases
by an unity with probabilities g or r, respectively. Particularly, we shall study
the follwing variation of the original WB model: at each time step a cell
type is chosen, either a tumor cell, with probability r, or a normal cell, with
probability g. Then, the selected cell is converted to its opposite type. In other
words, at each time step, either the division or death of a single tumor cell
occurs, with probabilities g or r, respectively.

Now, we introduce a new model by assuming that the division and death
probabilities depend on the total number of tumor cells n through Michaelis-
Mentem functions [1]:

g(n) = 1 −
αn

Γ + n
(3)

and

r(n) =
αn

Γ + n
. (4)

Here 0 < α < 1 and Γ > 0 are parameters that control the shape of the
curves. These functional forms were used because they are the simplest ones
which varies monotonically with n and satisfy the normalization condition
g(n) + r(n) = 1. These curves are illustrated in figure 1.

3 Analysis of WB models using stochastic methods

The stochastic growth rules used in the WB models involve probabilities
g and r that are explicitly time independent. In consequence, as is the case
for Markov chains, the chance of these models generate a given pattern in a
certain time depends only on the probabilities associated to the configurations
at the previous time. So, the WB growth processes will be described within
the probability transition equation or master equation frameworks, according
to the discrete or continuous character of the time [3,10].
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Fig. 1. Division and death probabilities in the extend WB model.

The transition probability equation is written as:

P (n, t + 1) =
∑

m

Tn,mP (m, t), (5)

where Tm,n are the elements of the transition matrix. Tm,n provides the transi-
tion probability from a state containing m tumor cells to a state with n tumor
cells in the next time. A continuous version of equation (5) is given by the
master equation:

d

dt
P (n, t) =

∑

m̸=n

{Wn,mP (m, t) − Wm,nP (n, t)} , (6)

where Wn,m is interpreted as a probability by unit time or transition rate.

Initially, the discrete time WB model will be considered. At every random
selection of an interfacial site to implement an action, the time is incremented
by an unity. In this way, the transition matrix is:

Tn,m =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

g if n = m + 1

r if n = m − 1

0 if |n − m| > 1

. (7)

This expression is valid only for n ≥ 2, since the WB model is a special type
of one step process [3] with an absorbent state at n = 0. Indeed, T0,1 = r and
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T1,0 = 0. Substituting the transition matrix (7) in the probability transition
equation (5) we have:

P (n, t + 1) = gP (n − 1, t) + rP (n + 1, t) if n ≥ 2

P (n, t + 1) = rP (n + 1, t) if n = 0, 1
. (8)

In this section, we are interested in quantities that depend only on the
number of tumor cells and not on the spatial distribution of theses cells on
the tissue. So, the time dependence of the average number of tumor cells ⟨n(t)⟩
and its variance σ(t), defined as:

⟨n(t)⟩ ≡
∞
∑

n=0

nP (n, t) (9)

and

σ2(t) ≡ ⟨n2(t)⟩ − ⟨n(t)⟩2, (10)

are calculated. Clearly,

⟨n2(t)⟩ ≡
∞
∑

n=0

n2P (n, t). (11)

Using equation (8) and iterating the expressions for < n(t) > and < n2(t) >
we find:

⟨n(t)⟩ = n(0) +
κ − 1

κ + 1
t (12)

and

σ2(t) =

[

1 −
(

κ − 1

κ + 1

)2
]

t. (13)

Equations (12) and (13) show that ⟨n(t)⟩ decreases linearly with time if κ <
1, and increases linearly if κ > 1. In turn, the variance increases with the
square root of time. Thus, for all κ > 1 there is a non-vanishing probability
of unlimited tumor growth. But, if κ = 1, ⟨n(t)⟩ is constant, the variance
increases with the square root of time and, therefore, independently of the
initial population, the absorbent state n = 0 will be reached. Moreover, we
have the maximum variance exactly at κ = 1. These exact results found for
the discrete WB model are also valid for the continuous time approach.
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4 The extended model

In this section, the previously described generalized WB model (equations
(3) and (4)), which includes the possibility of growth limitation, is studied by
a continuous approach based on the master equation [3,10]. Again, the time
step is defined as the birth or death of a single tumor cell.

4.1 The macroscopic equation

First of all, we define the transfer matrix Wn,m:

Wn,m =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

g(m) if n = m + 1

r(m) if n = m − 1

0 if |n − m| > 1

(14)

or

Wn,m = g(m)δ(m − n − 1) + r(m)δ(m − n + 1). (15)

The master equation is obtained substituting the expression (15) in (6):

d

dt
P (n, t) = g(n − 1)P (n − 1, t) + r(n + 1) × P (n + 1, t) − P (n, t). (16)

Using (9), (11) and (16) we have:

d⟨n(t)⟩
dt

= 1 − 2α

〈

n(t)

Γ + n(t)

〉

(17)

and

d⟨n2(t)⟩
dt

= 1 + 2

〈

n(t)[Γ + (1 − 2α)n(t)]

Γ + n(t)

〉

. (18)

Notice that (17) and (18) are non-linear equations which cannot be solved
by analytical or numerical methods. Using a mean field approximation, the
macroscopic equation for (17) is obtained replacing n(t) by a deterministic
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Fig. 2. Mean field phase diagram for the asymptotical value of the average number of
tumor cells. Three possible regimes are found: unrestricted growth, limited growth
and total regression of the tumor.

function N(t). The corresponding macroscopic equations for the first and sec-
ond moments are:

dN(t)

dt
≡ ζ(t) = 1 − 2α

N(t)

Γ + N(t)
. (19)

dN2
∗ (t)

dt
= 1 + 2

N(t)[Γ + (1 − 2α)N(t)]

Γ + N(t)
. (20)

The star is used in order to distinguish between N2 and N2
∗ , the second mo-

ment.

As one can see, equation (19) exhibits three distinct asymptotic behaviors:

• N(t) increases without limit if ζ(t) > 0 ∀ t ;
• N(t) → 0 if ζ(t) < 0 ∀ t;
• N(t) goes to a non-vanishing constant value if ζ(t) = 0 at a certain time.

The phase diagram in the parameter space (Γ, α) is shown in figure 2.
The third behavior requires a stable solution [3], which always exists since
the macroscopic equation is a first order differential equation. This analysis
reveals the existence of a well-defined phase transition in α = 1/2, i. e., for
α < 1/2 the average number of tumor cells grows without limit, whereas for
α > 1/2 this number reaches a constant value Ω ≥ 0.

In the region of unrestricted growth (α < 1/2), N(t) grows linearly and
the variance increases as the square root of the time, in agreement with (19)
and (20) for very large N . Therefore, the model behaves asymptotically as

7



Fig. 3. Numerical solutions of the macroscopic equation for the extended WB model
around the critical point α = 1/2 and fixed parameter Γ = 20. Also, the saturation
value and the crossover time evaluated for these parameters are indicated.

the original WB model. The transition line α = 1/2 must be considered in
separated. Fortunately, the equation (19) has a closed solution for α = 1/2,
N 1

2

(t), given by:

N 1

2

(t) =
√

(n(0) + Γ)2 + 2Γt − Γ. (21)

Clearly, N 1

2

has the asymptotical behavior N 1

2

(t) ∼=
√

2Γt. Substituting (21)

in (20), the asymptotical macroscopic approximation to N2
∗ is obtained and,

using this result, we find σ =
√

t. However, numerical simulations suggest that

σ ∼=
√

t/2, and this difference will be explained in the subsection 4.3 by taking
into account corrections to the macroscopic equation.

In the region of limited growth, the solution Ns(t) reaches a saturation value
Ω for long times. This value can be find by taking ζ(t) = 0:

Ω =
Γ

2α − 1
. (22)

Also, the saturation crossover time, (t×), is evaluated through an expansion at
long times of Ns(t) around Ω. Substituting Ns(t) = Ω+µ(t), where |µ(t)| ≪ Ω,
and expanding (19) we have:

dµ

dt
= −

(2α − 1)2

2αΓ
µ + O(µ2). (23)
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At first order in µ the solution is an exponential decay µ(t) ∼ exp(−t/t×).
Thus, the saturation crossover time is given by:

t× =
2αΓ

(2α − 1)2
. (24)

In figure 3 the numerical integrations of (19) around the critical parameter
α = 1/2 and fixed Γ = 20 are shown.

The phase diagram exhibits two lines in the complete regression region. The
line Γ = 2α − 1 is the border of the region where N(t) → 0, according to the
solution of the macroscopic equation. However, if the fluctuations are larger
than the saturation value Ω, all tumor cells die. Thus, the phase diagram
shown in figure 2 already take into account the correction considering the
variance, as evaluated in next subsection. The result is that the region of total
regression correspond to Γ < α.

In order to test the predictions of the macroscopic equation approxima-
tion, comparisons with simulational results were done. It was observed a good
agreement between analytical and simulational results for α < 1/2. However,
for α ≥ 1/2, small differences, that become meaningful when the value of Γ is
not large, emerge. All these comparisons are shown in figure 4. As one can see,
there is a fixed difference between the numerical and simulated solutions in
the limited growth region. This difference can be found making an expansion
of the master equation [3], also called Ω expansion.

4.2 The Ω expansion

The Ω expansion consists in expand the master equation in powers of the
characteristic size of the system. In our case, this characteristic size is the Ω in
(22), since it represents an upper bound to the size of the tumor population.
Indeed, this was the reason for denote the saturation value as Ω.

We assume that the probabilities Pn have a sharp maximum around the
macroscopic solution with a width of order Ω1/2. This hypothesis is explicitly
used in the change of variable:

n = Ωφ(t) + Ω1/2ξ, (25)

where ξ is a new random variable and φ(t) is a deterministic function. Also,
the expansion assumes that the rates W (n|m) ≡ Wn,m can be written in the
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Fig. 4. Comparison between analytical and simulational results. The continuous
and smooth curves are obtained from numerical integrations of the macroscopic
equation whereas the other ones are given by simulations. 2000 samples were used
in the simulations with the parameters (a) Γ = 20 and α = 0.49, (b)Γ = 20 and
α = 1/2 and (c) Γ = 50 and α = 0.60.

form:

WΩ(n|m) = f(Ω)
{

Φ0

(

m

Ω
; s
)

+ Ω−1Φ1

(

m

Ω
; s
)

+Ω−2Φ2

(

m

Ω
; s
)

+ . . .
}

,(26)

where f and Φi are arbitrary functions and s ≡ n − m. The technical details
involved in the expansion can be found in [3].

Introducing the notation used in [3]:

ϕν,λ(x) =
∫

sνΦλ(x; s)ds, (27)
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the expansion up to orders of Ω1/2 and Ω0 results in the following equations
for φ, ⟨ξ⟩ and ⟨ξ2⟩:

dφ

dτ
= ϕ1,0(φ), (28)

∂⟨ξ⟩
∂τ

= ϕ′
1,0(φ)⟨ξ⟩ (29)

and

∂⟨ξ2⟩
∂τ

= 2ϕ′
1,0(φ)⟨ξ2⟩ + ϕ2,0(φ), (30)

with τ ≡ f(Ω)/Ω. (28) is the macroscopic equation for the system divided by
Ω, (29) gives the correction for ⟨n(t)⟩ in order of Ω1/2, and (30) represents the
first approximation for the fluctuations around the mean. The initial condi-
tions for (29) and (30) are ⟨ξ(0)⟩ = ⟨ξ2(0)⟩ = 0, because Pn(0) = δ(n − n0),
i.e., at t = 0 the population is n0.

For the extended model, the transition rates (15) can be rewritten as:

WΩ(ρ; s) =

(

1 −
αρ

2α − 1 + ρ

)

δ(s − 1) +

(

αρ

2α − 1 + ρ

)

δ(s + 1), (31)

where ρ ≡ m/Ω. In agreement with the notation of (26), we have f(Ω) = 1,
Φi = 0 if i ̸= 0, and Φ0 is defined as the right hand side of (31).

Here, our goal is calculate the asymptotical corrections in time and the
differences shown in figure 4. Solving (29) and (30) using (31), we find that:

⟨ξ(τ)⟩ ∼ exp
(

−
2α − 1

2α
τ
)

τ→∞−→ 0 (32)

and

⟨ξ2(τ)⟩ τ→∞−→
α

2α − 1
. (33)

Therefore, the correction for ⟨n(∞)⟩ given by (32) vanishes, because n =
Ωφ(t)+Ω1/2ξ(t). However, (33) shows that the first correction for the variance
reaches a constant value:

σ2 = Ω⟨ξ2(τ)⟩ τ→∞−→
Γα

(2α − 1)2
. (34)

11



In figure 4(c) the variance was measured as σmeasured
∼= 27.5, whereas the ana-

lytical value calculated by (34) is σanalytical
∼= 27.4. Thus, there is an excellent

agreement between the analytical and simulational results for the variance.
Since the fluctuations reach a constant value which is smaller than the satura-
tion one, the tumor certainly does not disappear as in the original WB model
with κ = 1.

The difference between the saturation values obtained by the simulations
and calculated through the macroscopic equation can not be explained taking
into account only terms of order Ω0. The first non-vanishing correction in ⟨ξ⟩
involves terms of order Ω−1/2[3]:

⟨ξ⟩ =
Ω−1/2

2(2α − 1)
. (35)

Consequently, the first correction in ⟨n⟩ is:

∆ =
1

2(2α − 1)
. (36)

Using (36), the calculated correction is ∆analytical = 2.5 and the measured
value in figure 4(c) is ∆measured

∼= 2.51, which are in excellent agreement.
Several other values for the model parameters were tested and a very good
agreement between simulational and analytical results was found.

4.3 Asymptotical corrections for α = 1/2

The Ω expansion cannot be applied for systems without a characteristic
size. This is the case for equation (21) which, for α = 1/2, gives a solution
that grows without limit and, consequently, one can not define the character-
istic size of the tumor. However, it is possible to do an expansion around the
macroscopic solution (21). Taking n(t) = N 1

2

(t)+ε(t), where ε is the new ran-

dom variable satisfying |ε(t)|/N 1

2

(t) ≪ 1, and conserving terms up to second

order of ε/N 1

2

, we find the following equation for ε(t):

d < ε >

dt
= −Γ

< ε >

g2(t)
+ Γ

< ε2 >

g3(t)
+ O(ε3), (37)

where g(t) =
√

n(0) + 2Γt. In order to solve (37), it is necessary to know the
relationship between the first and the second moments of ε. Equation (20) gives
N2

∗ (t) = N2
1

2

(t)+t and the xpansion of n2 = (N 1

2

+ε)2 with the approximation <
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n2 >≈ N2
∗ results in < ε2 >≈ t− 2N 1

2

< ε >. Substituting this approximated

relation for < ε2 > in equation (37), and taking the asymptotical limit for t,
we obtain:

d < ε >

dt
+

3

2t
< ε > −

1

2
√

2Γt
= 0. (38)

Its exact solution is:

< ε(t) >=

√

t

32Γ
. (39)

Considering the correction given by (39), the analytical and simulational
curves in figure 4(b) become indistinguishable. Now, one can use the result
(39) to find the correction to the variance. It is possible to show that the
asymptotical value of the variance, consistent with the approximations used
above, is given by:

σ2 =
t

2

(

1 −
1

16Γ

)

(40)

Equation (40) is able to explain the factor 1/2 present at the simulations shown
in figure 4(b). Again, the simulational and analytical results are in very good
agreement for a large number of parameter sets.

5 Geometrical patterns

The previous sections were dedicated to the analytical study of the origi-
nal WB model and its extended version. Now, in this section the simulational
results focusing the geometrical properties of the patterns generated by the
extended WB model are presented. The patterns associated to the original
WB model are spherical and compact with a rough surface. For the extended
model, the patterns exhibit three distinct morphologies: compact with a rough
border, connected with internal holes and disconnected with cells isolated from
each other. These morphologies are shown in figure 5. In the region of unlim-
ited growth, i. e., α < 1/2, the patterns become compact. This compaction
occurs because the division probability is always higher than the death prob-
ability and, as a consequence, all the internal empty sites will be occupied at
sufficiently long time. The disconnected patterns appear in the region of lim-
ited growth (α > 1/2). The reason is that the division and death probabilities
reach the same value p = 1/2, and the cells behave like non-directed random
walkers. Finally, the connected patterns are generated just on the transition

13



Fig. 5. Typical patterns generated by the extended WB model: (a) compact, (b)
connected and (c) disconnected. For these patterns Γ = 1000 were used. α = 0.45,
0.50 and 0.51 was used in (a), (b) and (c), respectively. The simulations were done
in lattices with 1200 × 1200 sites and stopped if a tumor cell reaches the border of
the lattice.

line α = 1/2. The difference between connected and disconnected patterns is
that the former does not has a percolation cluster of empty sites inside the
pattern, whereas in the last this cluster is found.

These patterns were characterized by its gyration radius (Rg) and the num-
ber of interface tumor cells (S). The gyration radius is defined by:

Rg =
n
∑

i=1

(r⃗i − r⃗cm)2, (41)

where the sum extends over all the tumor cells and r⃗cm is the mass center
of the pattern. In the original WB model, Rg and S scale asymptotically

14



Table 1
Summary of the exponents found for the extended WB model. The exponents ν, σ,
and γ are defined by Rg ∼ nν,S ∼ nσ and ρ ∼ tγ .

α < 1/2 α = 1/2 α = 0.51

Γ ν σ ν σ γ ν σ γ

103 0.50 0.50 0.64 1 0.18 0.62 1 0.64

103 0.50 0.50 0.60 1 0.18 0.60 1 0.64

104 0.50 0.50 0.54 1 0.25 0.52 1 0.63

with the square root of the number of tumor cells [11]. In turn, only the
compact patterns (α < 0.5) of the extended model show the same asymptotical
behaviour for Rg and S. For α ≥ 0.5 the scaling laws change and are dependent
on the Γ parameter. Indeed, S ∼ n and Rg ∼ nν , with ν(Γ) > 1/2, indicating
that the patterns are fractals with dimensions df = 1/ν [8]. Notice that, in the
limited growth regime, n is bounded and the power law is defined before the
growth saturation. However, since the cells become progessively more distant
from each other, Rg grows continuously with the time as a power law. The
numerical results are summarized in table 1.

The transition from compact to disconnected patterns was studied through
the density ρ of internal holes in the patterns. ρ was defined as the ratio
between the number of empty and occupied sites enclosed by a circle of radius
Rg. This definition was used in order to discard the tumor border, where the
compaction never occurs. For α < 1/2, ρ decreases, vanishing at sufficient long
time. In contrast, for α ≥ 1/2, ρ increases asymptocally as a power law ρ ∼ tγ .

In order to test if the exponent γ varies with the parameter Γ, simulations
were done using three distincts Γ values (102,103,104). For Γ = 104 the density
of internal holes is lower than that for Γ = 103, but the corresponding power
law exponent is higher. Since for both Γ = 102 and Γ = 103 the simulations
provide essentially the same values for γ, we suppose that this exponent is
independent of the parameter Γ. Thus, we believe that the curve obtained for
Γ = 104 might be a transient behavior.

The patterns observed in the extended model are very similar to the mor-
phologies generated by a growth model for primary cancer recently proposed
[12]. This model considers a complex interaction network among tumor cells
mediated by growth factors and, in contrast to the present model, involves a
large number of parameters. Our results are more robust than those observed
in [12], since the two parameters used in the extended WB model are not
associated to the properties of the tumor microenvironment. Indeed, they are
related to macroscopic quantities such as the saturation size of the tumor.
However, the extended WB model has a limitation. Every compact pattern
has a unlimited growth and the disconnected patterns always cease their pop-
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ulational growth. The reason is that the growth only occurs on the interface
between tumor and normal tissues, whereas in real tumors the internal cells
also divide. This limitation does not compromise the analytical results since
the spatial distribution of the tumor cells in the tissue is not considered.

6 Conclusions

In this work we propose an extended version of the Williams and Bjerknes
(WB) model initially used to describe the tumor growth. In this extended
model, the division and death probabilities correspond to monotonically in-
creasing and decreasing functions of total number of tumor cells n, respec-
tively. The average values of n for the original and the extended WB models
as well as their variances were exactly calculated using stochastic processes
methods. The original model reveals two possibilities for < n >: unlimited
growth or total regression of the tumor. However, real tumors exhibit three
possible behaviors which are observed also in the extended WB model: the
ones previously described and a quiescent state where the tumor size remains
constant for a long time. The differences observed between simulated and
mean-field results for the extended model were calculated using expansions of
the involved equations. In addition, the geometry of the growth patterns gen-
erated by the extended WB model were analysed. Three distinct morphologies
have been observed: compact, connected and disconnected. All the patterns
were characterized by its gyration radius, Rg, and number of tumor cells on
the interface, S. For the compact patterns, Rg ∼

√
n and S ∼

√
n. For the

connected and disconnected patterns Rg ∼ nν and S ∼ n, with ν > 1/2,
indicating that these patterns are fractals.
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