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Various non-equilibrium growth models have been used to explore the development 
of morphology in biological systems. Here we review a class of biological growth 
models which exhibit fractal structures and discuss the relationship of these models 
to a variety of other phenomena. 

1. Introduction 
A desire to obtain a better understanding of the development of morphology in 
biological systems has provided one of the main motivations for the study of  
non-equilibrium growth models. Much of  our present understanding of  non-equili- 
brium processes is a result of computer simulations carried out using simple models 
during the past two or three decades. This work has been encouraged by the 
observation that simple growth models can lead to complex behavior having some 
of  the features characteristic of  real systems. This is particularly true in the case of 
deterministic growth models (cellular automata) (Wolfram, 1983, 1984) which 
exhibit behavior paralleling that found in dissipative, nonlinear dynamic systems 
(Ott, 1981). 

In this paper we are concerned with probabilistic growth models which can also 
lead to complex structures which mimic certain types of  biological morphologies. 
These models lead to structures in which the fractal dimensionality, D (Mandelbrot, 
1982), is distinctly smaller than the Euclidean dimensionality, d, of  the space or 
lattice in which the growth process is occurring. For ordinary Euclidean objects, 
the dimensionality, d, is the exponent which describes how the mass of  the object, 
M, scales with some characteristic length l which describes the overall size 

M ~ I  a. (1) 

In this case d is an integer (3 for a sphere, 2 for a plane and 1 for a line). Many 
objects are found in nature (Mandelbrot, 1982) for which the form of the mass-length 
scaling relationship given in equation (1) is preserved but the exponent is no longer 
equal to the Euclidean dimensionality of the embedding space in which the object 
exists 

M ~ l °. (2) 

In this case the exponent D is called the fractal dimensionality (Mandelbrot,  1982). 
In general D is not an integer and satisfies the condition D < d. However, in some 
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cases (such as a random walk) D may have an integer value (D has a value of 2-0 
for random walks in a space of any Euclidean dimensionality). 

The mass-length scaling relationship given in equation (2) is the basis for all 
methods to measure the fractal dimensionality of real objects or objects generated 
in computer simulations. For computer simulations of nonequilibrium growth and 
aggregation processes three mass-length scaling relationships are commonly used 
to measure the fractal dimensionality. These are 

Rg ~ N(1/°~  ) (3a) 

M ( 1 )  ~ l ° ,  (3b) 
and 

In equation (3a) Rg 

C ( r )  ~ r (°--a) .  (3c) 

is the radius of gyration and N is the mass (number of 
particles or occupied lattice sites) of the growing object. In equation (3b) M ( 1 )  is 
the mass contained within the distance I measured from some occupied site (generally 
l is measured from the initial growth site or "seed"). In equation (3c)C(r) is the 
two point density-density correlation function at a distance r. For all real systems 
and systems generated by finite size simulations these mass-length scaling relation- 
ships are obeyed over only a finite range of length scales bounded by upper and 
lower cut offs. Consequently, the exponents D,, Dr3 and Dv are effective fractal 
dimensionalities. In the asymptotic limit (where the range of length scales becomes 
infinite) D~, D e and D~ converge on a common value D which is the fractal 
dimensionality. Besides obeying equation (2) fractals also display the property of 
self-similarity (or statistical self-similarity in the case of random fractals). In other 
words they are scale invariant and look the same under different magnifications. As 
in the case of the mass-length scaling relationships, this property of self-similarity 
does not extend over an infinite range of length scales for real systems. 

Since, in general, D < d for real fractal objects, the mean density of fractal objects 
becomes smaller and smaller as they grow larger and larger. Fractals contain holes 
or gaps covering a wide range of length scales up to the overall size of the fractal. 
These characteristics can be seen in the results of most of our simulations. 

One of the earliest examples of probabilistic growth models is the "Eden" (Eden, 
1961) model (Fig. 1) in which each vacant surface site has the same probability of 
becoming occupied at all stages of growth. This model generates compact structures 
in which the fractal dimensionality (Mandelbrot, 1982) D is equal to the Euclidean 
dimensionality d. A closely related model which includes competing growth and 
decay process was developed by Williams & Bjerknes (1972) as a model for the 
growth of skin cancer. They found that for their model the "surface" perimeter size 
S depended on the total mass or number of occupied sites in the cluster N according 
to the power law relationship 

S = N °'55. (4) 

This result suggested that the surface of Williams-Bjerknes (1972) clusters may have 
a fractal geometry. However, more recent work with this model (Peters et al., 1979; 
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< 601  Lof l ice units ~- 

FIG. 1. The 2372 unoccupied interface sites associated with a 200000 site cluster grown using the 
Eden model. 

Meakin, unpublished) suggests that the surface is rough but not fractal-like. This 
conclusion is supported by the theoretical work of Richardson (1973). Figure 2 
shows a 100 000 site Williams-Bjerknes (1972) cluster grown with a "carcinogenic 
advantage" of 1.1. The carcinogenic advantage is equal to the growth probability 
divided by the decay probability. 

< 451  Lof l ice units :~ 

FIG. 2. The 4135 unoccupied interface sites associated with a 100000 site cluster grown using the 
Williams-Bjerknes model with a carcinogenic advantage of 1.1. The advantage is equal to (growth 
probability)/(decay probability). The surface of this cluster appears to be rough but not fractal. 

In recent years a variety of biological growth models have been studied (Tautu, 
1978; MacDonald, 1983; Gierer & Meinhardt, 1972; Gierer, 1980; Meinhardt, 1982), 
but, to our knowledge, none of these leads to structures with well-defined fractal 
dimensionality. For example, the network formation model of Meinhardt (1982) 
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generates a uniform (non-fractal) network of occupied lattice sites leading to the 
type of structure shown in Fig. 3. The morphology shown in this figure results from 
a combination of non-linear chemical reaction processes and diffusion. Models of 
this type may lead to fractal structures under some conditions but so far these 
conditions have not been found. 

201 Latt ice units ' 

FIG. 3. A growth of 8909 occupied lattice sites generated using Meinhardt's "network" model. This 
model generates a network of occupied lattice sites which is uniform on all but short length scales. The 
structure is not a fractal. A detailed discussion of the model is given by Meinhardt (1982). 

Recently interest in non-equilibrium growth processes has been stimulated by the 
demonstration by Witten & Sander (1981) that structures with a well-defined fractal 
geometry are generated by a simple diffusion limited aggregation process in which 
particles are added one at a time to a growing cluster or aggregate via random walk 
trajectories. This model has generated considerable theoretical interest (Gould et 
al., 1983; Muthukumar, 1983; Nauenberg, 1983; Nauenberg et al., 1983; Deutch & 
Meakin, 1983; Hentschel, 1984) and has led to the development of a number of 
more or less closely related models (Rikvold, 1982; Meakin, 1983a, b; Kolb et al., 
1983; Niemeyer et al., 1984) which also generate fractal structures. It has also 
stimulated experimental investigations (Brady & Ball, 1984; Matsushita et aL, 1984). 
A typical two-dimensional Witten-Sander cluster is shown in Fig. 4. 

Since the growth of many biological systems may be limited by the diffusion of 
nutrients to the system or the diffusion of toxic metabolites away from the system, 
the diffusion limited aggregation model of Witten & Sander (1982) may provide 
new insight into the morphology of certain biological systems. 

The model which we discuss below is similar to the Eden model in that growth 
occurs by the random occupation of vacant surface sites. However, we assume that 
the rate of growth (growth probability) depends on the local concentration of some 
substance which diffuses from a surrounding exterior source and is consumed by 
the growing system. If the process is diffusion limited, and if the rate of growth is 
directly proportional to the local nutrient concentration, our model becomes very 
similar to the Witten-Sander (1982) model. In this case a structure with a fractal 
dimensionality of about 1.7 is formed in 2d simulations (Witten & Sander, 1982, 
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FIG. 4. An aggregate of  10 000 particles obtained from an off lattice version of  the Witten-Sander 
model for diffusion limited aggregation. This structure, which is in a two-dimensional space, is a random 
fractal with a fractal dimensionali ty of  about 5/3. 

1983), and in three dimensions a structure with a fractal dimensionality of about 
2.5 is obtained (Meakin, 1983c, d). 

If the growth probability (p) is proportional to some power (e) of the local 
concentration (c) 

P ~ c  ~ (5) 

then our model becomes equivalent to the dielectric breakdown model which was 
developed by Niemeyer et  al. ( 1 9 8 4 ) .  In this case the fractal dimensionality generated 
by the model depends on the exponent e and may vary from 1.0 to d, the Euclidean 
dimensionality of  the space in which the growth process is embedded. 

2. The Model 

Our simulations are carried out on a two-dimensional square lattice. We start 
with a single occupied lattice site surrounded by a low concentration of nutrient 
and an exterior source of  nutrient. The nutrient is supplied by the boundary 
conditions which maintain a fixed concentration (c = 1.0) of  nutrient on a circle of  
lattice sites surrounding the growing cluster. Initially this circle has a radius of 15 
lattice units, but it grows with the cluster such that its radius is always significantly 
larger than the maximum radius of the cluster R . . . .  In most of our simulations the 
nutrient is supplied at a distance of  2-0Rm,x or 2"5Rma~ from the origin of  the 
growth. Figure 5 gives a schematic representation of  the early stages of  one of  
the simulations. 

In the most simple version of the model we assume that a nutrient concentration 
of zero is maintained on the lattice sites occupied by the cluster at all times and 
that the diffusion process is fast compared to the growth process. Under these 
conditions, the concentration field will reach a steady state determined by the 
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or 

FIG. 5. A schematic representation of a simulation of diffusion limited growth at an early stage in the 
simulation. The concentration inside the filled lattice sites is 1.0, and the concentration inside the open 
lattice sites, which constitute the cluster, is 0. [] occupied site, c = 0.0; [] boundary,  c = 1 "0; ~ potential 
growth site. 

(o) (b) 

2 5 0  Lottice units • • 

(c) ~')tl, ~ 

3 0 0  Loflice units • 

c 3 0 0  Loflice units • 

FIG. 6. Typical clusters generated with growth exponents  e of  0"5, 1-0 and 2.0. (a) Shows a cluster 
of  12 000 sites generated with a value o f  0.5 for e. (b) Shows a cluster of  8000 sites generated with e set 
to a value of  1-0. (c) Shows a cluster of  2126 sites obtained using a value of  2.0 for the growth exponent.  
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boundary conditions before each growth event, i.e. 

d c =  ~V2c = 0 (6) 
dt 

where ~ is the diffusion coefficient. 
In order to approximate the conditions V2c=O before each growth step, the 

concentration field is "relaxed" by replacing the concentration on each lattice site 
by the average of  the concentrations on the four nearest neighbor lattice sites. In 
most of our simulations this process is repeated 10 or 20 times before each growth 
step. Within the statistical uncertainties of  our simulations our results do not seem 
to depend on whether 10 or 20 relaxation stages are used or whether the source of  
nutrient is placed at a distance of  2.0 or 2.5R . . . .  

At each growth step unoccupied surface sites are picked at random and a random 
number in the range 0 < x < l  is generated. If  x < c  ~ (where c is the nutrient 
concentration at that site), then the site is occupied and growth has occurred. If 
x > c ~, another site is picked at random and tested. The procedure is repeated until 
a growth event occurs. The sequence of relaxation and growth processes is repeated 
until a large cluster has grown. In typical simulations, clusters were grown to a size 
of  about 12 000 occupied lattice sites for e = 1-0 and about 2000-2500 for e = 2.0. 
Typical clusters generated in this manner are shown in Fig. 6. 

3. Results 

The fractal dimensionalities of the clusters generated using growth exponents e 
of  0-5, 1-0 and 2.0 were estimated from both the dependence of  the radius of  
gyration on cluster size (effective dimensionality D e, equation (3a)) (Stanley, 1977) 
and from the density-density correlation function (effective dimensionality De, 
equation (3c)) (Witten & Sander, 1982). Figure 7 shows the density-density correla- 
tion functions averaged for five clusters generated using a growth exponent e of 
2-0. An effective fractal dimensionality D ,  can be obtained using the expression 

D ,  = d + d In ( C ( r ) ) /  d In (r) (7) 

- 0 5  
- 1 0  

- 1 5  

- 20 "C 

E - 3 0  

- 3 5  

-4t  

-4  ~ ' ~  ~'~ ~ gs 4'0 4'5 "o 05 1.0 15 20 25 30 35 0 5 : 
In(r)  

FIG. 7. The average density-density correlation function C(r) obtained from five simulations of  
diffusion l imited growth with a growth probabil i ty exponent e o f  2.0. The slopes o f - 0 . 6  associated with 
the linear region in this log-log plot gives a fractal dimensionali ty of  d - 0 ' 6  or =1.4.  
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where C(r) is the density-density correlation function at a distance r. Equation (7") 
is applicable at intermediate length scales where In (C(r))  depends linearly on r. 
The results shown in Fig. 7 indicate that D~ has a value of about 1-4. Our results 
for both D,  and D e are summarized in Table 1. 

TABLE 1 
Fractal dimensionalities obtained using the diffusion limited growth model. The effective 
dimensionality D~ was obtained from the density-density correlation function, and D e 
was obtained from the dependence of the radius of gyration on the mass of the growth. 
To obtain estimates for D,  straight lines were least squares fitted to the co-ordinates 
(ln (C(r)) ,  (In (r)) over the range 2~<r<_20 lattice units. A similar procedure was 
used to obtain the effective dimensionality D e using the co-ordinates ( ln( Rg) ), ( In(N))  
over the ranges of cluster sizes shown. N,,ax is the total number of occupied sites at the 

end of the simulation 

Growth exponent D~ D~ Du 
e 2-<r-20 O'lNm~x<-N<Nmax 0.5Nm~.~<-N<__Nma x 

0.5 1.864-0.02 1-92±0-05 1.94±0.04 
1.0 1.71 ±0.02 1-72±0-06 1.70±0.08 
2.0 1.44 ± 0.02 1-39 ± o. 10 1.36 ± 0.05 
1.0 1.69 ± 0.02 1.78 ± 0.06 1.69 ± 0.07 

(method 2) 

As a check on the numerical average of  our simulations they were repeated for 
the case e = 1.0 using a procedure in which the concentration field was updated 
until the concentration in each unoccupied site next to an occupied site (i.e. each 
potential growth site) changed by less than 0.1% per iteration. The results of these 
simulations, identified as method 2, are also shown in Table 1. 

For the case e = 1.0 our results are in good agreement with those obtained by 
Niemeyer et aL (1984) for the equivalent dielectric breakdown model and with 
results obtained earlier using the Witten-Sandar model for diffusion limited aggrega- 
tion (Witten & Sander, 1982; Meakin, 1983c, d). However, a comparison of Fig. 
6(b) with simulations carried out on a 2d square lattice using the Witten-Sander 
model for diffusion limited aggregation with a sticking probability of  1-0 indicated 
that the short length scale structure is not the same in these two modets. For e = 0.5 
our results are in good agreement with those of Niemeyer et aL, but for e = 2.0 we 
estimate a fractal dimensionality of about 1.4 which is somewhat smaller than the 
estimate of about 1-6 obtained by Niemeyer et aL 

4. Boundary Conditions 

We do not expect that a change in boundary conditions wilt be sufficient to change 
the fractal dimensionality of  structures generated by the diffusion limited growth 
model discussed above. However, a change in the boundary conditions from those 
associated with the model used to generate the results shown in Fig. 6 and Table 1 
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500 Lotlice unils 

FIG. 8. The results of  a small scale simulation of dittusion limited deposition. In this 2 -  d simulation, 
particles were deposited onto the lower "'surface" with a sticking probability of  1-0. 

may lead to interesting and potentially important new effects in the same way that 
diffusion limited deposition on fibers and surfaces (Meakin, 1983e) leads to new 
quantities (cluster size distributions for example) (Racz & Vicsek, 1983) which are 
not found in diffusion limited aggregation on single growth sites. Figure 8 shows 
the results of two-dimensional simulations of diffusion limited deposition taken 
from Meakin (1983e). 

Similar simulations can be carried out with the diffusion limited growth model 
with the added flexibility that the growth probability exponent (e) can be varied, 
and deposits with any fractal dimensionality in the range 1.O<-D<-d can be 

I (b) 

( 500 Lattice mils > • 500 Lattice unils > 

)(c) 

• 3OO Lottice units > 
FIG, 9. Diffusion limited growth from a "surface." In these simulations any site adjacent to the 

"surface"  on some part o f  the "'growth" was considered to be a potential growth site. (a), (b) and (c) 
Show the results obtained with growth probability exponents (e) of  0.5, 1.0 and 2.0, respectively. 
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genera ted .  The s imula t ions  were carr ied  out  on 300 x 300 square  lat t ices.  The con- 
cen t ra t ion  in the " t o p "  row of  lat t ice sites was fixed at a va lue  o f  1.0, and  the 
concen t ra t ion  in the  b o t t o m  row was fixed at  a va lue  o f  0.0. Any  u n o c c u p i e d  site 
ad j acen t  to a site in the lower  b o u n d a r y  or  in the growing  " d e p o s i t "  was cons ide red  
to be a po ten t ia l  g rowth  site. Per iod ic  b o u n d a r y  cond i t ions  were used  at the sides 
o f  the  t w o - d i m e n s i o n a l  latt ice.  Resul ts  o b t a i n e d  using this mode l  are  shown in Fig. 
9. To ob ta in  the  results  shown in Fig. 9, the  growth  process  was s t o p p e d  when the 
depos i t  had  grown to m a x i m u m  height  o f  150 lat t ice units.  

F igure  10 shows the results  ob t a ined  f rom a s imi la r  m o d e l  in which on ly  one  o f  
the sites in the  lower  row is in i t ia l ly  ab le  to grow. Sites ad j acen t  to this " s e e d "  site 
or  ad j acen t  to a site on the g rowing  " t r ee "  are cons ide red  to be po ten t ia l  growth  sites. 

(a) (b) 

< 2 0 0  Latl ice units ) < 2 0 0  Lattice units • 

(c) 

< 20(3 Lattice units • 

FIG. 10. The model used to obtain these figures is similar to that used to generate Fig. 9. However, 
in this case only one site in the bottom row is capable of growth (the middle site). (a), (b) and (c) Show 
the results obtained with growth probability exponents of 0.5, 1.0 and 2.0, respectively. 
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( a )  

For those cases where the growth probability exponent is sufficiently large, the 
"surface growths" shown in Fig. 9 consist of a number of  independent trees. A 
similar characteristic can be seen in simulations of diffusion limited aggregation 
with multiple growth sites (Witten & Meakin, 1983). In this case aggregates growing 
from nearby growth sites or seeds do not join because the region between two 
clusters is screened from particle penetration. Similarly, the region between two 
nearby growths generated by the diffusion limited growth model will also be screened 
from the concentration field, and growth will not occur in this region. To demonstrate 
this effect, simulations have been carried out with two growth sites separated by 10 
lattice units (Fig. 11). In these simulations the source of nutrient material was 
represented by a fixed concentration of 1.0 at a distance of  3 Rma~ from the origin 

(b) 
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( 2 2 0  Lattice units > ( 2 6 0  Lattice units • 

(c) 

2 6 0  Lattice units :~ 

FIG. 1 I. Diffusion limited growth from two growth sites or seeds separated by 10 lattice units. The 
results shown in (a), (b) and (c) were obtained with growth probability exponents e of  0.5, 1-0 and 2.0, 
respectively. 
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of the lattice. Here Rm~x is the distance from the origin (between the two growth 
sites) to the most distant occupied lattice site in either cluster. For the cases e = 1-0 
and e = 2-0 the growths from the two nearby growth sites do not join. For the case 
e = 0-5 the screening effects are too weak to prevent the two growths from joining. 

We have also carried out simulations of  diffusion controlled growth with a point 
source of  nutrient. In these simulations the boundary conditions are specified by 
maintaining a concentration of 1-0 on the source site and a concentration of 0.0 on 
the sites occupied by the growth. Absorbing boundary conditions e = 0"0 are also 
maintained at a distance of 3 Rma~ from the center of  the lattice (located at the end 
point between the nutrient source and the growth site). Figure 12 shows some results 
obtained from this model. 

(o) 

t 

"source" "seed" 

(b) 

( 

)(cl 

2 0 0  Lotflce units > < 2 0 0  Loll ice units ) 

(d) 

t 

( 2 0 0  Lattice units ) < 2 0 0  Lattice units ) 

FIG. 12. Diffusion limited growth with a point source of nutrient. (a) Shows the locations of the source 
and the seed. (b), (c) and (d) Show results obtained with growth probability exponents of  0.5, 1.0 and 
2-0, respectively. The source and seed sites are separated by 120 lattice units. 
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Patterson (1984) has pointed out that the diffusion limited aggregation model of  
Witten & Sander (1982) can be used to model two fluid displacement in porous 
media. Our simulations with a point source of  nutrient are similar to his simulations. 
The additional parameter in our model e may allow some of  the specific properties 
of  the two fluids to be taken into account such as the theology of  the two fluids. 

The author wishes to acknowledge useful discussions with D. J. Scalapino. 
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