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The flexible chainlike walker �FCW� model is proposed as a minimal model of a deformable moving object
and as an extension of the regular random-walk model. The many-body system of FCWs is studied by
numerical simulations on a square lattice. It is shown that FCWs aggregate spontaneously and irreversibly
where no adherence is assumed, in contrast to the established aggregation models, where adherence is indis-
pensable for their occurrence and irreversibility. This type of aggregation is enabled by and demonstrates the
significance of the deformability of moving objects.

DOI: 10.1103/PhysRevE.78.011106 PACS number�s�: 05.40.Fb, 45.50.Jf, 61.43.Hv

The concept of random walk has played important roles
in a wide variety of disciplines, such as economics, popula-
tion genetics, polymer science, and basic physics. Much is
known about the behaviors of a single random walker �1,2�.
Also, systems in which multiple walkers are involved have
attracted considerable attention. For instance, the territory
visited by many random walkers �3,4� and aggregation pro-
cesses of numerous random walkers �5–11� have been stud-
ied. In the studies of many-body systems of random walkers,
however, the “walker” has been treated just as a point �oc-
cupying a single site in an on-lattice case�, or as a rigid body
�occupying multiple sites�, if not pointlike. For example, in
modeling aggregation processes of randomly moving ob-
jects, each object has been treated as a pointlike particle
�5–9� or an undeformable aggregate of particles �10,11�.
Likewise, in studying pedestrian or vehicular traffic flows
using a “biased” random-walk model, each locomotor has
been mimicked by a point �12,13� or by a rod �14�. It may be
said that such a pointlike-body or rigid-body approximation
has been tacitly assumed to be of no importance or simply
accepted without much attention in studying many-body sys-
tems of moving objects, whereas various models have been
proposed for a single moving object with deformability
�15–21�.

From the point of view of statistical physics, it is impor-
tant and intriguing to examine how the microscopic, indi-
vidual properties of the moving object affect the macro-
scopic, collective behaviors. Also, from the standpoint of
application potentiality, it is interesting to investigate the
properties of deformable moving objects, since there are ac-
tually various moving objects that are deformable around us.
Even for one-dimensional objects alone, examples can be
given from those living, such as some kinds of bacteria and
worms, to those nonliving, such as container dollies towed
by a tractor and snakelike robots. In particular, studying the
behaviors of deformable machines is of increasing impor-
tance, in view of the rapid factory automation and the recent
development of snakelike robots �22�. Therefore, it is a
worthwhile issue to study the effect of the deformability of
moving objects.

In this paper, a flexible chainlike walker �FCW� model is
proposed for randomly moving objects possessing deform-
ability, and the collective behavior of the many-body system
of FCWs is examined through numerical simulations on a
square lattice. It is shown that FCWs exhibit a novel type of
irreversible aggregation, despite the lack of adherence, which
has always been assumed in previous studies of aggregation
processes. The irreversibility proves to be an outcome of the
deformability of FCWs.

The following is a description of the FCW model: An
FCW of length l is represented by l serially concatenated
particles, which, on a square lattice, occupy l horizontally or
vertically adjacent sites. One of the edge particles �the first
particle� represents the head of the FCW and the other �the
lth particle� represents the tail. Figure 1 schematically exem-
plifies the movement of an l=5 FCW. At each time step, the
head particle �represented by the double circle� chooses one
of its four nearest-neighbor sites at random and moves to that
site if it is not occupied by another particle �either of the
same FCW or of another�. Then the subsequent particles fol-
low the head particle. That is, the second particle moves to
the site that the head particle has just left, the third particle
moves to the site that the second particle has just left, and so
forth. If the site chosen by the head particle is occupied, the
FCW does not move at that time step.

As shown before, the FCW model has a single free pa-
rameter, namely the length l. Also, the regular random walk,
in which the pointlike walker moves to one of the nearest-
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FIG. 1. Flexible chainlike walker model on a square lattice. A
typical series of movements of an l=5 FCW is illustrated. At each
time step, the head particle �represented by the double circle�
chooses one of its four nearest-neighbor sites at random and moves
to that site if it is vacant, followed by the subsequent particles.
Possible moving directions are indicated by the arrows.
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neighbor sites at every time step, irrespective of its track,
is recovered from the FCW model in the limit of l=1. In
addition, it is apparent that an FCW of l=2 does not change
its shape �but just changes direction�, whereas an FCW of
l�3 can deform.

In the present study, N FCWs are placed on a square area
of W�W sites. To describe the behaviors of FCWs, the fol-
lowing quantities are defined: The density of particles is the
ratio of the total number of particles to the number of sites
on the square area; �= lN /W2. The mobility of FCWs at time
t is defined as M�t�=Nmov�t� /N, where Nmov�t� is the number
of FCWs that have succeeded in moving at that time step. At
t=0, FCWs are placed at random positions as initial distri-
bution. Each FCW is put straight horizontally. This is partly
for simplicity and partly for avoiding inborn “locking” �ex-
plained below�. Then the FCWs are updated following the
above-described rule in random order at every time step. In
the present work, simulations are conducted with W=100
under periodic boundary condition.

It was found that the mobility M decreases with time, to
an asymptotic value M�=M�t→��. Typically, t�50 000
was enough for M to reach M�, except for l=3, in which
case slower convergence was observed. In Fig. 2, the values
of M�, each of which is averaged over 50 000 time steps in
the asymptotic state �e.g., t=50 001−100 000� and over at
least 10 runs, are plotted as functions of � for 1� l�8, to-
gether with two theoretical lines,

M� = 1 − � , �1�

M� =
3

4
�1 − �� . �2�

These formulas are derived from the following straightfor-
ward discussion: For l=1, an FCW, or the regular random
walker, is a single particle. The probability of occupation of
a site does not depend on whether the site is a nearest neigh-
bor of an FCW, provided N is sufficiently large. Thus the
mobility �i.e., the probability that the nearest-neighbor site
chosen by an FCW is empty� is equal to 1−�, and Eq. �1� is
derived for l=1. In the case of l=2, an FCW consists of a
head particle and a tail particle. Hence, one of the four
nearest-neighbor sites of the head particle of an FCW is al-
ways occupied by its own tail particle, and each of the other
three nearest-neighbor sites is occupied with the probability
of 1−�, as in the case of l=1. Therefore, we obtain Eq. �2�
for l=2. Figure 2 shows that the numerical results for l=1
and 2 agree with the theoretical predictions. On the other
hand, the results for l=3 and 4 show sharp drops from the
higher-M� state to the M��0 state. In addition, l=5 or
longer FCWs settle down in the M��0 state even when the
density � is low.

To clearly demonstrate the difference between the rigid,
shorter FCWs �l�2� and the deformable, longer FCWs
�l�3�, typical pattern variations with time of l=2 and 3
FCWs are shown in Figs. 3�a� and 3�b�, respectively. The
density is the same for both cases; �=0.5 �the number of
FCWs is N=2500 for l=2 and N=1667 for l=3�. The snap-
shots are of t=0 �initial distribution�, 1000, 2000, 3000,
10 000, and 100 000 �from left to right�. The difference is

FIG. 2. Asymptotic mobility M� as a function of particle density
�. Numerical results are shown for 1� l�8, together with the the-
oretical predictions for l=1 and 2 �Eqs. �1� and �2�, respectively�.
Each symbol represents the averaged value taken over 50 000 time
steps in the asymptotic state and over at least 10 runs.

(a)

(b)

FIG. 3. Typical time variations of the FCW distributions for �=0.5 on a square area of W=100 on a side. �a� l=2 FCWs �N=2500�. �b�
l=3 FCWs �N=1667�. Snapshots at t=0, 1000, 2000, 3000, 10 000, and 100 000 �from left to right� are shown.

TAKASHI MASHIKO PHYSICAL REVIEW E 78, 011106 �2008�

011106-2



apparent: l=3 FCWs aggregate irreversibly, whereas l=2
FCWs show no irreversible aggregation and no apparent
changes with time.

What causes this crucial difference? Observing the time
variations in detail, we notice that l=3 or longer FCWs
sometimes form a scrum when they happen to encounter
each other, and get locked by themselves. That is, all four
nearest-neighbor sites of the FCWs’ head particles are occu-
pied by their own particles. Let us refer to such a situation as
“mutual locking.” Some examples of mutual-locking patterns
are shown in Fig. 4: Four l=3 or longer FCWs can form a
fylfot scrum �a�. FCWs of l=5 or longer can form coupler-
shaped gridlock when two of them happen to meet �b�. Fur-
thermore, if an FCW is long enough �l�8�, it can lock itself
by coiling �c�, which is called here “self-locking.” In some
cases, the locking is not completely mutual, as exemplified in
�d�, which is, so to speak, “quasi-mutual-locking.” Self-
locking and quasi-mutual-locking, however, are regarded
here as special cases of mutual locking. Once mutual locking
takes place, the FCWs concerned cannot move anymore.
This causes the irreversibility of the aggregation process. On
the other hand, shorter FCWs of l=1 or 2 do not go into
mutual locking, no matter how many FCWs happen to gather
at once.

The above discussion qualitatively explains the basic fea-
tures observed in Fig. 2: FCWs of l=1 and 2, which do not
undergo mutual locking, never aggregate irreversibly, and
hence the simple theoretical predictions of Eqs. �1� and �2�
stand, respectively. In the case of l=3, the same theory as l
=2 �i.e., Eq. �2�� holds when the density � is low, since
four-body collisions seldom take place. For high � values, on
the other hand, they come to aggregate irreversibly, nucle-
ated by mutual locking, and accordingly the mobility de-
creases with time, until it finally approaches M��0. There-
fore, there is a transition from a moving �higher-M�� state to
an aggregating �M��0� state. Similar discussion holds for
l=4, with small differences in the values of M� in the mov-
ing state and in the density at which the transition occurs.
The former difference is due to the fact that one of the
nearest-neighbor sites of the head particle of an FCW can be
occupied by the fourth �tail� particle of the same FCW, in

addition to the second particle which always occupies one
nearest-neighbor site. The latter difference is brought about
by the fact that some types of four-body mutual locking,
such as those illustrated in Fig. 4�e�, are possible for l=4
FCWs, in addition to the type of Fig. 4�a�, thus they are more
likely to lock themselves than l=3 FCWs. It is easy for much
longer FCWs �l�5� to aggregate irreversibly even for low �,
since mutual locking by only two FCWs or the self-locking
can take place. Hence, they settle down in the M��0 state
even for low �.

The FCW model itself is not necessarily unique, since
there have been several similar models of polymer chain or
generalizations of the random walk. For example, the repta-
tion model �15�, self-avoiding walk �SAW�, true SAW
�TSAW� �16�, indefinitely growing SAW �IGSAW� �17�,
smart kinetic walk �SKW� �18�, Laplacian random-walk
�LRW� �19,20�, and the kinetic growth walk �KGW� �21�
have been proposed, and their behaviors have been investi-
gated and contrasted. In addition, in some of the models such
as SAW or KGW, self-trapping behaviors are pointed out,
which are inherently the same as the above-mentioned “self-
locking.” However, the point of interest in the present work
is the collective behavior of the many-body system of walk-
ers, whereas the main target in the above-mentioned works is
the kinetics of a growing single walker. It is obvious that the
�narrowly defined� mutual locking �excluding self-locking�
and the consequent irreversible aggregation without adher-
ence are outcomes that can be obtained only when multiple
walkers are concerned.

The novelty of the aggregation mechanism presented in
this paper should be emphasized here. There have been sev-
eral models of aggregation processes, from those of pointlike
particles �5–9,23–25� to those of particles aggregates
�10,11,26�. In all these established models, some adherence
has been assumed. That is, in terms of a particle-aggregation
process such as the well-known diffusion-limited aggrega-
tion �DLA� �6� or ballistic deposition �23,25�, a particle ad-
heres to and becomes part of an existing aggregate when it
comes in contact with the aggregate, even if stochastically
�i.e., with a sticking probability p�0�. Also, it is easy to see
that adherence is virtually assumed in somewhat different
types of aggregation models such as the Eden model �27�,
which was originally proposed for the growth process of a
cell colony, where one of the adjoining sites of the colony
�aggregate� is chosen and occupied by a new cell �particle�.
Obviously, in all these models, adherence is essential for the
process of aggregation and the irreversibility is due to this
adherence. In the present model, on the other hand, FCWs
aggregate spontaneously and irreversibly, though no such ad-
herence is assumed �i.e., p=0�. Adherence is not required for
the occurrence of aggregation and the irreversibility results
from the mutual locking of FCWs. Therefore, the aggrega-
tion mechanism of FCWs is fundamentally different from
that of the conventional models. The fact that this novel type
of aggregation is possible only for the many-body system of
deformable objects strongly suggests the significance of
studying such a system as in the present work.

To conclude, in the present paper, a flexible chainlike
walker �FCW� model has been proposed, and an irreversible
aggregation process of FCWs without adherence has been

(a) (b) (c)

(e)(d)

FIG. 4. Examples of mutual locking of FCWs. �a� Four-body
mutual locking of l=3 FCWs. �b� Two-body mutual locking of
l=5 FCWs. �c� Self-locking of an l=8 FCW. �d� Quasi-mutual-
locking of l=4 FCWs, where the right one is locked by the left one,
while the left one is not completely locked by the right one �but by
other FCWs, which are not shown here�. �e� Other types of four-
body mutual locking than type �a�, possible for l=4 FCWs.
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demonstrated by numerical simulations. This novel type of
aggregation occurred only for l�3, which clearly indicates
that it is enabled by the deformability of FCWs. Further stud-
ies of many-body systems of FCWs, motivated by the
present work, would be challenging. For example, extending
this model for off-lattice or higher-dimensional space may
reveal some other properties peculiar to deformable objects.
Also, it is intriguing to apply the idea of this model to other
models. To give an example, the patterns and statistical prop-

erties of DLA could be changed when the diffusing pointlike
particles are replaced by FCWs. Likewise, application of the
FCW model to collective motions of self-driven objects
�28,29� and pedestrian or vehicular traffic flows �12–14,30�
would be interesting. Some studies of traffic flows using a
“biased” FCW model are actually in progress and will be
reported elsewhere �31,32�.

The author thanks T. Nagatani for useful discussions.
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