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Abstract

A model is proposed by which the formation of the vascular network in animals proceeds
via progressive penetration of the vessel ramification into a capillary mesh, by means of a
laplacian growth mechanism of hydrodynamical origin. In this model, the growth of both
arteries and veins follows the directions of high shear stress provoked by the blood flow on
the endothelial wall of a pre-existing capillary mesh. This process is shown to be identical
to the phenomenon of dendritic growth, which is responsible for the formation of such well-
known patterns as dendritic crystals, lightning sparks or branching aggregates of bacteria. A
number of straightforward consequences of potentially important medical and physiological
interests are deduced. These include the natural and spontaneous organization of the arterial
and venal trees, the spontaneous and unavoidable tropism of arteries towards veins and vice-
versa, the hierarchical character of the vessels and the possibility of computerized prediction of
the vascular pattern from the shape of the capillary bed.

1. INTRODUCTION

Branching patterns are ubiquitous in nature. In the
context of out-of-equilibrium self-organized mor-
phogenesis, branching patterns known as fractal
dendrites have been studied by physicists.1 These

include fractal crystals, dielectric breakdown pat-
terns, viscous fingering, etc.2,3 These trees dis-
play spontaneously a fractal hierarchical structure.
Their growth is driven by a field satisfying the
laplace equation around the tree, which imposes a
growth velocity of the tree surface proportional to
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the gradient of the field (the higher the flux, the
higher the growth speed). It appears from sim-
ple inspection that these physical patterns possess
some kinship with vascular trees: ease of forma-
tion, self-organization, non-deterministic structure,
hierarchical branching and no loops. This has been
pointed out by both physicists4 and physicians,5 but
the lack of a mechanism of vasculogenesis has so
far hindered any significant progress towards that
unification (reviewed in Ref. 6). We will propose in
this paper that vasculogenesis indeed belongs to the
dendritic class of patterns, by means of a laplacian
growth process driven by pressure in the capillary
bed.

During embryonic morphogenesis, a functioning
cardiovascular system is required to support the
metabolic demands of the growing embryo. As a
consequence, vasculogenesis occurs rather early in
the growth process. Two mechanisms of vascular
growth are observed. The first is the local trans-
formation of cells into fibroblasts, endothelial cells
etc. which leads to random formation of capillary
segments that eventually percolate. The second is
the proliferation and migration of endothelial cells
found in the first vascular structures which leads
to sprouting into previously avascular organs. In
both instances, remodeling of the initially homo-
geneous capillary network, leads to the formation
of small vessels,7,8 that will subsequently enlarge
in a process of maturation called pruning. This
process of maturation of a set of small vessels into
a pattern that resembles a tree is far from under-
stood and as explained in a very recent biological re-
view by Risau,9 “its molecular mechanisms remain
obscure.” This remodeling leads to a branch-
ing structure of vessels into primary, secondary,
etc. vessels. Vasculogenesis occurs only during early
embryogenesis whereas angiogenesis is required for
the normal growth of both the embryonic and post-
natal tissues and in pathological situations such
as wound healing, tumor growth, natural or artifi-
cial anastomosis, etc.7,10,11 Let us however, remem-
ber that the actual existence of a beating heart is
not compulsory for vascularization; indeed, in many
small invertebrates, circulation of the blood is pro-
vided by the contraction of the entire body, as it is
partially in vertebrates (most notably in the intes-
tine). A beating heart is only an adaptation of a
specific muscle to pumping.

In a vessel, the endothelium is located between
the blood flood and the vascular wall itself. It
is well-established that cells lining the blood cir-

culation are exposed to strong fluid forces, espe-
cially viscous shear. Consequently, mechanically
related responses controlled by the endothelium
have evolved as part of normal vascular physiology.
The response can be passive (simple mechanical
deformations) or active (chemically-mediated) and
the transmission of hemodynamic information from
the blood to the underlying vessel wall originates in
the endothelium. Let us remark that, indeed, the
only place where the information about the flux in
a tube can be transmitted to the living tissue, is at
the tube surface and the very fact that the vascu-
lature of vegetals and animals has a varying diam-
eter is an indication that receptors of flux exist on
the vascular walls. Hence, as reviewed in Ref. 12,
hemodynamic factors (defined as mechanical forces
in the flowing blood) influence endothelial biology
either by the direct action of shear stress and stretch
forces on the endothelium itself, or by indirect mod-
ification of the local concentrations of chemical ago-
nists at the endothelial surface. These mechanisms
are not mutually exclusive. In the end, endothelial
cells might respond to shear flow in order to sat-
isfy a specific mechanical constraint, which is under
genetic control and which, in some instances, has
been quantitatively estimated.12

That vasculogenesis is affected by flow has been
hypothesized for more than a century.13,14 The es-
tablishment of the vascular pattern was proven to
depend on fluid circulation long ago. In 1972, Fla-
herty et al. demonstrated that endothelial cellular
morphology could be changed by flow by resecting
an arterial patch at 90◦ to its original orientation
and observing how the endothelium re-aligned with
the flow.15 More recently, it was shown experimen-
tally that endothelial cells respond to shear stress
(Refs. 12, 14, 16 and references therein) and that
capillaries enlarge under the influence of blood flow
during embryogenesis,8 which confirmed historical
data on this question, reviewed in Ref. 13. It re-
mains to be understood how such a response may
lead to a hierarchical organization of the vascular
tree.

2. THE MODEL OF VESSEL
GROWTH ACROSS THE
CAPILLARIES

If we now consider the capillary bed, prior to vas-
culogenesis, as a discretized lattice of small tubes
in which blood flows and, introduce the sensitivity
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of the endothelial cells to shear, it is easy to con-
struct a physical growth model of vasculogenesis in
the following way.

In a capillary tube, the pressure drop between
two vertices (two capillary crossroads) is related to
the flow V in the middle of the tube that links the
two vertices by the Poiseuille law :

(R2/8η) grad P = −V (1)

where R is the radius of the tube and η the viscosity
of the blood.

If we consider now the entire lattice of the cap-
illary bed, the pressure at each vertex is obtained,
in the simplest hypothesis, by solving the conserva-
tion equation for the fluid flow (incompressibility),
which is given by

∆P = 0 . (2)

We next implement the growth of vessels by the
following simple rule: wherever the shear is large,
the local capillary segment is progressively replaced
by a segment of vessel. This change amounts to
introducing a speed v of growth of the branched
pattern which is proportional to the shear stress.
We take as simplifying assumption that the larger
vessels are so much larger than the capillaries,
that the pressure drop across them is extremely
small (stated otherwise, the vein or artery cross-
section is much larger than the cross-section of the
capillaries). The shear stress σ at the very surface
of one small tube is proportional to the gradient of
the fluid speed taken at that surface, so it is pro-
portional to the fluid speed V in the middle of the
tube. It is also proportional to viscosity (the higher
the viscosity, the higher the shear) and to the in-
verse of the radius of the tube (the larger the tube,
the smaller the shear). In the end, the shear stress
σ, the fluid speed in the center of the tube and the
pressure gradient are related by

σ = 2(η/R)V = (R/4) grad P . (3)

As a consequence, the direction in which the pat-
tern of large vessels is more likely to elongate is
the direction of high pressure gradient. The growth
speed of the vascular interface through the capillary
bed will be proportional, in this simple model, to
the gradient of P taken at the border of the tree
of large vessels (the so-called harmonic measure in
physics)

v = −k grad P (4)

where k is a physical, normalizing parameter and v
is the local, instantaneous growth speed of the ves-
sel tree (not the fluid speed V ). This growth speed
varies from place to place.

It is known that transfer of fluid shear stress
forces to the cell occurs first at the luminal cell
surface. Plasma membrane molecules are there-
fore candidate mechano-transducers.16 Mechano-
transduction is certainly modulated by changes in
the stiffness of the membrane receptors linked to
varying lengths of external hydrophilic loops and
by the stiffness of the coupling between the receptor
and the cytoskeleton itself, coupled to structure and
geometry of the tissue. These questions have been
extensively reviewed in Refs. 12 and 16. Therefore,
the parameter k represents very crudely the time
scale of the sequence (membrane transduction)-(cell
reaction) until a large vessel is completed. This
time scale is much larger than the time scale of
the establishment of the pressure drop. Indeed,
the time scale for physical change of the vessel is
of the order of an hour, while the time scale for
the establishment of the pressure pattern is of the
order of seconds. In the end, the model in this sim-
plifying version, is identical to the so-called Diffu-
sion Limited Aggregation (DLA) model of growth in
its Dielectric Breakdown Model (DBM) version,1–3

which is well-known to give fractal branching
patterns.

The model presented here catches several essen-
tial features of the growth of vascular trees. First
of all, arteries and veins will exhibit a spontaneous
tropism toward each other. Indeed, if we consider
two arterial (red) and two venal (blue) rudiments
(Fig. 1) and solve for the laplacian field and for the
shear stress in the capillary bed, we see that the
shear stress will be higher in a region extending be-
tween the neighboring arteries and veins. A vein
will spontaneously grow (replacing capillaries) to-
wards the closest artery and vice-versa. In Fig. 1(b),
the tropism appears very clearly with a threshold
color table for the shear. This is the analog of spark
propagation between two electrodes in electrostatic
problems.

The model also explains or predicts structural
properties of vascular trees. As an example, we
consider the establishment of the area vasculosa
outside the chick’s embryo, as classically observed
through the eggshell (see for example Ref. 8, Fig. 1
or Ref. 13, Fig. 390). It has been shown that a capil-
lary bed establishes on the yolk sac in the first hours
of embryogenesis and that a branching pattern is
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(a) (b)

Fig. 1 (a) Numerical calculation of the pressure between two arteries and two veins. The laplace equation is discretized on a
lattice, which represents the discretized lattice of small capillaries. The lines of constant P are represented with a color table.
Each pixel of this image is a vertex of the capillary bed and the calculation contains 200× 400 vertices i.e. 80 000 capillary
segments; (b) Shows the map of shear stress in the same configuration. This map gives the global tropism of the artery and
vein growth through the capillary bed. One observes a spontaneous tropism of arteries towards veins and vice-versa, under
the influence of the hydrodynamical flow. There is no need of a diffusing morphogenetic effector, the pressure suffices to
self-organize the pattern. Moreover, the tropism is symmetrical and independent of scale for length scales larger than the
capillary size, because the laplace equation [Eq. (2)] is scale invariant. Scales would enter naturally into the problem if, for
example, a finite resistance of the larger vessels was used, instead of an infinite conductivity (as is the case here).

(a) (b)

Fig. 2 (a) Scheme of the yolk sac and position of the embryo. The embryo is represented by two lobes, one anterior and one
posterior lobe. Veins and arteries start at right angles from the center of the embryo; (b) DLA simulation in a schematized
yolk sac showing the organization of the arterial tree. The random walkers are launched from a circle far away from the
heart and they attach one after the other to the growing pattern. The DLA forms a random branching pattern, which is a
Monte-Carlo solution of the DBM. While some minor technical aspects may be different, the mechanism of growth appears
obviously. Branches growing around the lobes are well-reproducible. The white area is not a non-vascularized area, but a
lattice of minute capillaries, which are not represented for the sake of clarity.
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well-formed by about h. 80 after fertilization.8

Branching starts when flow establishes i.e. when
the capillary bed percolates and the heart beats.
The structure of the embryo, as schematized in
Fig. 2(a), is composed of two large lobes along an
antero-posterior (A-P) polarity, with the heart lo-
cated between the two lobes. The embryo is at
one pole of the yolk sac. The main arteries and
vein rudiments appear by h. 45 at perpendicular
directions and their primary organization (a cross
at right angles) seems to be under another genetic
control.

3. SIMULATION OF THE
VASCULOGENESIS PROCESS

We have then solved for the DLA growth in the very
same configuration, by admitting a large circular
area for the yolk sac, placing a schematic embryo
composed of two lobes and two arterial rudiments
perpendicular to the A-P axis located in the heart
region. While the DLA simulation does not rep-
resent the actual process of growth, it does repre-
sent a Monte-Carlo solution of the laplacian growth
process. The difference between the DLA process
and the DBM version lies only in the size of the
small cut-off. A typical pattern obtained across the
yolk sac is given in Fig. 2(b). One clearly observes
the formation of the two main vessels surrounding
the A-lobe and the two main vessels surrounding
the P-lobe. On each main vessel, secondary vessels
appear perpendicular to the A-P axis. This spon-
taneous morphogenesis has a deterministic flavour
to it, in that in all simulations, despite the random
character of the DLA model, the set of principal
vessels surrounding the lobes was obtained and the
set of secondary vessels perpendicular to the A-P
axis was rather reproducible. This does not come
as a surprise, as DLA in a finite medium tends to
generate branches that occupy the entire domain of
the simulation.17 In this instance, the angle between
the convex vessel that surrounds an embryonic half
and the vessel that shoots out perpendicular to the
A-P axis is rather reproducible.

4. POSSIBLE VARIANTS OF THE
BASIC MODEL

Once it is recognized that the pressure in the flow
via the shear stress on the wall is the physical pa-
rameter governing the organization of the pattern,

different improvements of the model are possible,
thus incorporating more specific features of the ac-
tual vasculogenesis process. For example, the em-
bryo contour schematized in Fig. 2(b) might not be
the embryo itself, but a zone of influence where the
value of k is modified by a chemotactant or a hor-
mone (such as angiopöıetin). Defining k(x, y) as
a parameter dependent on space coordinates un-
der the influence of a chemotactant or physical
constraints, allows the modification of the vessel
growth and creates a class of models, coupling den-
dritic growth and chemotaxis or mechanical strain.
Figure 2 could be equivalently obtained by setting
k(x, y) equal to zero inside the lobes and to a con-
stant outside. This mathematical feature would al-
low the modeling of the role of a diffusible chemical
inhibitor in the reaction of endothelial cells to shear
stress.

Another tedious, if not difficult improvement,
would be to consider the larger branches as hav-
ing a finite resistance. Indeed, the DLA process in
its DBM version amounts to a progressive replace-
ment of the small capillaries by a perfectly conduct-
ing branching structure. However, the branching
pattern is not, strictly speaking, perfectly conduct-
ing since the viscous resistance is proportional to
the inverse of the cross section (1/R2). As a con-
sequence, in order to be more precise, one should
consider the invasion of a lattice of capillaries by a
tree of smaller, non-zero resistance. However, this
instance has already been extensively discussed in
the literature,18 and it is well known that as long
as the invasion proceeds as a less resistive medium
invading a more resistive medium, the pattern is
a branching structure, which will be all the more
space-filling as the resistance of the invading pat-
tern is higher.

Also of interest is the instance in which the vas-
cular network is composed of several planar layers
(as seems to be the case in the eye) which are con-
nected through a vertical array of capillaries.19 In
this case, growth in one layer will be modeled by a
DLA process incorporating a source term across the
plane. This situation has already been encountered
and deeply investigated in the modeling of Molecu-
lar Beam Epitaxy.20 It is also known to give more
space-filling patterns than DLA.

Capillary regression, as observed in most in-
stances of vasculogenesis will also be easily im-
plemented and it will change the apparent fractal
dimension.



38 V. Fleury & L. Schwartz

5. CONCLUSION

By considering the sensitivity of endothelial cells
to shear and the law of incompressibility for the
blood, one is able to place a limiting case of
vasculogenesis in the universality class of the frac-
tal dendritic growth. Though several aspects
deserve further investigation (especially capillary
regression, anisotropy of the vascular wall, mech-
anisms of mechano-transduction, etc.), it is clear
that dendritic growth will allow to model important
features of the branching process, including such
important situations as tumor growth, new vascu-
larization after grafts or wound healing etc. Indeed,
even if the pruning mechanism occurs on a grow-
ing set of small capillaries (angiogenesis) and not
on a well-percolating lattice of capillaries, the basic
features of the instabilities are conserved.

Implementing additional or more specific fea-
tures, such as the shape of the embryo and the yolk
sac, or of a given organ, or other features such as
dilation during growth, finite viscous drag in the
large vessels, capillary regression, etc. will allow to
describe more exactly a given situation, still with a
dendritic growth model as starting point.

It has been argued that the DLA model should be
rejected on the grounds that its fractal dimension
1.7 is not always recovered in analysis of vascular
networks.19 However, it is known that the fractal di-
mension of a tree growing according to a strict DLA
rule will not be 1.7 if the simulation is performed in
a finite medium,17 as is always the case in biological
instances; moreover, if there is a source term, or a
finite concentration, the fractal dimension changes
as the surface coverage of the pattern increases.20

In the end, it is clear that one should not be too de-
manding on finding a fractal dimension of 1.7, since
the wealth of models based on DLA can give, on
implementing additional features, different fractal
dimensions.

Let us end by saying that, from a clinical point
of view, it looks more likely that a mechanism of
growth closer to the original DLA/DBM growth
mechanism will be at work during normal vascu-
logenesis than during tumor growth.
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21. P. Cerasi, Thèse de Doctorat, Université de Marne
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