
Cooperative and critical 
phenomena 
 
Outline 

•  Growth, self aggregation, gelation. 
•  Percolation theory. 
•  Surface growth and the KPZ equation. 
•  Collective behavior: Flocking, 

swarming and herding. 



•  Growth, self aggregation, gelation 

Understanding the development of different morphologies in 
physical, chemical and biological systems has provided one of the 
main motivations for the study of non-equilibrium growth models. 
 
Much of the present understanding of non-equilibrium growth 
results from computer simulations using simple models. 
 
Growth models 

o  DETERMINISTIC (Cellular automata) 
o  PROBABILISTIC 

The structure is often characterised by its fractal dimensionality D 
(d is the euclidean dimension) 

Mass:  
 

Two-point density correlation: c(r) ⇠ rD�d
M ⇠ lD



Growth models: 

1.  The EDEN model. 
 
2.  Diffusion/reaction limited aggregation. 

 

3.  Additional examples. 

LAPLACIAN GROWTH 



1. The EDEN model (Murray Eden 1961) 

Motivation: Description of the growth of clusters of bacteria colonies and the 
random accumulation of materials deposited on the boundaires. 
 
Applied to tumor growth, urban develoment, the formation of snowflakes… 

The model 

Rg =
⌦P

i(ri � rCM )2
↵1/2 ⇠ N0.5

The radius of gyration: 

Michael Plischke and Zoltán Rácz Phys. Rev. Lett. 53, 415 (1984) 

P (r,N) =

1p
2⇡�N

exp

h
� (r�r̄N )2

2�2
N

i

r̄N = h
P

i rN (i)i ⇠ N0.495±0.005

�N =
⌦P

i(rN (i)� r̄N )2
↵1/2 ⇠ N0.18±0.03

Width of the active zone: 

Prob placing particle N at a distance r from the cluster CM: 



An application to skin cancer  
Williams, T., Bjerknes, R. Nature, 236, 19 (1972) 

Rules: 
 
•  Conseider a triangular lattice 
•  Cells: (0=normal/unoccupied; 1=cancerous) 
•  Start with a single cancerous cell 
•  Select a lattice site (a) located in either the occupied or the unoccupied perimeter 
•  Select (b), a nn site of (a) 
•  Assign to (b) the label of (a) 

Introducing growth limitations:   
C. S. Ferreira, Physica A, 317,565-580 (2003) 
 
•  Mutation probability:   

 g: 
 

r=1-g: 
 
•  Carcinogenic advantage: 

N ! T

T ! N

 = g
1�g g = 

+1 ; r = 1
+1

 ! 1Eden model 



Ferreira introduced a new model assuming the probabilities to depend on 
the number of tumor cells n
(Michaelis Mentem functions) 

0 < ↵ < 1; � > 0

g(n) = 1� ↵n

�+ n

r(n) =
↵n

�+ n

•  Since g(n) and r(n) are time independent, any given pattern in a certain time 
depends only on the configuration at the previous time (Markov chain). 

 
•  The growth process can be described within the framework of a probability 

transition or master equation. 

P (n, t+ 1) =
X

m

Tn,mP (m.t)

Probability of a state with n 
tumor cells at t+1 

Transition matrix 

Tn,m =

8
><

>:

g(n), if n = m+ 1;

r(n), if n = m� 1;

0, if |n�m| > 1.

Valid for  
n=0 absorbent state 
T0,1= r;   T1,0= 0 

n ≥ 2



(
P (n, t+ 1) = gP (n� 1, t) + rP (n+ 1, t), if n � 2

P (n, t+ 1) = rP (n+ 1, t), if n = 0, 1

From the previous equations we can evaluate the number of tumor cells and its variance 

hn(t)i =
1X

n=0

nP (n, t)

⌦
n2(t)

↵
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1X

n=0

n2P (n, t)

�2(t) =
⌦
n2(t)

↵
� hn(t)i2

hn(t)i = n(0) +
� 1

+ 1
t
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"
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A continuous approach: 

d

dt
P (n, t) =

X

m 6=n

[Wn,mP (m, t)�Wm,nP (n, t)]

Wn,m =

8
><

>:

g(m), if n = m+ 1;

r(m), if n = m� 1;

0, if |n�m| > 1.



d

dt
P (n, t) = g(n� 1)P (n� 1, t) + r(n+ 1)P (n+ 1, t)� P (n, t)

d hn(t)i
dt

= 1� 2↵

⌧
n(t)

�+ n(t)

�

d
⌦
n2(t)

↵

dt
= 1 + 2

⌧
n(t)[�+ (1� 2↵)n(t)]

�+ n(t)

�

dN(t)

dt
= 1� 2↵

N(t)

�+N(t)

hn(t)i ! N(t)

dN2(t)

dt
= 1 + 2

N(t)[�+ (1� 2↵)N(t)]

�+N(t)

Mean field approach: 



2. Diffusion/Reaction Limited Aggregation  DLA/RLA 

Describes a process in which particles perform a random walk due to 
brownian motion and cluster together to form aggregates.  
 
Diffusion is the primary means of transport and the limiting growth factor. 
 
Examples:  

-  Electrodepostion 
-  Hele-Shaw flow 
-  Mineral deposits 
-  Glaciars 
-  Tissue growth controlled by the diffusion of nutrients and toxic 

metabolites 



The model 
T. A. Witten, Jr. and L. M. Sander Phys. Rev. Lett. 47, 1400 

Random walker 
P(i,j;t)=[P(i-1,j;t-1) + P(i+1,j;t-1) + P(i,j+1;t-1) + P(i,j-1;t-1)]/4 r2P = 0

The radius of gyration: 

C(r) ⇠ rD�d = r�0,343

2-d square lattice 

Rg ⇠ N1/D

D ⇡ 1, 7

See 3d DLA animation from the web 
https://www.youtube.com/watch?v=h3O1LGe-dBw 



The  dielectric breakdown model 
Niemeyer et al, Phys. Rev. Lett, 52, 1033 (1984) 

r · ~E =
⇢

✏
~E = �rV

r2V = �⇢

✏
Dielectric media: r2V = 0

V(i,j;t)=[V(i-1,j;t-1) + V(i+1,j;t-1) + V(i,j+1;t-1) + V(i,j-1;t-1)]/4 

The model 

p(i, j ! i0, j0) = (Vi0,j0)⌘P
[i0,j0](Vi0,j0)⌘

Propagation depends on the strength of the 
electric field. 
 
With appropiate boundary conditions  
 

A scalar field that obeys the Laplace equation 
can be represented by a radom walk.  

~E(i, j ! i0, j0) / Vi0,j0

⌘ = 0Eden model 
⌘ = 1;D = 1.75± 0.02



- Fluid flow through a pipe 

3. Additional examples 
L 

R 

a b 

r 

FP = �PdA
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No-slip boundary condition at the wall:  
 
Axial symmetry: 

u(r) = 0; r = R

du

dr
= 0; r = 0

u(r) =
1

4µ

�P

�x

(R2 � r

2)

r · u(r) = 0 ! r2P = 0

Incompressible fluid: 

Poiseuille flow: 



Application to vascular morphogenesis 

The growth of arteries and veins follows the directions of high shear stress provoked by 
the blood flow on the endothelial wall of a pre-existing capillary mesh.  
 
Additional requirements:  
•  Disconnection of small side branches. 
•  Reconnection of dangling sprouts. 
•  Plastic extension of the interstitial tissue 
 

Thi-Hanh Nguyen et al. 
Dynamics of vascular branching morphogenesis: The effect of blood and tissue flow  
PHYSICAL REVIEW E 73, 061907 2006  



Self aggregation and gelation: 

1.  Self-assembly: a common process in Nature. 
 
2.  Growth kinetics of the self-assembly process.  

The DLCA model 
The mean field Smoluchowski equation 



1. Self-assembly: a common process in Nature 
Self-assembly is a natural phenomenon that can be observed in many biological, chemical and 
physical processes, in which the cell is, perhaps, the ultimate supramolecular structure 
comprising many millions of molecules held together by weak non-covalent chemical forces, 
particularly hydrogen bonds and hydrophobic interactions.   

Self-assembling of amphiphilic molecules 

Lyotropic liquid crystals  Fatty acids (phospholipids, glycolipids, cholesterol) 

Azheimer disease  

Cell membrane composition provides 
exceptional mechanical properties 

Endocytosis Phagocytosis 

•  Aβ fragments generated due to overexpressing mutant  
forms of its APP,  are toxic to neurons, self-aggregate  
becoming insoluble structures. 
•  Fibrous protein aggregates can be made in vitro with  
widths in the nanometer and lengths in the micrometer  
Range. These structures are resistent to harsh conditions  
 

From PNAS, 87, 3947, (1990) 



Self-assembling of metal  - polymer amphiphiles 

Segmented metal-polymer rods were prepared by electrodeposition of gold into porous 
aluminum templates  followed by electrochemical polymerization of pyrrole. The length 
of each block is controlled by monitoring the charge passed during the electrodeposition 
process. Different structures are found depending on the block size ratio Au:Ppy. 

(B) 1:4;  (C) 3:2;  (D) 4:1.  

From Science, 303 (5656), 348 (2004). 



2. Growth kinetics of the self-assembly process: The DLCA model. 

Gel 

Aerogelation experiment in acetylene diffusion flames 
Electron microscope picture inserting a probe into the flame 50ms  
(h=4 cm; flow rate: 1.1 cm3/s) 



FLAME SOOT  AEROGELATION  experiment C. Sorensen et al., PRL, 80, 1782, (1998) 

Submicron 
soot phase Supersoot phase 

Flow rate: 0.83 cm3/s 1.7 cm3/s 3.4 cm3/s 

Fractal aggregates: 

€ 

Df ≈1.8

SOOT PARTICLE:  
•  Carbonaceous soot is a common product of fossil fuel combustion and a major atmospheric pollutant. 
•  Primary particles are roughly spherical monomers of radii a=10-30 nm. 
•  Each ramified aggregate has 100’s of particles yielding a overall size Rg=50-500 nm. 

Aerogelation of soot particles in acetylene diffusion flames.   

Soot gel in flame 

OPTICAL 
STRUCTURE 
FACTOR  (h=10cm) 

0.5 µm 

5.0 µm 

N = k0

✓
Rg

a

◆Df



The Mean field Smoluchowski equation. 
 
Case A) An irreversible aggregation process: 

Ċk =
1

2

X

i+j=k

KijCiCj � Ck

X

j

KjkCj

Ck = nk/V

nk Number of cluster with k-particles 

Moment equations 

Mn =
X

i

inCi M0: total number of cluster 
 
M1: total number of particles 

Ṁ0 =
X

k

Ċk =
1

2

X

k

X

i+j=k

KijCiCj �
X

k

Ck

X

j

KjkCj = �1

2

X

i,j

KijCiCj

Ṁ1 =
X

k

kĊk =
1

2

X

k

k
X

i+j=k

KijCiCj �
X

k

kCk

X

j

KjkCj =
X

i

iX

j=1

KijCiCj

Ṁ1 = 0Mass Conservation:  

Gel formation: Ṁ1 6= 0



Ṁn =
X

k

knĊk = . . . =
1

2

X

i,j

[(i+ j)n � in � jn]KijCiCj

In general: 

Exact solutions for simple kernels. 

1.  Ki,j = 1 Ṁ0 = �M2
0

2
Ṁ1 = 0

Ṁ2 = M2
1

Ṁ3 = 3M1M2

Average particles per cluster: 
 
Weight average: 

M1/M0 ⇠ t

M2/M1 ⇠ t

Find a generating function: f(x, t) =
X

k

�
e

kx � 1
�
C

k

(t)

@f

@t

=
1

2
f

2 ! f(x, t) = f(x, 0)
1

1 + f(x, 0)t/2

For a monodisperse initial condition:  
Ck(0) = �k,1f(x, 0)

Ck(t) =
(t/2)k�1

(1 + t/2)k+1
⇠ tk�1 for small t 



2.  

Ṁ1 = 0

Using the same generating function as before: f(x, t) =
X

k

�
e

kx � 1
�
C

k

(t)

For a monodisperse initial condition:  
Ck(0) = �k,1f(x, 0)

Ki,j = i+ j Ṁ0 = �M0M1

Ṁ2 = 2M1M2

Ṁ3 = 3
�
M1M3 +M2

2

�

@f

@t

= f

✓
@f

@x

� 1

◆

Ck(t) = (1� u)(ku)k�1 e
�ku

k!

u = 1� e�t

Scott et al. J. Atmosferic Sci. 25, 54 (1968) 



3.  

Ṁ1 = 0

Using a generating function: 

Ki,j = ij Ṁ0 = �M2
1

2

Ṁ3 = 3M2M3

Ṁ2 = M2
2

M2(t) = M2(0)
1

1�M2(0)t

9 t = tc � tc =
1

M2(0)t
M2 and higher moments diverge !!! 

f(x, t) =
X

k

ke

kx

C

k

(t)

@f

@t

=
@f

@x

(f �M1)

Ck(t) = tk�1kk�2 e
�kt

k!

GEL formation 



In general the reaction kernel Kij must depend on the collision frequency 
that is related to the relative velocity and cross-section size  of the 
clusters.  

o  For a fractal object it can be written as: 

Kij ⇠
✓
1

i
+

1

j

◆1/2 ⇣
i1/D + j1/D

⌘d�1

Relative velocity  Cross-section 



Scaling functions 

Assume the  aggregation kernel is an homogeneous function and λ the degree of homogeneity  

Kai,aj = a�Ki,j

Then, the Smoluchowski eq. yields a self preserving scaling function: Ck = M1S
�2
p �(x)

Sp =
Mp

Mp�1

x =
k

Sp

Mean cluster size: 

�(x) = Ax

��

e

�↵x

↵ = p� �

Mp(t) = Mp(0)

✓
1 +

t

⌧

◆z(p�1)

z =
1

1� �
Kinetic exponent: 

Mean cluster size:  M�1
0 ⇠ tz

For a Brownian coagulation kernel (in the dilute regime) λ=(d-3)/D     

d=3, λ=0, z=1 
d=2, λ= -1/D;  (D=1.4);  z=0.59  



Mean cluster size Rg ~ N 1/D  ~  t z/D 

Test of the scaling ansatz 



Case B) A reversible aggregation process: 

Ċk =
1

2

X

i+j=k

(KijCiCj � FijCk)�
X

j

(KjkCjCk � FjkCj+k)

Ai +Aj � Ai+j
Fij

Kij

The competition between coagulation and fragmentation leads to a final steady-state 
configuration characterized by a mean cluster size. 
 
Family et al. PRL, 57, 727 (1986) assumed a steady-state cluster size distribution: 

x =
k

Sp(1)

That was further assumed for all times (Sorensen et al. PRL, 59, 363 (1987)) 

Ck(t) = M1S
�2
p (t)�(x)

Ck(1) = M1S
�2
p �(x)

x =
k

Sp(t)

In the following we take p=2 for simplicity 



Assume both reaction kernels to be homogeneous functions 

Kai,aj = a�Ki,j

Fai,aj = a↵Fi,j Fi,j = F�i,j

Ki,j = C i,j

S(t) =
M2

M1

Ṡ(t) =
Ṁ2

M1
Ṁ2(t) =

X

k

k2Ċk

Cluster size: 

Ṡ(t) = AM1CS(t)
� �BFS(t)

↵+2

B =

Z 1

0
dx

Z 1

0
dy xy�(x, y)�(x)�(y)

A =

Z 1

0
dx

Z 1

0
dy xy (x, y)�(x)�(y)

Using reduced units: 

ŝ =
S(t)

S(1)

t̂ =
t

⌧

S(1) =

✓
M1AC

BF

◆�

⌧ = (M1AC)
�(↵+1)�(BF )

(��1)�

� = (↵� �+ 2)�1

dŝ

dt̂
= ŝ� � ŝ↵+2



Example: nucleation of colloidal suspensions. 
J. Cerdà et al. PHYSICAL REVIEW E 70, 011405 (2004) 
 
Particles interact via a pair-interaction potential (Asakura-Oosawa)  
 

Interaction 
strength 

time 



•  Percolation theory 
-  Percolation theory is the simplest not exactly solved model displaying a phase 

transition. 
 
-  Let each site in a lattice be occupied at random with probability p, that is, each 

site is occupied (with probability p) or empty (with probability 1−p) independent 
of the status (empty or occupied) of any of the other sites in the lattice. We call p 
the occupation probability or the concentration.  

 
-  A cluster is a group of nearest neighbouring occupied sites. 

 
-  The cluster number ns(p) denotes the number of s-clusters per lattice site.  
 
-  The number of clusters of size s in a hypercubic lattice of linear size L is Ldns(p), d 

being the dimensionality of the lattice.  
 
-  For a finite lattice                if the occupation probability is small there is a tiny 

chance of having a cluster percolating between two opposite boundaries, 
whereas for             we  almost certainly find a cluster percolating through the 
system. 

-  The percolation threshold pc is the concentration (occupation probability) p at 
which an infinite cluster appears for the first time in an infinite lattice.  

-  In a finite system pc depends on the lattice shape, connectivity (site/bond) and 
dimensionality. 

L < 1

p ! 1



The aim of the percolation theory is to characterize the number and properties 
of the clusters formed 
 
Occupied and empty sites can represent different physical properties 
 

 Occupied   Empty 
 conductor   isolator 
 magnet   paramagnet 
 working computer  damaged computer 

 
And has a large number of applications, such as: 
 

•  Epidemics. 
•  Fire spreading. 
•  Oil recovery from amorphous and porous material. 
•  Sol-gel transition.  
•  Polymerization. 
•  […] 

Examples of pc values for different systems: 
 

 d=1   d=2   d=3 
Lattice  line      triangular      square   cubic 
Pc   1          0.5             0.5927  0.3116 



Critical behavior 
 
In analogy with the magnetic phase transition (p plays the role of the temperature): 

•  p<pc disordered phase  
•  p>pc orderered phase 

(2d) Ising model: 
 
•  Magnetization: 
 
•  Magnetic susceptibility: 
 
•  Correlation length: 
 
Percolation: 
 
•  Prob. a lattice site belongs to an infinite cluster: 

•  Average size of finite clusters: 

•  Average distance between 2 sites in the same cluster: 

 

M ⇠ (T � Tc)
�=1/8

� ⇠ |T � Tc|��=�4/3

⇠ ⇠ |T � Tc|�⌫=�1

P1 ⇠ (p� pc)
�

s ⇠ |p� pc|��

⇠ ⇠ |p� pc|�⌫

� = 5/36; � = 43/18; ⌫ = 4/3(2d-square latttice) 



Exact solution in 1d 

Prob that a lattice of size L percolates at a probability p: ⇧(p, L)

lim
L!1

⇧(p, L) =
0  if   p<pc 
 
1  If   p>= pc 

⇧(p, L) = pL lim
L!1

pL =
0  if   p<pc 
 
1  If   p>= pc 

pc = 1

Cluster or size s (per unit volume): ns(p)

ns(p) = (1� p)ps(1� p) = (1� p)2ps

= (1� p)2 exp [ln ps] = (1� p)2 exp [s ln p] = (1� p)2 exp [�s/⇠]

⇠ = � 1

ln p

ns(p) = (pc � p)2 exp (�s/⇠)

is the characteristic cluster size 

⇠ = � 1

ln p
= � 1

ln [pc � (pc � p)]
! 1

Pc � p
= (pc � p)�1 ⌫ = 1



Funrther reading:  
Introduction To Percolation Theory.  Dietrich Stauffer, Ammon Aharony 

Occupied sites (per unit volume): 
X

s

sns(p) = p

Probability that an occupied site belongs to a cluster of size s: !s =
sns(p)P
s sns(p)

Mean cluster size:  S(p) =
X

s

s!s = . . . =
1 + p

1� p
! pc + p

pc � p

lim
p!pc

S(p) = lim
p!pc

pc + p

pc � p
! 2pc

pc � p
⇠ (pc � p)�1 � = 1

Animations in the web 
 
https://en.wikipedia.org/wiki/Forest-fire_model 
https://www.youtube.com/watch?v=2hmmcI0kd5M 
https://www.youtube.com/watch?v=bUd4d8BDIzI 
 



•  Surface growth and the KPZ equation. 

-  The structure of many systems can be described in terms of more or less uniform 
and continuous homogeneous regions separated by (disordered) interfaces at which 
physical or chemical properties change abruptly.  

 
-  Such interfaces often cannot be adequately described in terms of simple euclidean 

shapes and appear to exhibit self-affine scaling. Fractal geometry and scaling laws, 
allow us to study the processes taking place near such random rough surfaces as 
well as the nature of the interface itself. 

 
-  Applications in:  

•  Electrochemical deposition 
•  Corrosion and oxidation 
•  Fluid-fluid displacement 
•  Growth of cell colonies 
•  Thin film and epitaxial growth (ballistic deposition models) 

 
Growth process: 
 
Propagation of a front (active zone) leading behing a (frozen) structure that provides 
a record of its passage. 



Characterization of rough surfaces: 
 

•      Perpendicular correlation length (width of the surface –active zone-) 
 
•      Parallel correlation length (lateral distance over which surface heigth 

fluctuations are correlated). 

⇠?

⇠k

⇠? =
⌦
|hi � h̄|q

↵1/q ⇠ t�

z =
↵

�

Heigh difference correlation: 

Kinetic exponent:  z 
Roughness exponent: ↵

Cq(~x) = h|h(~x� ~x0)� h(~x0)|qi1/q

C

q

(x) = hC
q

(~x)i|~x|=x

Cq(x) = x

HqFq(x/⇠k)

Fq(y) =

(
C, y ⌧ 1;

y�Hq , y � 1
Cq(x) ⇠

(
x

Hq
, x ⌧ ⇠k;

⇠

Hq

k , x � ⇠k

⇠? = Cq(x � ⇠k) ⇠ ⇠

Hq

k

In many cases: Hq = H = ↵

⇠k ⇠ t1/z

⇠k ⇠ ⇠1/↵?

Different sets of exponents lead to different universality classes 



Basic equations: 

1. The growth of the surface is driven by a random proces (deposition of particles onto a 
cold surface). 

@h(~x, t)

@t

= ⌘(~x, t)
h⌘(~x, t)i = 0
D
⌘(~x, t)⌘(~x0

, t

0)
E
= 2D�(~x� ~

x

0)�(t� t

0)

� =
1

2

2. Random deposition with surface relaxation. The EDWARDS- WILKINSON (EW) model. 
     Proc. Royal Society A, 381, 17 (1982) 

  
     Assume a weak flux of particles along the steepest descent path onto the surface. 

@h(~x, t)

@t

= ar2
dh(~x, t) + ⌘(~x, t)

h0
i = hi + 1

In a numerical model, column (i) is selected at random and is increased 1 unit.  



Schematic representation of its numerical implementation. 
 
-  Column (i) is selected at random. 
 
-  A new particle added to this column remains in this position if: 

  
 
-  Otherwise diffuses to the lowest nearest neighbour column. 

hi  min(hi�1, hi+1)



•  Exponents in 1+1 dimension. 

Assuming the growth process is invariant under the transformation: 
8
><

>:

x ! �x

h ! �

↵
h

t ! �

z
t

�

↵�z @h(~x, t)

@t

= a�

↵�2r2
dh(~x, t) + �

�(d+z)/2
⌘(~x, t)

↵� z = ↵� 2 = �(d+ z)/2

Dimensional analysis: 

8
><

>:

z = 2

↵ = 2�d
2 = 1

2

� = ↵
z = 1

4

•  In 2+1 dimension. 

Since the EW is a linear equation. A FT provides the amplitudes of the evolving surface 

⇠? ⇠
(
[log (t)]1/2 at short times;

[log (L)]1/2 at long times.



Roughness against time for different system sizes.  
Data collapse is obtained for α=1/2 and z=2 

L=500 (=time unit: tu) 
After 50 tu change color  

⇠?
⇠?

⇠?
⇠?

FINITE SIZE EFFECTS 

⇠k ⇠ t1/z

Due to finite system size:  ⇠k ⇠ L tc ⇠ Lz

⇠? ⇠ ⇠↵k ⇠ L↵

⇠?/L
↵ = F(t/Lz)



3 Ballistic deposition. The KPZ equation. 
    Phys. Rev. Lett, , 56, 889 (1986) 

  

@h(~x, t)

@t

= ar2
h(~x, t) + b (rh(~x, t))2 + ⌘(~x, t)

Was originally proposed as a simple model for sedimentation, and it is closely 
related to stirred fluids (turbulence) and directed polymers in random media. 
 
Takes into account the growth that occurs at local normals to the surface.  
(EW eq.  does not) 
 
By using RG techniques, it has been conjectured that the KPZ equation is the field 
theory of many surface growth models, such as the Eden model, ballistic 
deposition and the SOS model. 

Due to the non-linear term, exponents cannot be derived from scale invariance !  

•  1+1 dim: 

•  2+1 dim:    

↵ =
1

2
, � =

1

3

↵ ⇡ 2

5
, � ⇡ 1

4 Is superdiffusive 
1

z
>

1

2
, ⇠k



h

0
i = max(hi�1, hi + 1, hi+1)

8
><

>:

h

0
i�1 = max(hi�1, hi)

h

0
i = hi + 1

h

0
i+1 = max(hi+1, hi)

Case A 

Case B 



random EW BD 

See animations from: 
https://www.youtube.com/watch?v=zYhqh8dvTUs 
 



•  Collective behavior: Flocking, 
swarming and herding. 

①  Collective behavior shown in birds, fish, bacteria, insects, … humans, that arises 
from simple rules that are followed by the individuals and does not involve any 
central coordination. 

②  Rules: 
i.  Separation (short-range repulsion) 
ii.  Alignment (Steer towards the average heading of the neighbours) 
iii.  Cohesion (long-range attraction) 
 

③  Models: 
Novel Type of Phase Transition in a System of Self-Driven Particles. T. Vicsek, et al. PRL, 75, 
1226 (1995).  

 Point-like particles. No collective motion is possible in the zero-density limit case. 
 
Onset of Collective and Cohesive Motion. Guillaume Gregoire and Hugues Chate, PRL, 92, 
025702 (2004). 

 Adds a LJ interaction term. 
 
 

  



~xi(t+ 1) = ~xi(t) + ~vi(t)�t

~vi(t+ 1) = |~v|(cos ✓(t+ 1), sin ✓(t+ 1))

✓(t+ 1) = arctan

✓
hsin ✓(t)ir
hcos ✓(t)ir

◆
+�✓

8
>>><

>>>:

�t = 1

r = 1 interaction radius

�✓ 2 [�⌘/2, ⌘/2] noise

⇢ = N/Ld
particle density

Random motion with small correlations 

Ordered motion 

Phase transition: 

⇢ ⌘

⌘⇢
� =

1

N |~v|

�����

NX

i=1

~vi

�����

Order parameter 

� ⇠ [⌘c(⇢)� ⌘]�

� ⇠ [⇢� ⇢c(⌘)]
�


