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The translocation of a polymer driven by an external bias field of strength E across a model membrane has 
been investigated using Monte Carlo methods. It is found that below a characteristic strength of the field E*, 
the membrane is practically impenetrable. In the high-field limit, E > E*, the permeability p = zdt, where 
zo and z are the translocation times of the polymer without and in the presence of the membrane, respectively, 
is independent of E. At low fields the permeability decreases according to p - exp(-E*/E). The translocation 
mechanism can be understood as a Kramers process describing the escape of a Brownian particle over potential 
barriers. 

1. Introduction 

Protein translocation across biological membranes is a basic 
mechanism for protein import to various cellular organelles and 

for example, into mitoch~ndria ,~?~ peroxisomes, and 
 chloroplast^^*^ and from the rough endoplasmic reticulum.6 

The translocation of proteins into or across the membrane 
requires an input of energy. In some cases, this is provided by 
a transmembrane electrochemical potential and by the folding 
of the protein during or after its translocation mediated by a 
complex proteinaceous m a ~ h i n e r y . ~ , ~ . ~  As a general scenario, 
it appears that, among others, (i) the translocation is mostly 
dependent on the electrochemical potential in mitochondria and 
in bacteria, (ii) proteins destined to be translocated are generally 
recognized by receptor-like components in the cytosol and on 
the target membrane, (iii) proteins cannot be translocated 
through a membrane in a tightly folded state, and (iv) many 
proteins enter the membrane as a precursor. 

Although much progress has been made in understanding the 
biochemical basis of protein translocation, the physical aspects 
of the translocation mechanism still remain obscur. 

In the present study, we consider particular aspects of the 
translocation process: the influence of an electric field on the 
transport of a polymer across a membrane. In real situations, 
a potential is needed for insertion of the positively charged 
matrix-targeting signal into the membrane (e.g. the inner 
membrane of mitochondria3), resembling a process like elec- 
trophoresis. Under the influence of an external driving field, 
the locomotion of the polymer through the membrane is 
hampered by a “barrier”, which is caused by a number of factors 
including steric repulsions between the polymer and the lipids 
of the membrane, by density fluctuations of the lipids, by out- 
of-plane fluctuations of the membrane surface, and by asym- 
metric fluctuations across the membrane in the case of spon- 
taneous curvature of the membrane.’ In the present work, we 
are interested in effects coming from steric repulsion and from 
local density fluctuations of the lipids. 

Translocation can be characterized by a “translocation time” 
z, which measures the time needed for the polymer to cross the 
membrane. The translocation time depends on various quanti- 
ties: the strength of the electric field, the length of the polymer, 
the thickness of the bilayer, the lateral head group density of 
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the lipids, the spontaneous curvature of the membrane, etc. In 
the present work, we restrict our attention to the dependency 
of the translocation time on the strength of the extemal field. 
Since we are not interested in entanglement effects between 
polymer and lipids, which might be of importance for long 
polymers, we consider a short flexible polymer of length 
comparable to the width of the membrane. Using simple models 
for both the polymer and membrane and ignoring charge effects, 
we applied Monte Carlo methods to estimate the translocation 
times. 

2. Model and Simulation Techniques 

The Polymer Model. As the polymer model, we used the 
bead-spring model where N p  = 4 hard spheres of diameter u 
= 0.69 are connected by harmonic springs with spring constant 
K = 5 of a harmonic potential: 

where U(L> &,) = U(L< &,,I = 00, and &,, = 0.4, Q = 0.7, 
and&,, = 1.0. 

Of course, the present polymer model with Np = 4 beads is 
a fairly short chain, and the term polymer seems not to be very 
adequate. However, the model should be considered as a coarse- 
grained description of a macromolecule with mean extension 
comparable to the width of the membrane. In fact, the average 
end-to-end distance of the chain is (R) a 2.5, which is 
comparable to the average width (h)  a 2.7 of the model 
membrane, which is described below. Assuming that both R 
and h are given in nanometers, the present models, polymer 
and membrane, can be considered as a reasonable coarse-grained 
representation of a real situation,8s9 as for example in the case 
of the translocation of a small protein across a membrane. 

Chain dynamics is simulated by randomly displacing the 
spheres of the chain. Extensions of the harmonic springs are 
accepted according to the Metropolis scheme. A generated 
conformation with intersecting spheres is discarded, and the 
previous conformation is counted as the new one. An electric 
field E is applied perpendicular to the membrane surface. A 
displacement of one of the spheres from position r to r‘ is 
accepted if 

exp[-E*(r’ - r)] > q 

where 0 < 7 < 1 is a random number. The strength of the 
field E 9 JEl is measured in units of ~ B T .  
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Figure 1. Penetration depth A(t) versus time t for field strengths E = 2.0 and 1.0. 

The Membrane Model. The bilayer lipid membrane is 
simulated using a simple coarse-grained model,1°-12 which 
consists of NL dumbells tethered by one end to an infinitely 
thin penetrable interface, but are otherwise free to move from 
one side to the other of the interface and are allowed to diffuse 
in close proximity to the interface. The tether has a maximum 
extension of ;1 = 0.7. Thus, each side of the lipid bilayer is 
comprised of dumbbells. The dumbell is a coarse-grained 
representation of a lipid molecule, where the size fluctuation 
of the lipid tail is deliberately neglected, and the mean extension 
of the tail is represented by a hard sphere of diameter OL. For 
simplicity, we assume all lipids are of the same type and of 
cylindrical shape and, hence, design the head group of the lipid 
as a hard sphere of the same diameter, a, as the tail. The head 
and the tail are connected at fixed distance b. In the present 
model, we use NL = 1000, UL = 1.1, and b = 1.32. Since the 
extension of the lipid is b + UL, the length to width ratio is 2.2, 
and hence the overall dimensions are comparable to real  lipid^.^,^ 

In the present paper, we consider the situation of a rigid 
interface. Preliminary studies using a “flexible” interface,13 
which allows enhanced out-of-plane fluctuations of the lipids, 
have yielded very similar results as compared to the present 
work, and hence we will restrict our discussions to rigid 
interfaces. The geometry of the interface is a sphere of radius 
R = 9.373, which has been used in order to avoid periodic 
boundary conditions as would occur in the case of an open 
membrane with free edges. The numbers of lipids in each leaflet 
fluctuate and are self-consistently adjusted by a flip-flop process. 
The average number of lipids per interfacial area in each of the 
two layers is (8) 0.45. The average width of the membrane 
is (h) = 2.7. The average orientation of the lipids with respect 
to the surface normal is (cos e} GZ 0.77, which is comparable to 
experimental values 0.7.8 

The dynamics of the membrane is achieved by randomly 
displacing the lipids. Each move is rejected if it leads to a 
violation of excluded volume conditions and/or tethering 
conditions. The displacements of polymers and lipids are 
performed at an equal rate. One Monte Carlo step is ~ N L  + Np 
attempted moves and is defined as one time unit. Of course, 
the dynamics, as introduced for the membrane and polymer by 
means of a Monte Carlo method, cannot be compared directly 
to experimental results, because the Monte Carlo dynamics 
reflects the time evolution of the system according to master 
equations of conformational probability distributions rather than, 
as in the case of molecular dynamics simulations, the time 
evolution of the molecules according to Newton’s equations of 

motion. However, for describing long time events, in many 
cases the two approaches give qualitatively identical  result^.^^.'^ 

3. Results and Discussions 
Initially, at time t = 0, the polymer is placed in close 

proximity to the outer leaflet of the membrane. The position 
of the center-of-mass of the polymer with respect to the interface 
of the bilayer is A(t = 0) > 0. The time dependence of the 
penetration depth A(t) for two typical translocation events at 
two different field strengths E is depicted in Figure 1. For A 
> 0 the polymer is located on the cis side (i.e. outside of the 
sphere), and for A < 0, it is on the trans side of the bilayer. 
One observes that for the smaller field E = 1.0, the polymer 
remains engaged with the membrane and is localized on the 
cis side longer than in the case of the larger field E = 2.0. The 
“translocation time” z of the polymer can be defined as the time 
the polymer needs to completely cross the membrane, from 
A(0) > 0 to A(z) < 0. Of course, the choice of the traveled 
distance 

A = A(0) + lA(z)) (3) 

is in principle arbitrary. However, since we are interested 
mainly in effects coming from the membrane, we have to define 
A such that only within this interval the polymer is in contact 
with lipids, and therefore it should exclude contributions from 
free draining effects well outside of the membrane. 

Since the polymer has an average extension of (R)  = 2.5 
and the maximum width of one leaflet of the bilayer is 3.12, 
one can assume that the polymer is virtually disengaged with 
the membrane at a distance A(z) = -5.5. Initially the polymer 
is placed at A(0) = 5.0. 

In order to obtain an ensemble average over various trans- 
location events, several Monte Carlo runs with different starting 
points have been performed. In most cases, an average over 
13 different starts are sufficient in order to obtain a mean 
deviation of &(ti - z)% < 0.2. Estimates of average 
translocation times z at various E are presented in Figure 2. 

These translocation times have to be compared with the 
“unperturbed” translocation time to, in which the polymer needs 
to travel the same distance A and starting at the same places 
A(0) but without the presence of the membrane. The Monte 
Carlo results are shown in Figure 2. In order to support the 
reliability of the simulation results, it is useful to compare them 
to standard Brownian theory, which requires 

A2 = Dozo + E&: (4) 
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For E < E* x 1.5, the permeability rapidly decreases to 0. From 
our data we cannot decide whether the membrane becomes 
strictly impenetrable (i.e. p = 0) below a critical value cc with 
0 cc < E*. This would imply that the translocation time t 
exhibits a singular behavior, t - - for I E  - eel - 0. 

Empirically, we found that the permeability is fairly well 
described by 
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Figure 2. Transition times t and to as function of field strength 6. 
The full curve corresponds to eq 5 with DO = 0.003 and EO = 0.0026. 
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Figure 3. Permeability p = tdt versus field strength 6.  The line 
corresponds to eq 8 with e* = 1.5 and 

where the first term corresponds to the Brownian motion and 
the second term to the continuous drift under the influence of 
the field, and the coefficients DO and Eo are effective diffusion 
and field coefficients, respectively. (The factor 1/2 supposedly 
appearing in the fiist term of eq 4 according to the usual Einstein 
relation has been incorporated in the definition of DO.) Equation 
4 can be rewritten as 

= 0.45. 

( 5 )  

Using estimates of DO 0.003 and EO x 0.002~, eq 5 is in 
reasonable agreement with the Monte Carlo data as shown in 
Figure 2. In the range of fields 0.1 5 E 5 10.0, which is of 
interest in the present considerations, eq 5 is approximately 

where A0 = 500A. The permeability of the membrane can be 
defined as 

This quantity is depicted in Figure 3. At large fields the 
permeability saturates and becomes a constant, CL, 0.45. This 
constant is not universal and may depend on various parameters 
such as the density of lipids and curvature of the membrane. 

which is depicted in Figure 3. For the limiting cases one has 
at large fields 

(9) 

whereas at low fields 

However, eq 8 implies that in the zero-field limit the perme- 
ability is 0. Of course, this cannot be correct in a strict sense 
since there always exists a very small probability that the chain 
will spontaneously cross the repulsive barrier caused by the 
membrane. Therefore, eq 8 cannot be considered to be rigorous, 
but should be considered as a good approximation. In fact, an 
estimate of the translocation time in the zero-field limit using 
Monte Carlo methods yields t > lo8 and to x lo4, and hence 
p rz which means that the membrane is practically 
impenetrable at zero field. For comparison, the smallest 
permeability as measured by Monte Carlo methods in the 
presence of the field and depicted in Figure 3 is p 0.033 at 
E = 0.5. 

The interpretation of the polymer electrophoresis across a 
fluctuating membrane can be related to the Kramers problem.16-18 
According to the Kramers criterion for a Brownian particle to 
escape over potential barriers, the average transition time is 
given by 

T - exp[V(A)I (1 1) 

where V(A) is the maximum barrier height within the distance 
A the particle has traveled. Comparing this result with the 
translocation time in the case of low fields as obtained using 
eqs 6, 7, and 10, 

t - exp(E*/E) (12) 

leads to the conclusion that V - E * / € .  
It is interesting to note that the translocation across a “frozen” 

membrane consisting of immobile lipids follows a different 
mechanism than in the case of “fluid” membranes. The 
locomotion of the polymer across such a “frozen” membrane 
stresses the importance of the fluctuations of the lipids. 
Simulations at various realizations of frozen orientations and 
locations of lipids in the membrane show that for large fields, 
E > 1, the translocation time is essentially constant, tf w lo5, 
but about 2 orders of magnitude larger than in the case of mobile 
lipids. For small fields, E < 0.8, the frozen membrane is 
practically impenetrable, zf - -; that is translocation events 
were not observed for times t < lo7. The observations at large 
fields indicate that the distribution of “permanent holes” as 
created randomly in the frozen membrane essentially control 
the translocation process in this case, and hence the translocation 
time is constant. The observations at small fields can be 
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interpreted such that a translocation event becomes highly 
unlikely with kreas ing  field strength due to the steric repulsion 
between membrane and polymer, which dominates the polymer 
motion and hence prevents the polymer from finding a hole in 
the membrane. 
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