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ABSTRACT Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an
elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a
single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is
similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence
of stable protein aggregates, despite their pairwise repulsions.

GLOSSARY

a � Annulus surrounding a protein
a � Mean curvature bending modulus
b � Gaussian curvature bending

modulus
a1 � Dipole coefficient
c � Projection of S onto the base plane
C � Protein-bilayer contact curve on S
Em � Mean curvature energy
EG � Gaussian curvature energy
fC � Vertical force exerted along C

g(x) � Difference between two membrane
configuration

h � Displacement field
hn � �h � n̂ � Normal derivative of h in the

direction n̂
J � �/2 rotation matrix
l � Interprotein distance and lattice

spacing
n̂ � Unit normal to curve c
P � Arbitrary point on the membrane
s � Reference plane (projection of S

onto base plane
�s � Boundary of reference plane
S � Membrane midsurface excluding

proteins
�S � Boundary of membrane midsurface
t � Unit tangent to curve c
t̂ � Unit tangent to the protein

boundary curve
w � Rotation axis of a protein
X � Position vector on the bilayer

manifold
x � Position vector in the base plane

z, � � Position vector in complex notation
� � Complex curvature scalar

� � Contact angle between protein plane
and membrane

�(x) � 1
2
�2h(x) � Mean curvature

�1,2 � Principal curvature
� � Extrinsic curvature tensor

det � � Gaussian curvature
� � e2�i/5

�(x) � Background curvature field
� � s � Subregion contained in s (also used

to denote a region of a disk)
�� � �s � cr � Boundary of region �

�c � Torque exerted on a protein with
boundary curve c

1̂, 2̂, 3̂ � Cartesian frame
1P, 2P, 3P � Cartesian frame at point P on

membrane
{1P, 2P, 3P} � Cartesian unit vectors located at the

point P

INTRODUCTION

Proteins in biological membranes may constitute more than
50% of the surface area. Even proteins free to diffuse
throughout the membrane frequently distribute themselves
heterogeneously. To understand the distribution of proteins
one must examine the interactions between proteins and
between the proteins and the lipid bilayer. Recent studies
have focused on interactions that are mediated by the elas-
ticity of the membrane (Dan et al., 1993; Goulian et al.,
1993; Mouritsen and Bloom, 1993). These interactions arise
because an embedded protein creates a deformation field in
the surrounding bilayer that influences neighboring pro-
teins. The nature of this deformation field is dictated by the
protein’s elasticity and shape and by the membrane’s elastic
properties. In this paper, we examine the deformation field
generated by proteins embedded in a membrane whose
elastic energy is determined by its curvature. Previous work
has revealed a long-range interaction between two proteins
whose potential energy decreases with distance as 1/r4
(Goulian et al., 1993; Park and Lubensky, 1996). In the
absence of thermal fluctuations (T � absolute tempera-
ture � 0), this 1/r4 interaction is repulsive. When T� 0, the
interaction can be repulsive or attractive, depending on the
bending rigidities of protein and membrane.
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Here we examine the zero temperature limit more closely
and demonstrate novel features that have been overlooked
previously. Our results agree with prior studies of pairwise
interactions; however, we show that the interaction between
N	 3 proteins is not pairwise additive. Linear superposition
of interactions no longer holds in this case. This has impor-
tant and unforeseen consequences for how the proteins
distribute themselves over the membrane. In particular, the
pairwise repulsions may be opposed by nonpairwise forces,
so that most of the proteins in a large aggregate do not
contribute to the bilayer elastic energy. We will present
simulations that demonstrate that these aggregates survive
much longer than an ensemble of proteins subject to pair-
wise repulsions alone. Moreover, a finite number of proteins
can self-assemble into stable equilibrium configurations de-
spite the repulsive pairwise interactions. Furthermore, this
equilibrium may be achieved for relatively small aggre-
gates, with the time of equilibration decreasing with aggre-
gate size. We will present some analytical results that shed
light on the mechanisms leading to this counterintuitive
result.

Protein clusters are the rule, not the exception, on most
intracellular membranes. This is puzzling in some respects,
because identical proteins would have identical charges, and
so electrostatic forces would be unlikely to aid aggregation.
As we show here, the nonpairwise nature of the curvature
elastic forces mediated by the membrane is a likely candi-
date for the cohesive force that allows identical proteins to
aggregate.

ELASTIC INTERACTIONS BETWEEN
RIGID PROTEINS

We begin our analysis with the simplest case of rigid
(inelastic) proteins embedded in a lipid bilayer; in a subse-
quent paper we will examine elastic proteins. The proteins
bend the surrounding membrane, and this strain radiates
outward, influencing neighboring proteins. We shall treat
only small membrane deformations, and so we can model
the membrane by its neutral surface, and the embedded
proteins by a rigid surface embedded in the neutral surface.
The geometry of the situation is shown in Fig. 1.

Denote by S the midsurface of the bilayer, and denote by
C the curve representing the contact between the protein
and midsurface S. We assume that the tangent planes of S
along C are fixed once the protein position and orientation
are set. s and c denote the projection of S and C onto the
base plane. A rigid body motion of the protein induces
corresponding rigid body motions of C and of the tangent
planes of S along C. Points on the plane will be denoted by
vectors x � x11 � x22, where {1, 2} are the horizontal
Cartesian unit vectors (Fig. 1). In the limit of small defor-
mations from a plane, it is convenient to describe the
membrane neutral surface, S, by its elevation, z � h(x),
above the base plane. Thus points on S are specified by X�
(x, z) � x11 � x22 � z3. Generally, we will denote quan-

tities on the manifold, S, by uppercase symbols and those on
the plane by lowercase symbols.

Let �1(X) and �2(X) be the principal curvatures of S,
which are functions of position on S. The energy per unit
area of S is given by

E
 2a��1 � �2

2 �2

�
b
2
�1�2 (1)

where a and b are elastic constants. The inequalities �4a �
b � 0 ensure positive definiteness. In Eq. 1, (�1 � �2)/2 is
the mean curvature of S, and

Em � 2a �
S

��1 � �2

2 �2

dA (2)

is the mean curvature energy of S. Here, dA is the area
element on S. The quantity �1�2 is the Gaussian curvature
of S, and the corresponding Gaussian energy of S is

Eg �
b
2 �

S

�1�2 dA (3)

The model in Eqs. 1–3 is standard in the literature (Helfrich,
1973).

It is a well-known result from differential geometry that
the integral of the Gaussian curvature over the surface S is
related by Stokes’ Theorem to a line integral over the
boundary curve, �S (O’Neil, 1997). Here, the boundary
curve includes the union of all of the protein boundary
curves C, such as the one depicted in Fig. 1. This line

FIGURE 1 (a) A cross section of a bilayer in which a rigid protein is
embedded. In the small deformation limit, the neutral surface coincides
with the center surface. (b) The membrane surface S cuts the protein along
the curve C. s and c denote the projections of S and C onto the base plane.
n̂ denotes the outer normal of c in the base plane. The unit vectors in R3 �
s 	 R1 are denoted by the boldface numbers {1, 2, 3}.
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integral represents the contribution to Gaussian energy from
all of these curves and is determined solely by the orienta-
tion of the planes tangent to S along them. As protein
position and orientation change, the tangent planes along C
undergo the same rigid body motion as the protein. The
Gaussian energy line integral along C is a constant, inde-
pendent of protein position and orientation, and so the
Gaussian energy plays no role in the interaction between
rigid proteins. Later, when we treat flexible proteins, the
Gaussian energy will turn out to be important. Thus for rigid
proteins, the elastic equilibria of the model are characterized
by the minima of the mean curvature energy, which can be
formulated as a variational problem. This problem has been
well studied in the literature for both small and large defor-
mations (Seifert et al., 1991).

In the small deformation limit with ��h� �� 1, the local
mean curvature of S at a point X� x� z3 is approximately
1
2
�2h(x). Therefore, the local mean curvature of S at X over

a point x � s is approximated by

�
x� � 1
2
�2h
x�. (4)

The mean curvature energy of S is an integral over its planar
projection s:

Em
X� �
a
2 �

s


�2h
x��2dx
 2a �
s

�2dx. (5)

In standard elastic plate theory, minimization of the energy
(Eq. 5) leads to various boundary value problems (BVPs)
for h(x), depending on the physical constraints applied
along the boundary �s (Timoshenko, 1987). In all of these
BVP’s, h(x) satisfies the biharmonic equation

�4h
x� 
 0, x� s. (6)

Equation 6 expresses the balance of vertical forces on any
infinitesimal patch of the bilayer (this is shown in Appendix
A). Given an arbitrary solution, h(x), of the biharmonic
equation (Eq. 6), one can compute the net force and torque
imposed by the bilayer on any one of the proteins embedded
in it. For a true mechanical equilibrium, each rigid protein
would have to be positioned and oriented so that all of the
components of force and torque vanish. Here we will for-
mulate a broader problem that contains the complete equi-
libria as a special case.

If the proteins embedded in the bilayer are not cylindrical
prisms, they will induce curvature distortions in the surface
S. For instance, a protein whose shape approximates an
inverted, truncated cone will induce a dimple in the sur-
rounding bilayer, as shown in Fig. 1. More generally, con-
sider a finite collection of proteins in an unbounded bilayer.
A given configuration of proteins specifies h and its normal
derivative hn � �h � n̂ along all of the closed boundary
curves of �s corresponding to projections of protein-bilayer
contact curves onto the reference plane. If s were bounded
instead of unbounded, specifying h and hn along �s would

be a proper set of boundary conditions for the biharmonic
equation (e.g., clamped boundary conditions in plate the-
ory), and a unique solution for h in s would be determined.
The mean curvature energy Em of S can then be computed
from Eq. 5 as a function of protein configuration. However,
if s is unbounded, the situation changes significantly. This is
the case of interest in cells, for the dimensions of a cell are
several orders of magnitude larger than those of the proteins
and can be regarded as essentially infinite.

In this case, we seek biharmonic functions, h(x), with
boundary conditions for h and hn along �s consistent with a
given configuration of proteins. Because of the unbounded-
ness of s, this class of solutions is quite large, and many of
them do not have finite energy. However, if we require the
elastic energy to be finite, this imposes certain force and
torque balances on the proteins. The biharmonic equation
(Eq. 6) for h(x) implies that the mean curvature, �(x), is
harmonic:

�2�
x� 
 0, x� s. (7)

From Eq. 5 it is evident that the energy Em is finite if �
is square integrable on s. From the requirements that � be
square integrable and harmonic in s, we show in Appendix
A that the sum of vertical forces on all proteins induced by
the bilayer vanishes, as does the sum of horizontal torques
on all proteins.

The force and torque balances restrict the possible protein
configurations, and one could now proceed to compute the
(now finite) energy as a function of these restricted config-
urations. But the physically relevant configurations are sub-
ject to further restrictions: vertical force and horizontal
torque balances apply to each protein individually. In Ap-
pendix B we show that the energy cost of violating individ-
ual force and torque balances is enormous. Certain conse-
quences are clear: For an ensemble of proteins that are far
apart compared to their radii, unbalanced vertical forces and
horizontal torques on each protein will quickly equilibrate.
These motions involve small vertical displacements of the
proteins and small rotations about horizontal axes. After this
rapid initial relaxation, the subsequent motions due to hor-
izontal forces and vertical torques are much slower pro-
cesses. The remaining horizontal forces and vertical torques
can be computed from the energy projected onto the “slow
manifold” of protein configurations with balanced vertical
forces and horizontal torques on each protein. In fact, the
energy computed within this constrained class of protein
configurations contains the remaining horizontal forces and
vertical torques within its variations.

To understand how force and torque balances constrain
the protein configuration space, we can consider two con-
figurations of the bilayer with the same embedded proteins.
Both configurations have finite energy and are asymptoti-
cally flat, with unit normal 3 at infinity. Both configurations
maintain a balance of vertical forces and horizontal torques
on each protein. The only difference between the configu-
rations is in the positions and orientations of the proteins.
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We allow proteins of one configuration to be vertically
translated with respect to those of the second and to be
pivoted by small amounts about horizontal axes. Under
these conditions, no horizontal pivoting is possible, and the
only admissible vertical displacement is the same for all
proteins. These results are shown in Appendix C. Thus
restricting the allowable configurations to the above sub-
manifold implies that the only surviving degrees of freedom
are the positions and orientations of the closed curves, c, in
the reference plane representing the protein-bilayer con-
tacts. In summary, the proteins will adjust their relative
positions (and their orientations if they are not circular) so
as to satisfy the conditions of 1) finite energy, 2) asymptotic
flatness, and 3) vertical and horizontal torque balance on
each protein.

CIRCULAR PROTEIN SOLUTIONS AND
THEIR ENERGETICS

Next we restrict our attention to a membrane system con-
sisting of rigid proteins whose protein-membrane contact
curve C is a unit circle, and the tangent planes of S along C
have uniform contact angle, �, as depicted in Fig. 1. Con-
sider a single protein in an otherwise continuous unbounded
bilayer. Cartesian axes 1̂, 2̂, 3̂ are oriented so the origin is at
the center of circle C and 1̂, 2̂ lie in the plane of the circle.
Let (r, �) be polar coordinates of the 1̂, 2̂ plane. The domain
corresponding to the bilayer is r � 1. Boundary conditions
along r � 1 are

h
r
 1, �� 
 0 (8)

hr
r
 1, �� 
 ��. (9)

The biharmonic displacement field h in r � 1 satisfying
these boundary conditions on r � 1 and asymptotic flatness
at r � � (hr 3 0 as r 3 �) is

h
 �� ln r. (10)

This single protein solution is not only biharmonic; it is
harmonic, and as such, it carries zero mean curvature energy.

Now consider solutions with nonzero mean curvature in
r � 1. A mean curvature field that is harmonic and square
integrable (i.e., finite energy) has a multipole expansion
whose leading term is quadrupole (Landau and Lifshitz,
1975):

� 

1
r2
a2cos 2� � b2sin 2�� �

1
r3 
a3cos 3� � b3sin 3��

� · · ·
(11)

This result appears in Appendix A. Biharmonic displace-
ment fields, z � h(x), consistent with the curvature field

(Eq. 11) satisfy the Poisson equation

�2h
 2� 

2
r2 
a2cos 2� � b2sin 2��

�
2
r3 
a3cos 3� � b3sin 3�� � · · ·

(12)

The most general solution of (Eq. 12) that satisfies the
boundary conditions of Eqs. 8 and 9 is

h
 �� ln r�
1
2�1

2�r2 �
1
r2�  1	
a2cos 2� � b2sin 2��

�
1
4�r

3

3
�

2
3

1
r3 

1
r	
a3cos 3� � b3sin 3�� � · · ·

(13)

The mean curvature energy associated with the displace-
ment field (Eq. 13) is

Em 
 2a �
r�1

�2dx


 2a �
1

� �
0

2� 1
r4 
a2cos 2� � b2sin 2��2r dr d�

� 2a �
1

� �
0

2� 1
r6 
a3cos 3� � b3sin 3��2r dr d� � · · ·


 �a�a2
2 � b2

2 �
1
2


a3
2 � b3

2� � · · ·	. (14)

Most of the energy is concentrated in an annulus of O(1)
thickness about the protein. For instance, the energy density
associated with the quadrupole term of mean curvature (Eq.
11) has radial dependence 1/r4, and the fraction of quadru-
pole energy in 1 � r � 2 is 1

2 (dr/r3)/1
�(dr/r3) � 3/4. For

energies associated with higher multipole terms of Eq. 11,
the fraction is even closer to unity.

It remains to place the solution to Eq. 13 within the
framework of widely spaced proteins in a bilayer. A basic
feature of the displacement field of Eq. 13 is the rapid 1/r2
decay of the associated mean curvature (Eq. 11). In the
many-protein system, we expect that the mean curvature
and associated energy density are similarly concentrated
about the proteins. In the large expanse of the bilayer far
from the proteins, the mean curvature is negligible, and, to
leading order, the displacement field is approximated by a
harmonic background field �(x). Let P denote a point on the
membrane far from a protein. Let {1P, 2P, 3P} be Cartesian
axes at the point P, with 1P and 2P in the tangent plane, as
shown in Fig. 2.

The local behavior of �(x) in a neighborhood of P small
compared to interprotein distance is dominated by quadratic
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terms

� 

�

2

x1

2  x2
2� � �x1x2 


r2

2

� cos 2� � � sin 2��,

(15)

where � � �11�(0) � ��22�(0), � � �12�(0).
Now consider how the local structure of the displacement

field is modified when a protein is introduced at the point P.
In the limit of large interprotein distance, l�� 1, the leading
approximation to the displacement field takes the general
form of Eq. 13. Note that Eq. 13 is not exact, because the
associated mean curvature decays like 1/r2 as r 3 �, and
this ignores “curvature tails” originating from neighboring
proteins. But in the limit of large interprotein distance the
effect of these tails turns out to be negligible. The constants
a2, b2, a3, b3, . . . in Eq. 13 are identified by requiring an
asymptotic matching between Eq. 13 and the background
field (Eq. 15) in the “intermediate limit” 1 �� r �� l. For
r �� 1, the dominant component of Eq. 13 is the harmonic
function (r2/22)(a2cos 2� � b2sin 2�) � (r3/32)(a3cos 3� �
b3sin 3�) � . . . , and agreement with Eq. 15 leads to

a2 
 2� (16)

b2 
 2�. (17)

Coefficients a3 and b3 of the r3 component are seen to be
negligible, as are coefficients of the remaining higher pow-
ers of r. In summary, the local structure of displacement
field about the protein at P is approximated by

h� �� ln r� �1
2�r2 �

1
r2�  1	
� cos 2� � � sin 2��.

(18)

The energy cost of introducing the protein at P is

Em � �a
a2
2 � b2

2� 
 4�a
�2 � �2�. (19)

This energy has a geometrical interpretation. The extrinsic
curvature tensor of the neutral surface, z � �(x), in the
absence of a protein at P is

� 
 � �11� �12�
�21� �22�

�. (20)

Observe that

�
x
 0� 
 � � �
� �� �

and det �(0) � �(�2 � �2), so the energy of Eq. 19 can be
written as

Em � �4�a det �
0�. (21)

det �(0) approximates the Gaussian curvature of the surface
z � �(x) at x � 0. Thus, the energy cost of introducing a
protein at any point P of the bilayer is proportional to the
preexisting Gaussian curvature at P.

To conclude this section, we mention some features of the
long-range tails of the displacement field h. In the local
structure (Eq. 18) of displacement field h, the component
proportional to r2 represents the preexisting saddle-shaped
background configuration before the protein is introduced.
The remaining terms that do not asymptote to zero as r 3
� contribute to the long-range behavior of displacement
field far from a disk containing all of the proteins. Specif-
ically, in Appendix D we show that the r3 � tail of h has
the generic form

h� �� ln r
1
2


a2cos 2� � b2sin 2�� � O�1
r�.

(22)

The coefficient � is given by � � N�, where N is the
number of proteins, so the harmonic ln r component is seen
to be the direct effect of the contact angle � associated with
all of the proteins. The tail structure (Eq. 22) that does not
asymptote to zero as r 3 � challenges the physical rele-
vance of the unbounded bilayer solutions constructed in this
paper. However, in Appendix D we consider an ensemble of
proteins near the center of a large disk with a clamped
perimeter. The clamped perimeter obviously modifies the
tail structure (Eq. 22). But the effect on energy vanishes as
the radius of the disk tends to infinity.

THE MANY-BODY PROBLEM

Suppose the background field in the previous section arises
from a single protein at position x�. This background field is
approximated by the single-protein solution (Eq. 10) with r
replaced by �x � x��:

� 
 �� ln�x x��. (23)

The energy cost of inserting a protein into the membrane at
the origin is computed as follows. The extrinsic curvature
tensor of the background field � at x � 0 is approximately

�
0� 
 � � �
� �� �, (24)

where

� � �11�
0� 
 ��22�
0� 
 �
x�12  x�22


x�12 � x�22�2

FIGURE 2 A Cartesian frame is adopted locally on the membrane at any
point P that is far from a protein with 1P and 2P axes in the tangent plane.
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� � �12�
0� 
 �21�
0� 
 �
2x�1x�2


x�12 � x�22�2 .

The formula for �, � suggests a complex variable notation.
If we represent position x� by the complex number z� �
x�1 � ix�2, then the components � and � of the curvature
tensor are contained in the complex curvature scalar:

� � �  i� 
 �
x�12  x�22  2ix�1x�2


x�12 � x�22�2 

�z��2

�z��4 

�

z�2 . (25)

Using this notation, the Gaussian curvature at the origin is
represented by

det �
0� 
 �2 � �2 
 ���2, (26)

and the energy cost of inserting a protein at the origin is

Em 
 4�a���2. (27)

From Eq. 25 this becomes

Em 

4�a�2

�z��4 . (28)

As remarked before, this mean curvature energy is concen-
trated in an annulus of thickness �1 about the protein at z�
0. If a protein at z� is the only other protein present, there is
a similar annulus with concentrated mean curvature energy
about it, and the total energy of the two-protein system is

Em 

8�a�2

r4 , r� �z��. (29)

This circularly symmetrical, repulsive, 1/r4, two-body en-
ergy is the same as reported by Goulian et al. (1993). One
might think that the repulsive character of the two-body
interaction is due to the contact angle � being the same for
both proteins, analogous to repulsion between like charges.
Suppose there are two proteins, 1 and 2, with contact angles
�1, �2. The energy cost of protein 1 in the background field
due to protein 2 is 4�a�2

2/r4, and the energy cost of protein
2 in the background field due to 1 is 4�a�1

2/r4, so the total
energy of this two-protein system is

Em 

4�a
�1

2 � �2
2�

r4 . (30)

Thus the two-body interaction is repulsive, irrespective of
the relative signs of �1 and �2.

A straightforward extrapolation to N 	 3 proteins would
be to assume the sum of pairwise 1/r4 interactions. But a
closer look at the formulation given here reveals the non-
pairwise character of the interaction.

Suppose the background field �(x) is due to N � 1
proteins at positions represented by complex numbers
z2, . . . , zN. The curvature scalar at the origin due to these
proteins is approximated by the superposition of single

protein curvature scalars,

� 
 �
i�2

N
�

zi
2 . (31)

The energy cost of introducing a protein at the origin is now
given by

4�a���2 
 4�a�2��
i�2

N 1

zi
2�2

. (32)

If the interaction were pairwise, the energy cost would be

4�a�2 �
i�2

N 1
�zi�4

, (33)

corresponding to the N � 1 pairwise interactions between
the protein at the origin and its N � 1 neighbors. The true
energy cost (Eq. 32) contains all of the terms of Eq. 33, but
many other cross terms as well. This establishes the true
many-body character of the elastic interaction between pro-
teins in the bilayer. The total mean curvature energy of N
proteins at positions z1, . . . , zN consists of N terms like Eq.
32. The energy concentrated about the jth protein is approx-
imately 4�a�2��i�j(1/(zi � zj)2�2, and the total energy is
approximately

Em � 4�a�2 �
j�1

N ��
i�j

1

zi  zj�

2�2

. (34)

STABLE PROTEIN AGGREGATES

That the many-body energy (Eq. 34) is nonpairwise can be
demonstrated by a simple example. Consider seven pro-
teins, one at the origin and the other six at the vertices of a
regular hexagon centered about the origin, as shown in Fig.
3. The energy cost of the protein at the origin is computed
from the curvature scalar at z � 0 due to proteins at
positions z � reik�/3, k � 0, 1, . . . , 5:

� 

�

r2 �
k�0

5

ei
k2�

3 

�

r2

1  
ei(2�/3)�6

1  ei(2�/3) 
 0. (35)

Hence the energy cost of the protein at the origin is zero. If
the true many-body energy were pairwise, the energy cost

FIGURE 3 Configuration of seven proteins, with one at the origin and
six at the vertices of a regular hexagon.
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could be calculated as follows. Adding the protein at z � 0
introduces six new interactions between this protein and its
six neighbors. The cost of each interaction is the pair energy
(Eq. 29), and the total is 48�a�2/r4. It is evident that
pairwise repulsive forces between proteins can be nullified
by nonpairwise forces. This gives rise to an intriguing
possibility: aggregates of proteins with N sufficiently large
might self-assemble into truly stable equilibria. We demon-
strate that such equilibria exist by numerically simulating
the gradient flow generated by the mean curvature energy.

Let X � (Re z1, . . . , Re zN, Im z1, . . . , Im zN) be a
2N-dimensional vector that specifies the N protein positions
in the reference plane, and define Em(X) to be the mean
curvature energy given by Eq. 34. The gradient flow asso-
ciated with Em(X) is the system of ordinary differential
equations,

dX
dt 
 ��Em
X�. (36)

Here the gradient is with respect to the 2N vector X. It
follows from Eq. 36 that dEm(X(t))/dt � �Em � dX/dt �
���Em�2 � 0, with equality only if �Em � 0. If the time
sequence X(t) converges as t 3 �, then its limit X� repre-
sents an equilibrium of the energy Em(X), satisfying

�Em
X�� 
 0. (37)

For the energy (Eq. 34), it can be shown that an equilibrium
state satisfying Eq. 37 must also satisfy

Em
X�� 
 0. (38)

This results from the homogeneity of the energy (Eq. 34). In
particular, suppose that X� is a solution of Eq. 37. It follows
from Eq. 34 that Em(lX�) � (1/l4)Em(X�). Taking d/dl of
both sides and setting l � 1, �Em(X�) � X� � �4Em(X�).
Because �Em(X�) � 0, it follows that Em(X�) � 0. Given
an equilibrium configuration X� that satisfies Eq. 38, it may
be further deduced from Eq. 34 that the curvature scalar �i

felt at each protein position zi vanishes. Hence equilibria
satisfy the N simultaneous equations

�i 
 0, i
 1, . . . , N. (39)

All of the following simulations were performed over the
same time interval. The first simulation in Fig. 4 consists of
N � 61 proteins. The initial positions fill out a hexagonal
lattice with four concentric “layers.” The initially hexagonal
lattice was motivated by the hope that it is near equilibrium;
i.e., curvature scalars at sites away from the periphery
should be nearly zero. Hence we expected that the hexag-
onal lattice sufficiently far from the periphery would retain
its integrity for some time. We also expected that this lattice
patch would “evaporate” from the edge, because we did not
expect that small rearrangements of “boundary” proteins
would lead to the vanishing of their curvature scalars, �i.

If the final positions are a good approximation to an
equilibrium, the curvature scalars at the final lattice sites
(Fig. 4, open circles) should be close to zero. In Fig. 4, some

representative “boundary” proteins are labeled 1–7. The
figure caption lists final and initial values (in parentheses)
of ��i�, respectively, for each of these seven proteins. The
final values of the curvature scalars at these boundary
proteins are small relative to their initial values and are
close to zero.

If one examines the trajectories of the proteins more
closely, some of the proteins appear to move toward the
center of the aggregate, as if they were experiencing an
effective attraction. There also appears to be interesting
rotation and counterrotation of the interior layers, hinting at
the existence of symmetry-breaking instabilities and the
formation of grain boundaries. The details of the final
equilibrium are rich and subtle and will be a subject of
analysis in a future publication. For now, notice that the
final lattice has macroscopically “rounded” itself out into a
circle from its initial hexagonal shape. Thus the original
hexagonal lattice structure has been disrupted. This disrup-
tion is modest, for the final lattice sites are generally within
a third of a lattice spacing of the initial sites. But the
disruptions are not confined to a “boundary layer”; rather,
they propagate throughout the entire patch and have many
interesting symmetries.

A single pair of proteins undergoes indefinite expansion.
A single hexagonal “layer” around a central protein also
undergoes indefinite expansion, but more slowly. On the
other hand, the four-layer patch of Fig. 4 settles down to an
equilibrium. So what happens to two- and three-layer
patches? Is there a critical layering size from which equi-
librium can still be achieved? The simulations displayed in
Fig. 5 were all carried out within the same time span; they
indicate equilibration in both cases. The protein trajectories
for smaller lattices as determined by the numerical gradient
flow are shown as dotted curves in Fig. 5 a and b. Succes-

FIGURE 4 N � 61 protein lattice simulation. The initial positions are
represented by black dots, and the positions of the proteins at the end of the
run are represented by open circles. The final and initial values of ��i� at
seven selected boundary proteins (labeled from 1 to 7) are as follows: (1)
0.0008 (2.3051); (2) 0.0008 (0.3221); (3) 0.0008 (0.1111); (4) 0.0008
(0.3221); (5) 0.0018 (2.3051); (6) 0.0008 (0.3221); (7) 0.0008 (0.1111).
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sive dots represent equal increments of time. Notice that the
dots cluster tightly together as the proteins settle down into
an apparent equilibrium. We shall show below that five
proteins at the vertices of any regular pentagon constitute a
stable equilibrium.

It is of interest to compare the gradient flow of the
nonpairwise energy (Eq. 34) with that of the pairwise energy

Ep 
 4�a�2 �
i�j

1
�zi  zj�4

. (40)

Fig. 6 shows the expansion of the two-layer configuration
driven only by the pairwise gradient force. In dramatic
contrast to the nonpairwise case, the lattice patch expands
radially outward.

We can approximate the expansion rate of the array as
follows. The numerical solution does not exactly represent
a uniform dilation of the whole lattice, but it is not a bad
approximation. Let us approximate the real evolution X(t)
by X(t) � l(t)X0, where X0 is the initial configuration, so
l(0) � 1. Using the homogeneity of the pairwise energy (Eq.
40), an ordinary differential equation for l(t) is obtained by
taking the inner product of the full gradient flow equation
with initial condition X0 and substituting the above approx-
imation for X:

dl
dt
 �

�4Ep
X0�

�X0�2
1
l5 . (41)

From Eq. 41 it easily follows that l(t) � (constant)t1/6 as
t 3 �. Fig. 7 shows a log-log plot of the diameter of the
lattice patch versus time, for both pairwise and nonpairwise
simulations. The pairwise slope is much greater than the
nonpairwise examples, and the discrepancy jumps by orders
of magnitude as each concentric layer is added, lending
further evidence of the stabilizing influence of the nonpair-
wise forces.

Why do the curvature scalars at boundary lattice sites
manage to vanish, even though a boundary protein sits at a
place where spatial homogeneity is broken? Recall our
calculation (Eq. 35), which showed that the protein at the

FIGURE 5 Simulation of three concentric layers (a) and two concentric
layers (b). The two simulations were performed within the same time span.
(c) membrane shape of the two-layer system at its final configuration.

FIGURE 6 Simulation of 19 proteins in an initially hexagonal array
driven by the gradient of the pairwise energy (40). The initial pattern
rapidly expands radially, compared to the same initial condition in Fig. 5 b.
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center of a hexagonal array feels zero curvature scalar due
to its six nearest neighbors. To obtain zero curvature scalar
at the center protein, one does not need to sum over all six
nearest neighbors; any consecutive three will do. Fig. 8
illustrates this example. We can imagine that a boundary
protein is at z � 0, and its three nearest neighbors at z � l,
lei�/3, lei2�/3 can be part of the interior and/or boundary of
the aggregate. It is easily seen that the boundary protein at
z � 0 has a vanishing curvature scalar due to these interior
and/or boundary proteins.

Because the nonpairwise interaction we have derived
possesses interesting symmetry properties, it is now less
mysterious that a protein on the boundary of a lattice patch
can have zero curvature scalar, even though it has no
interacting partners on one half-plane and a sea of proteins
on the other. Thus a boundary protein adds to the overall
stability of the aggregate.

PENTAGONS ARE THE SMALLEST STABLE
PROTEIN AGGREGATE

We will now show that five proteins at the vertices of a
regular pentagon represent a zero-energy equilibrium state.
The protein positions are taken to be

zj 
 r�j, j
 0, 1, . . . , 4, (42)

where � � e2�i/5.
The configuration is shown in Fig. 9. The curvature scalar

at z0 � 1 due to proteins at z1, . . . , z4 is

� 

�

r2� 1

�  1�2 �

1

�2  1�2 �

1


�� 2  1�2 �
1


��  1�2	.

(43)

Here we used �3 � �� 2, �4 � �� . Further use of these
identities and an algebraic rearrangement of Eq. 43 give

� 

2�

r2

1
��  1�2 Re�3
�2  �� 2� � 
�  �� �� 
 0. (44)

Hence the energy cost of the protein at z0 � 1 is zero.
Curvature scalars at the other protein sites and energy costs
of the remaining proteins are also zero by geometric sym-
metry. In Appendix E we show that these pentagonal con-
figurations of proteins are the smallest possible aggregate.
In Appendix F we give a precise definition of “geometric
stability” that enables us to discuss unambiguously whether
equilibrium configurations such as the ones we observed in
Figs. 4 and 5 are stable.

DISCUSSION

The phenomena motivating this work are the aggregation of
identical proteins in biological cell membranes. We have
focused our attention on protein-protein interactions that are
mediated by elastic deformations of the membrane. Proteins

FIGURE 7 Log-log plot of the diameter of the protein patch versus time
when driven by pairwise and nonpairwise forces. The curves show the
expansion rate of two concentric layers driven by pairwise forces, and plots
for two and three layers driven by nonpairwise forces. For the pairwise
simulation, the log-log plot has slope 0.1757 at the end of the run, close to
the predicted value of 1/6. For the two-layer and three-layer nonpairwise
dynamics, the final slopes are 0.0364 and �0.0017, respectively.

FIGURE 8 The curvature scalar at z � 0 due to proteins at z � l, lei�/3,
lei2�/3 vanishes. FIGURE 9 A pentagonal protein aggregate.
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embedded in the bilayer induce curvature distortions that
are resisted by the elastic restoring forces of the membrane.
These deformations can be imposed externally or induced
by the proteins themselves. Thus a protein interacts with its
neighboring proteins via the local membrane curvature gen-
erated by its neighbors.

Goulian et al. derived a purely elastic interaction between
two proteins at zero temperature, with a circularly symmet-
rical, repulsive potential energy that diminished as 1/r4

(Goulian et al., 1993). At positive temperatures, this poten-
tial energy can be either attractive or repulsive, depending
on the relative rigidities of the protein and the membrane
(Goulian et al., 1993; Park and Lubensky, 1996). In this
paper we have shown that curvature-mediated protein inter-
actions are not pairwise additive, and we have derived the
correct interaction potential. Each protein feels a local cur-
vature that is a linear superposition of curvatures due to
neighbors. The energy of each protein is the square of this
local curvature; hence the energy of a large protein ensem-
ble has the structure

Curvature elastic energy 
 �
proteins

� �
neighbors


curvatures��2.

It is easy to see that such an energy does not reduce to a sum
of pairwise energies.

The nonpairwise character of curvature-mediated protein
interactions has novel implications for large protein assem-
blies. If the interaction were pairwise and repulsive, a local
concentration of proteins would simply expand over an ever
increasing area. But for nonpairwise interactions, the pro-
teins in a large assembly can arrange themselves into a
lattice such that at each of the lattice sites inside the assem-
bly, the local curvature felt at that site due to all other
proteins vanishes by cancellation. Thus all proteins in the
assembly have zero energy. The assembly of five proteins
into a regular pentagon is the simplest example. In our
numerical simulations of the curvature energy gradient
flow, larger aggregates relax to stable equilibria. In these
examples the final aggregate size is about the same as the
initial size. This is completely unlike the uniform expansion
seen in protein aggregates interacting through pairwise
forces. In fact, one can deduce from these results that the
magnitude of the nonpairwise forces in the lattice patch is
opposite and equal to that of the pairwise forces. This is in
contrast to other nonpairwise forces found in nature, such as
van der Waals forces, that have nonpairwise contributions
that are usually small compared to the pairwise interactions.

Thus our work illustrates an example of how peculiar and
counterintuitive nonpairwise forces behave, especially in
their ability to stabilize large aggregates, even though iso-
lated pairs of constituent bodies interact repulsively. We
will demonstrate in a subsequent publication that the phe-
nomena discussed here survive in the presence of thermal
fluctuations of the proteins and of the membrane.

APPENDIX A: THE RELATIONSHIP BETWEEN
ELASTIC ENERGY, FORCES, AND TORQUES IN A
BIHARMONIC FIELD

This appendix analyzes forces and torques associated with the mean
curvature energy (Eq. 4). The starting point is the biharmonic Green’s
identity. Let g(x) and h(x) be scalar fields defined in s. Integrating the
vector identity

� � ��2h�g �
�2h�g� 
 �2h�2g �4hg (A.1)

over a region in � contained in s, and using the divergence theorem, one
obtains

� �
��

��2hgn  
�2h�ng�ds
 �
�

�2h�2g dx �
�

�2hg dx.

(A.2)

Here, normal derivatives, (●)n � �(●) � n̂, are with respect to the unit
normal n̂ pointing into the region �.

We first apply Eq. A.2 to compute the variations of the mean curvature
energy (Eq. 5). The variation of Em due to variations in �h in s is

�Em 
 a�
s

�2h�2�h dx. (A.3)

Now set g � �h and � � s in (A.2):

�
s

�2h�2�h dx
 �
s

�4h�h dx �
�s

��2h�hn

 
�2h�n�h�ds.

(A.4)

Comparison with (A.3) leads to

�Em 
 a �
s

�4h�h dx a �
�s

��2h�hn  
�2h�n�h�ds.

(A.5)

We can interpret this variation formula in terms of the forces and torques.
Consider the area integral over s in (A.5). The integrand, a�4h�h dx, is

the work required to raise the patch of bilayer over area element dx by
height �h. Hence this patch of bilayer is subject to a vertical restoring force
�a�4h per unit area. This force vanishes for bilayer configurations in local
mechanical equilibrium. Hence h(x) must satisfy the biharmonic equation
�4h � 0 in s.

The boundary integral in Eq. A.5 encodes vertical forces and horizontal
torques acting on the proteins.

The balance of vertical forces on a protein

If the protein is raised vertically by amount �z with no rotation, every point
on the protein-bilayer contact curve, c, translates upward uniformly by �z;
so �h � �z on c. The tangent planes along C also undergo uniform upward
translation, so �hn � 0 on c. In this case the boundary integral in Eq. A.5
reduces to ac(�

2h)nds �z, where c is the projection of C and is thus one
of the closed curves of �s corresponding to a single protein. This integral
represents the work required to raise the protein by amount �z against a
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vertical restoring force:

fc � �a �
c


�2h�nds. (A.6)

The balance of horizontal torques on a protein

Next consider the work done on the bilayer by pivoting the protein about
some horizontal axis. Such a pivoting motion is represented by

�h
 
J � w� � x (A.7)

on c. Here, w is a small vector in the direction of the rotation axis through
a pivot of �, as shown in

J
 � 0 �1
1 0 �

is the rotation matrix by ��/2 radians in the horizontal plane. Such a
pivoting motion changes the projection of the protein-bilayer contact curve,
C, onto the reference plane, but we can neglect this effect for the near
planar configurations considered here. Substituting Eq. A.7 for �h into the
boundary integral in Eq. A.5 gives

��
c

�
�2hJw � n̂ 
�2h�nJw � x��ds


 a�
c

�
�2ht̂ 
�2h�nJx��ds� � w.

Here t̂ is the unit tangent of c, oriented counterclockwise. This integral
represents the work that must be supplied to carry out the pivoting w.
Hence there is a restoring torque applied by the bilayer to the protein, given
by

�C � �a�
c


�2ht̂ 
�2h�nJx�ds. (A.8)

Because the mean curvature is given by �(x) � 1/2�2h(x) in the small
deflection limit, the formulas A.6 and A.8 for vertical force and horizontal
torque imposed by the bilayer upon the protein can be written as

vertical force: fC 
 �2a�
c

�n ds (A.9)

horizontal torque: �C 
 �2a�
c


�t̂ �nJx�ds. (A.10)

Unbounded bilayer and the equilibrium of forces
and torques

For an equilibrium biharmonic displacement field h(x) in s with finite mean
curvature energy, the vertical elastic forces and the horizontal torques on
all proteins must sum to zero. We show this as follows.

Let �(x) � 1

2
�2h(x) be the mean curvature associated with a biharmonic

displacement field h(x). As noted in the second section, � is harmonic, and

setting �2h � 2� in the biharmonic green’s identity (Eq. A.2) gives

��
��


�gn  �ng�ds
 �
�

��2g dx. (A.11)

Here g remains an arbitrary test function as yet unspecified, and the region
� is the portion of s inside a circle cr of radius r about the origin. r is chosen
sufficiently large so that all proteins are enclosed inside cr, as shown in Fig.
10.

Recall that �s consists of the closed curves corresponding to all of the
proteins, and that all of these are inside cr. Hence, �� � �s � cr, and Eq.
A.11 can be rewritten as

��
�s


�gn  �ng�ds
 �
cr


�gr  �rg�ds� �
�

��2gdx.

(A.12)

Notice that the normal derivative is ��/�r on cr, according to the conven-
tion discussed before. If g is taken to be a uniform constant, then �2g � 0,
and Eq. A.12 reduces to

�
�s

�n ds
 �
cr

�r ds. (A.13)

The left-hand side is proportional to the sum of vertical elastic forces over
all proteins, and it remains to show that the right-hand side vanishes as
r 3 �.

Because we have imposed the constraint that the total mean curvature
energy (Eq. 5) is finite, the mean curvature field, �, is square integrable
over s. It follows that � must vanish as r3 �. Because � is harmonic, its
behavior for large r can be described by a multipole expansion:

� 

1
r 
a1cos � � b1sin �� �

1
r2 
a2cos 2� � b2sin 2��

� · · ·
(A.14)

Here (r, �) are polar coordinates in the plane, and the 1/r terms are dipole
components. If there is a nonzero dipole component, then �2 � O(1/r2) as
r 3 �, but this decay is not rapid enough for square integrability on s. If
the first nonzero term of Eq. A.13 is the quadrupole, then �2 � O(1/r4), and
this decay is sufficient to ensure that �2 is square integrable on s. In
addition, note that

� 
 O�1
r2� and �r 
 O�1

r3� as r 3 �. (A.15)

FIGURE 10 A region � enclosed by cr.
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From Eq. A.15 we see that the right-hand side of Eq. A.14 is on the order
of O(1/r2) as r 3 �, so it vanishes as r 3 �. Hence the sum of vertical
forces on all proteins vanishes.

If g is taken to be a linear function, g � Jw � x, with w an arbitrary
constant vector, then �2g is still zero, and Eq. A.12 reduces to

w � �
�s


�t̂ �nJx�ds
 w � �
cr

r
�  r�r�	̂ d�. (A.16)

By Eq. A.15 the right-hand side is O(1/r) as r 3 �. Hence,

w � �
�s


�t̂ �nJx�ds
 0. (A.17)

This identity is true for arbitrary w, so

�
�s


�t̂ �nJx�ds
 0. (A.18)

Thus the sum of horizontal torques over all proteins vanishes.

APPENDIX B: ANALYSIS OF VERTICAL FORCES
AND HORIZONTAL TORQUES

The energy divergences associated with unbalanced vertical forces and
horizontal torques will now be examined more concretely in simple ex-
amples. These will explain why imposing force and torque balances on
each protein, as well as on the whole ensemble, is physically justified.

Consider the mean curvature field induced by vertical forces on pro-
teins. Recall that the mean curvature field is harmonic (Eq. 7) and that the
vertical force fc induced on a protein by the surrounding bilayer is given by
A.9. By Newton’s third law, the protein exerts vertical forces �fc on the
bilayer. This will lead to the interpretation of the vertical force �fc as a
“source” of the mean curvature field. Suppose that the interprotein dis-
tances are large compared to the protein radius, so vertical forces may be
considered as acting at discrete points corresponding to protein positions
x1, . . . , xN. Let �f1, . . . , �fN be forces applied to the bilayer at these
points. Equations 7 and A.9 are replaced by the single Poisson equation

2a�2� 
 ��
i�1

N

fi�
x xi�. (B.1)

A particular solution of Eq. B.1 is

2a� 
 �
1

2�
�
i�1

N

fi ln�x xi�, (B.2)

and the general solution is obtained by the addition of an arbitrary har-
monic function. If the displacement field is to be asymptotically flat at
infinity, then the additive harmonic function must be identically zero, and
it is sufficient to consider Eq. B.2 as it stands. The asymptotic behavior of
Eq. B.2 as r � �x� 3 � is

2a� � �
1

2���
i�1

N

fi�ln r�
1

2���
i�1

N

fixi� �
r̂
r � O�1

r2�. (B.3)

For the mean curvature energy density 2a�2 to be integrable at infinity, the
sum of forces must vanish, and so must the horizontal torque,

� � J �
i�1

N

fixi. (B.4)

So far, this simple analysis recapitulates the conclusions of Appendix A,
that asymptotic flatness at infinity and finite mean curvature energy imply
balances of vertical forces and horizontal torques. We want to proceed
further, and explain why the net vertical force on each protein should be
taken as zero, i.e., fi � 0 for i � 1, . . . , N. Consider, for instance, three
cylindrical proteins along a line, with spacing l �� 1. The situation is
depicted in Fig. 11.

Force �f is applied to the outer proteins, and force �2f to the protein
in the middle. Force and torque balances are satisfied. Representing posi-
tions in the reference plane by complex numbers z, protein positions may
be taken as �l, 0, �l, and the mean curvature field far from proteins is
given by

2a� 
 �
f

2�
ln�z� l� �

f
�

ln�z� 
f

2�
ln�z l�


 �
f

2�
ln�1 

l2

z2� (B.5)

The corresponding approximation to the total mean curvature energy is

E�m � 2a �
R2

�2dx

f 2

8�2a �
s

ln2 �1 
l2

z2�dx. (B.6)

The singularities at z� �l, 0, l are integrable, so E�m in Eq. B.6 is finite and
is in fact a leading order approximation to mean curvature energy in limit
l 3 �. By scaling the integration variables so that the scaled interprotein
distance is unity, E�m in Eq. B.6 can be rewritten as

E�m � �f 2l2, (B.7)

where � is the constant � � (1/8�2a)�2ln2�1 � (1/z2)�dx.
The energy in Eq. B.7 is compared with the curvature-mediated inter-

action energy given by Eq. 34. For three proteins at �l, 0, l, Eq. 34 reduces
to

Em 
 4�a�2��2
l2�

2

� 2�1 �
1
4

l2
�2	 


57�

2
a�2

l4 . (B.8)

FIGURE 11 Three cylindrical proteins along a line illustrating force and
torque balance.
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The ratio E�m/Em scales with l like l 6, so E�m �� Em for l �� 1. This result
seems inevitable when one thinks of the length scales associated with the
elastic distortions. Recall that the elastic distortions giving rise to the
curvature interaction Em in Eq. B.8 are confined mainly to annuli of
thickness unity about each protein. The elastic distortions induced by
vertical forces f, �2f, f on the three proteins at �l, 0, l are “transmitted”
throughout a patch of radius O(l) about the origin. The associated energy
E�m is bound to be enormous compared to Em. Under any reasonable model
of elastic relaxation, one expects that the highest energy modes undergo the
fastest decay. In particular, the membrane should rapidly adjust itself so
that the vertical force on each protein is zero.

There are energy divergences induced solely by torque. Consider a
single circular protein in an otherwise unbounded bilayer. As before, let r,
� be polar coordinates of the reference plane, with r � 1 corresponding to
the bilayer. Recall that the mean curvature field � in r � 1 has a multipole
expansion. If the curvature vanishes at infinity, the leading term is dipole.
Assume that � consists solely of the dipole term, so

� 

a1

r cos �, (B.9)

where a1 is a constant. The net vertical force on the protein vanishes, but
the net torque horizontal torque is

�2a �
0

2�


�t̂ �rJx��t�1d� 
 �4aa1 �
0

2�

cos2� d�


 �4�aa12� �C2. (B.10)

If a1 � 0, the torque �c � �4�aa1 is nonzero. A coordinate free expression
of the dipole field (Eq. B.9) is convenient for the discussion of energetics.
Points in the reference plane will be represented by the complex numbers
z. The dipole field (Eq. B.9) can be written as

� 
 a1Re�1
z� 
 �

�C

4�aRe�1
z�. (B.11)

If the protein is located at a position � in the complex plane, the curvature
field is

� 
 �
�C

4a� Re� 1
z ��. (B.12)

The energy density 2a�2 associated with this dipole field is nonintegrable
at infinity. Now introduce a second protein at position �� with torque ��c2
imposed upon it. The sum of torques on the two proteins is now zero. If
��� �� 1, the mean curvature field due to both proteins together is approx-
imated by the superposition

� 
 �
�C

4�a Re� 1
z �


1

z� �� 
 �
�C

4�a Re� �

z2  �2�.

(B.13)

As �z� 3 �, � � O(1/�z�2), and the mean curvature energy is finite:

E�m � 2a �
�

�2dx

�C

2

8�2a �
�

Re2� l
z2  l2�dx� � (B.14)

is finite. Here � is the complex plane excluding the disks �z � �� � 1, �z �
�� � 1.

The asymptotic behavior of this energy as ��� 3 � is determined. The
integration variables may be scaled so that the protein positions are �1 and

�1. The resulting expression for E�m is

E�m 
 E�m
�� 

�C

2

8�2a �
�
��

Re2� 1
z2  1�dx, (B.15)

where �(�) is the complement of disks �z � 1� � 1/���, �z � 1� � 1/���.
Consider the change in Em as ��� increases from some base value �0 �� 1
to a final value �1 � �0. It follows from Eq. B.15 that

E�m
�1�  E�m
�0� 

�C

2

8�2a �
a

Re2� 1
z2  1�dx, (B.16)

where a � �(�1) � �(�0). a consists of two annuli about z � �1 and z �
�1 with inner radius 1/�1 and outer radius 1/�0.

In the annulus about z � �1,

Re� 1
z2  1� 
 Re� 1

z 1


1
z� 1� � Re� 1

z 1� 

cos �

r ,

(B.17)

where r, � are polar coordinates of z � 1. The contribution to the integral
Eq. B.16 from this annulus is

�C
2

8�2a �
�1

�1

�0
�1 �

0

2� cos2�

r2 r dr d� 

�C

2

8�a ln��1

�0
�. (B.18)

The contribution from the annulus about z � �1 is the same; hence

E�m
�1�  E�m
�0� 

�C

2

4�a ln��1

�0
� (B.19)

The leading term in an expansion of E�m(�) as ��� 3 � is

E�m
�� �
�C

2

4�a ln���. (B.20)

This torque-induced energy is not as large as the O(l2) force-induced
energy of the previous example. Nevertheless, it is still large compared to
the O(1/l4) energy associated with the curvature interaction. Under a
reasonable energy relaxation process, nonzero torques on individual pro-
teins will also undergo very rapid decay.

APPENDIX C: GEOMETRIC CONSTRAINTS ON
PROTEIN CONFIGURATION

Consider those finite-energy configurations of the bilayer and proteins in
which the membrane is asymptotically flat, with unit normal 3 at infinity.
We will show that the balance of vertical force and horizontal torques on
each protein prohibits relative vertical displacements of proteins and piv-
oting of any protein about any horizontal axis. Let z � h1(x) and z � h2(x)
denote two configurations of the bilayer.

The finite-energy requirement is expressed by the square integrability of
�2h1 and �2h2 over s. Asymptotic flatness is expressed by �h1 and �h23
0 as �x�3 �. Let ci be a curve in the reference plane corresponding to the
contact of the bilayer with the ith protein. We assume that the protein
configuration associated with z � h2(x) is obtained by vertical translations
and horizontal pivoting applied to the protein configuration associated with
z � h1(x). Vertical translation does not change the curves, ci, and changes
induced by horizontal pivoting are of second order in the pivoting angle
and so are negligible in the small deflection limit considered here. Hence
�s� �ici is the same for both configurations. The balance of vertical forces
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on the ith protein in both configurations is given by

�
ci

�n
�
2hi�ds
 0, i
 1, 2. (C.1)

The balance of horizontal torque is given by

�
cl

��2hit̂ �n
�
2hi�Jx�ds
 0, i
 1, 2. (C.2)

The difference between the two configurations is

g
x� � h2
x�  h1
x�. (C.3)

The square integrability of �2h1 and �2h2 implies the same for �2g, and the
asymptotic flatness requirements �h1, �h23 0 as �x�3 � imply �g3 0
as �x� 3 �:

�
s


�2g�2dx� �, �g 3 0 as �x� 3 �. (C.4)

Because both h1(x) and h2(x) are biharmonic in s, g must be biharmonic in
s as well:

�4g
x� 
 0, x� s. (C.5)

Vertical translation and horizontal pivoting of proteins in configuration 2
relative to configuration 1 are expressed by the boundary conditions on g:

g
 zi � Jwi � x, gn 
 Jwi � n̂, i
 1, 2 on ci.
(C.6)

Here zi are constant vertical displacements, and wi are constant 2-vectors
describing the horizontal rotations. When a protein moves, its protein-
bilayer contact curve and the tangent planes of the bilayer along it undergo
the same rigid body movement. This determines the boundary conditions
(Eq. C.6) on g and gn along ci. Finally, the balances of vertical forces and
horizontal torques expressed in Eqs. C.1 and C.2 lead to the following
integral constraints on g:

�
ci

�n�
2g ds
 0, �

ci

��2gt̂ �n�
2gJx�ds
 0.

(C.7)

In this formulation, the vertical translations zi and rotations wi are un-
knowns to be determined, along with g.

First we consider the consequences of �2g being square integrable and
g being asymptotically flat. By the argument given in Appendix A, �2g has
a multipole expansion whose leading component is quadrupole:

�2g

1
r2 
a2cos 2� � b2sin 2�� � · · · as r 3 �. (C.8)

Corresponding solutions for g with �g 3 0 as r 3 0 have the form

g
 �� ln r� z� �
1
r
�1cos � � �1sin �� � · · ·


1
4

a2cos 2� � b2sin 2�� � · · · (C.9)

The first line of Eq. C.9 is the multipole expansion of a harmonic compo-
nent of g, and the second line represents the component induced by the

multipole expansion of �2g. Note that, from the results of Eqs. C.8 and C.9,

g
 O
log r�, �2g
 O�1
r2� as r 3 �. (C.10)

Setting h � g in the biharmonic Green’s identity (Eq. A.2) and using the
biharmonic character of g give

��
��

��2ggn  
�2g�ng�ds
 �
�


�2g�2dx. (C.11)

Here the region � is taken to be the portion of s inside a circle cr of radius
r about the origin, as in Fig. 10. By virtue of the estimates (Eq. C.10), the
portion of the boundary integral on the left-hand side of (Eq. C.11)
corresponding to the circle cr is on the order of O((log r)/r2). Hence the cr

component of the boundary integral vanishes as r3 �, and the r3 � limit
of (Eq. C.11) is

��
i
�

ci

��2ggn  
�2g�ng�ds
 �
s


�2g�2dx. (C.12)

On each boundary curve, g and gn are given by the boundary conditions
(Eq. C.6) and so becomes

�
i
�zi �

cl

�n�
2g ds� wi � �

cl


�2gt̂ 
�2g�nJx�ds�

 �

s


�2g�2dx.

(C.13)

But from the integral constraints (Eq. C.7), which impose vertical force and
horizontal torque balance, it follows that the left-hand side of Eq. C.13
vanishes. Hence s(�

2g)2dx � 0, and so g is harmonic in s:

�2g
x� 
 0, x � x. (C.14)

The Laplace equation (Eq. C.14) subject to boundary conditions (Eq. C.6)
and asymptotic flatness at infinity constitutes an overdetermined system of
equations. Below we show that g must be a uniform constant in s. In this
case, all of the rotation vectors wi that appear in the boundary conditions
of Eq. C.6 are zero, and all of the vertical displacements, zi, take the same
value.

Since g is harmonic, the asymptotic behavior of g as r3 � is given by
the multipole expansion in the first line of Eq. C.9. By a standard Green’s
identity argument, it follows that the coefficient, �, of the log term in Eq.
C.9 is given by

� 
 �
1

2�
�

i
�

cl

gn ds. (C.15)

But by the boundary condition, gn � Jwi � n̂ on ci, one has ci
gn ds � Jw �

ci
n̂ ds. The line integral ci

n̂ ds of the unit normal around any closed curve
is zero, so ci

gn ds � 0, and it follows that � in Eq. C.15 is zero. In this
case, the dominant term in the multipole expansion (Eq. C.9) as r 3 � is
the constant z�, and g approaches this constant asymptotically as r3 �. It
follows that g achieves both maximum and minimum on the closure of the
domain s. Because g is harmonic, the maximum and minimum occur on the
boundary, �s. Suppose the maximum of g occurs at �. This maximum
value is then z�. Because g has no log r component, the mean value of g
on a large circle about the origin containing all of the ci is a constant,
independent of radius. The constant value must be z�. Because z� is the
maximum value of g, one must have g � z� on all such circles, and it
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follows that g � z� in some neighborhood of �. But a harmonic function
that is identically constant in a subregion of a connected region s must
reduce to the same constant in the whole region s.

Suppose the maximum of g occurs on one of the curves ci. If so, the
rotation vector wi that occurs in the boundary conditions (Eq. C.6) must be
zero. It follows from Eq. C.6 that the graph of g near ci is asymptotically
approximated by the plane z � zi � Jwi � x, as shown in Fig. 12.

No point on ci represents a maximum of g unless wi � 0, in which case
all points on ci yield the maximum value zi of g. The boundary conditions
on g along ci reduce to

g� zi, gn � 0 on ci. (C.16)

Finally, we show that the function g assumes the uniform constant value zi
in some neighborhood of ci. Because ci is a simple closed curve, the
exterior of ci may be mapped conformally onto the exterior of the unit
circle. Without loss of generality, ci is assumed to be the unit circle in the
following argument. There is an annulus 1 � r � rm that does not intersect
any of the other ci. In this annulus, g is harmonic and bounded above by zi.
Boundary conditions on r � 1 are g � zi, gr � 0. The mean value of g on
any circle of radius r, 1 � r � rm, takes the form A ln r � B. But the
coefficient A of the log term is zero by virtue of the boundary condition
gr � 0 on r � 1. Hence the mean value of g on the circle is independent
of r, and in fact must be zi. But zi � max g, so one has g� zi in the annulus
1 � r � rm. Therefore, g takes the uniform value zi in some neighborhood
of ci. Once again, we conclude that g � zi in the whole connected region s.

APPENDIX D: BOUNDARY EFFECT ON
PROTEIN ENERGETICS

The configuration of unbounded bilayer with N embedded proteins has a
characteristic “tail” as r3 �. The solutions h� of the Poisson equation (Eq.
12) with asymptotic flatness at spatial infinity have r3 � behaviors given
by

h� 
 � ln r
1
2


a2cos 2� � b2sin 2�� 
1
4r 
a3cos 3�

� b3sin 3�� � · · · (D.1)

An additive constant, irrelevant to all that follows, has been omitted. The
constant � that appears in front of the ln term arises if the proteins have
nonzero contact angle �. In fact, it is easy to show that � � N�. The two
dominant terms of this tail are an unbounded ln r component and a function
with angular dependence, independent of r.

The nature of this tail raises a question about the unbounded bilayer
model. A real bilayer occurs in the form of a closed vesicle, or perhaps as
a patch with a clamped or pinned boundary. The tail behavior (D.1) must

be modified by finite domain effects, and there is the inevitable alteration
of protein energetics. There remains the question of whether the finite
domain effects will be significant. If so, the protein interactions predicted
by the unbounded bilayer model would never be seen in practice. We will
show that the finite domain effect decreases to zero as the domain increases
in size without limit.

We will analyze a finite domain with clamped boundary. The domain �
of the reference plane corresponding to the bilayer is taken to be a disk of
radius L �� 1 excluding disks of radius one in its interior corresponding to
the proteins. Let h denote the displacement field restricted to domain �
with clamped boundary conditions on r � L, and h� corresponds to an
unbounded bilayer. Curves c in the reference plane corresponding to
proteins are the same for clamped and unbounded configurations. A bound-
ary value problem for the difference

g� h h� (D.2)

is formulated. The clamped boundary conditions on h along r � L are

h
r
 L, �� 
 H (D.3)

hr
r
 L, �� 
 0. (D.4)

Here H is constant, and its specific value has no physical relevance,
because an additive constant in h does not change the forces and energies.
If H is taken to be � ln L for convenience, then from Eqs. D.1 and D.3 it
is seen that the corresponding boundary values of g are

g
L, �� 

1
2


a2cos 2� � b2sin 2��

�
1

4L 
a3cos 3� � b3sin 3�� � · · ·

(D.5)

These boundary values of g are bounded as L 3 �. The boundary values
of gr that follow from Eq. D.4 are

gr
L, �� 

�

L � O� 1
L2�. (D.6)

In addition, there are boundary conditions on g along curves c repre-
senting protein-bilayer interfaces. The protein positions in the clamped
bilayer are related to positions in the unbounded bilayer by vertical trans-
lations and horizontal pivoting. This restricts the admissible boundary
values of g and gr along each bilayer-protein interface c.

Recall the original derivation of force and torque balance. The variation
of energy due to variations in h and hn along c is given by �2ac[��hn �
�n�h]ds. For an equilibrium configuration h, this boundary term is to
vanish for variations �h and �hn corresponding to vertical translation or
horizontal pivoting of the protein. This is how the force and torque
balances follow. Now we turn to the present problem.

The boundary values of g and gn along c must correspond to vertical
translation and horizontal pivoting of the protein. Because force and torque
balance on the protein are to hold for the unbounded configuration with
mean curvature �� � 1/2 (�2h�), and the clamped configuration with mean
curvature � � 1/2(�2h), there are two identities,

�
c

���gn  �n
�g�ds
 0, (D.7)

�
c

��gn  �ng�ds
 0. (D.8)Figure 12 The graph of g near ci asymptotically approximated by the
plane z � zi � Jwi � x, where wi is the rotation vector.
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Subtracting Eq. D.7 from Eq. D.8, it follows that

�
c

��2ggn  
�2g�ng�ds
 0. (D.9)

Here we used � � �� � 1/2(�2g). The information about force and torque
balance is contained in any pair of the three identities Eqs. 7–9. They have
immediate relevance to the following energy argument. The difference
between energy densities of clamped and unbounded configurations is

2a
�2  ��2� 
 2a���2g�
1
4


�2g�2�. (D.10)

In going from the unbounded to the clamped configuration, the energy in
� changes by the amount

�Em 
 2a �
�

���2g�
1
4


�2g�2�dx. (D.11)

By means of Green’s identity, �Em can be expressed as a boundary
integral:

�Em 
 2a �
��

��gn  �n
�g�

1
4


�2ggn  �2gng��ds.

(D.12)

Here �� consists of the large circle r � L and all of the circles c of radius
unity corresponding to interface with proteins. By the identities D.7 and
D.9, the contribution from these circles c vanishes, leaving only a line
integral on r � L:

�Em 
 2aL �
0

2� ��gr  �r
�g�

1
4


�2ggr  �2grg���r�L d�.

(D.13)

Values of g and gr on r � L are known from Eqs. D.5 and D.6. �� and �r
�

on r � 1 are determined from Eq. D.1. Carrying out the indicated substi-
tutions in Eq. D.13, Eq. D.13 becomes

�Em 

2�a
L2 
a2

2 � b2
2� �

a
2 �

0

2� ��2g
1
2


a2cos 2�

� b2sin 2��L�2gr��r�L d� � O� 1
L3�.

(D.14)

All that remains is to compute �2g and �2gr on r � L, and then substitute
into Eq. D.14 and carry out the integrations.

For r � O(L), g may be approximated by the biharmonic field g0 in r �
L, which satisfies the boundary conditions D.5 and D.6:

g0 

�

2�rL�
2

 1� � �rL�
2


1
2�rL�

4�
a2cos 2�

� b2sin 2�� � O�1
L�.

(D.15)

The “holes” in r � L due to proteins are being ignored in this calculation.
Perturbations in g from g0 due to the holes turn out to be O(1/L4), which

is much smaller than the order of approximation being considered here.

From Eq. D.15 it follows that

�2g0 

2�

L2 
6
L2 
a2cos 2� � b2sin 2�� � O� 1

L3� (D.16)

�2gr
0 
 

12
L3 
a2cos 2� � b2sin 2�� � O� 1

L4�, (D.17)

and the expression for �Em becomes

�Em 

a
L2 ��2 � 5�
a2

2 � b2
2�� � O� 1

L3�. (D.18)

The energy perturbation due to the clamped boundary is O(1/L2) and
vanishes as L 3 �.

APPENDIX E: PROOF THAT THE PENTAGONAL
CONFIGURATION IS THE SMALLEST STABLE
PROTEIN AGGREGATE

Recall that the interaction between a single pair is repulsive. So it remains
to show that there are no N� 3 or N� 4 aggregates. Specifically, we must
show that for N � 3 or N � 4, Eq. 39 cannot have solutions with all of the
zi distinct. Here we present the case N � 4. N � 3 is even easier to prove.

Given any zero energy equilibrium (z1, z2, z3, z4), one can apply any
combination of translation, rotation, and dilation to the positions zi to
obtain a new equilibrium. Mathematically, such an affine transformation of
the complex plane is represented by a linear transformation z 3 az � b,
where a � 0 and b are arbitrary complex numbers. The new configuration
is geometrically similar to the old. By means of an affine transformation,
two of the zi, say z1 and z2, can be mapped into 0, 1, respectively. Hence
if Eq. 39 has any solution (z1, z2, z3, z4) with zi all distinct, it has a solution
with z1 � 0, z2 � 1, and z3, z4 distinct from 0 and 1 and each other. Let us
write down Eq. 39 explicitly with z1 � 0, z2 � 1, and z3, z4 as free
parameters:

1
12 �

1

z3
2 �

1

z4
2 
 0,

1
12 �

1

1  z3�

2 �
1


1  z4�
2 
 0,

1

z3
2 �

1

z3  1�2 �

1

z3  z4�

2 
 0,

1

z4
2 �

1

z4  1�2 �

1

z4  z3�

2 
 0.

(E.1)

Adding the last two equations and using the first two in the resulting
identity gives (z3 � z4)2 � 1. Hence z4 � z3 � �1, and the protein
positions can be labeled so that z4 � z3 � 1. Subtracting the first two
equations of Eq. E.1 from each other and setting z4 � z3 � 1 now give (1 �
z3)2 � (1 � z3)2, so z3 � 0. This is, of course, unacceptable, because z �
z1 � 0 is already a protein position. Hence there are no zero energy
equilibria with N � 4 proteins.

APPENDIX F: GEOMETRIC STABILITY

The equilibrium configurations displayed in Figs. 4 and 5 are stable in the
sense that they are attractors of the gradient flow differential equations (Eq.
36). But this notion of stability is physically incomplete. It is easy to see
that equilibria are not isolated points (z1, . . . , zN) in CN. Given an
equilibrium (z1, . . . , zN), any geometrically similar configuration produced
by affine transformation of the complex plane is another equilibrium. So a
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notion of stability should be formulated in which geometrically similar
protein configurations are regarded as equivalent.

Let E be the manifold of (z1, . . . , zN) in CN representing zero energy
equilibria. A given equilibrium (z1, . . . , zN) is called geometrically stable
if there is no path in E connecting the given equilibrium to another,
geometrically dissimilar equilibrium. Otherwise, the equilibrium is called
geometrically unstable. This notion of stability is the physically relevant
one. Let us consider the effect of thermal fluctuations. We expect that the
configuration (z1, . . . , zN) experiences thermal diffusion over the portion
of E accessible from the initial configuration at time zero. If the initial
condition is geometrically stable, there is an energy barrier to producing a
geometrically dissimilar configuration. With high probability, the observed
configuration over time will nearly retain geometric similarity to the initial
configuration.

We formulate necessary conditions for geometric stability. Let (z1, . . . ,
zN) be an equilibrium. When written out explicitly, the equilibrium equa-
tions (Eq. 39) read

�i 
 � �
j�i

1

zi  zj�

2 
 0. (F.1)

Let z�i, i � 1 . . . N denote small perturbations of the equilibrium positions,
so the new positions are zi � z�i. Corresponding perturbations of curvature
scalars away from zero have linearized approximations

��i 
 2� �
j�i

z�j  z�i

zi  zj�

3 . (F.2)

If the perturbed configuration is to be an equilibrium as well, then the
curvature perturbations (Eq. F.2) vanish, and the position perturbations z�i
satisfy the linear homogeneous system of equations

�
j�i

z�i  z�j

zi  zj�

3 
 0. (F.3)

In essence, these equations define the tangent space E� of the equilibrium
manifold E at (z1, . . . , zN).

Two basis vectors of E� are obvious:

Z� � 
z�1, . . . , z�N� 
 
1, . . . , 1�

Z� 
z1, . . . , zN�. (F.4)

For complex constants a, b, the linear combination Z� � a(z1, . . . , zN) �
b(1, . . . , 1) � (az1 � b, . . . , azN � b) represents perturbations of lattice
sites induced by the affine transformation z 3 (1 � a)z � b. Hence the
span of basis vectors (Eq. F.4) is called the affine subspace of E�. If the
original equilibrium is geometrically stable, then the affine subspace is the
whole of E�. So the question of geometric instability can be rephrased: Are
there additional dimensions of E�? These would correspond to distortions
of the original lattice, which breaks geometric similarity.

To find nonaffine dimensions, it is sufficient to search within a subspace
of E� with two of the z�i preset to zero, say z�i and z�2. Suppose there is Z� in
E� outside the affine subspace. By means of an affine transformation, the
positions zi � z�i of the perturbed lattice can be mapped into a geometrically
similar lattice with images of z1 � z�1 and z2 � z�2 preset to z1 and z2,
respectively. So we get a new lattice geometrically similar to the perturbed
lattice we started with, but now z�1 � z�2 � 0. By assumption this perturbed
lattice was already geometrically dissimilar to (z1, . . . , zN) and remains so
after the affine transformation. Hence there is Z� in E� not in the affine
subspace, and z�1 � z�2 � 0.

A complete description of the tangent space E� by detailed analysis of
the linear equations (Eq. F.3) appears formidable. But an elementary result
on counting zeros of analytic functions restricts the number of zero com-
ponents in any perturbation (z�1, . . . , z�N) that belongs to E�. Specifically,
assume that p sites, 1 � p � N, are perturbed and the remaining N � p are

not. The sites can be labeled so z�p�1 � . . . zN � 0, whereas the zi, 1 � i �

p, are all nonzero. Define the meromorphic function

f
z� 
 �
k�1

p z�k

z zk�

3 . (F.5)

Requiring ��1 � 0 for i � p � 1, . . . , N amounts to requiring f(zi) � 0.
These requirements are, of course, necessary for


z�1, . . . , z�p, 0 . . . 0� (F.6)

to be in E�. Hence the nonzero perturbation with N � p zero components
is in E� only if f(z) has at least N � p zeros in C.

Because the zi, 1 � i� p, are nonzero, f(z) is not identically zero. In this
case, the zeros of f(z) are isolated, and the number of zeros inside a simple
closed curve � of C is well defined. The count of zeros is carried out by
a well-known formula from complex function theory. Let N0 and Np be the
number of zeros and poles, respectively, inside �. The difference N0 � Np

is computed by the contour integral

N0  Np 

1

2�i �
�

f �
z�
f
z� dz. (F.7)

The pole at zk (1 � k � p) is third order, because z�k � 0 for 1 � k � p.
Hence Np � 3p. To find the number of zeros of f(z) anywhere in the
complex plane, the contour � is enlarged in all dimensions. If �k�1

p z�k � 0,
then in the large � limit, Eq. F.7 approaches �3, and N0 � Np � �3. If
k�1

p z�k � 0, then the dominant behavior of f(z) as z3 � will be O(1/zr) for
some integer r � 3. Therefore in general, N0 � Np � �3. Because Np �
3p, the resulting bound on the number of zeros is N0 � 3p � 3. But recall
that N0 must be greater than or equal to N� p is (a very minimal) necessary
condition for the perturbation Eq. F.6 to be in E�, so finally N � p � 3p �
3, or

p	 
N� 3�/2. (F.8)

In summary, a nonzero perturbation (z�1, . . . , z�N) in the tangent space E�
must have at least p 	 (N � 3)/2 nonzero components. This result has an
immediate physical interpretation: an equilibrium (z1, . . . , zN) is stable
against any perturbation that involves the displacement of fewer than (N �
3)/2 proteins. In Table 1, [(N � 3)/2] � the nearest integer 	 (N � 3)/2 is
tabulated versus N for the first few N 	 5. Recall that the smallest protein
aggregate has N � 5. The third column tabulates N � [(N � 3)/2], which
represents the smallest number of proteins that can retain their initial
positions under a nontrivial perturbation that preserves zero energy.

The appearance of 1 in the third column for N � 5, 6 is definitive in a
striking way. Recall that a perturbation that breaks geometric similarity to
the original lattice, if it exists, can be found within a subspace of E� with
two z�i fixed to zero. But for an N � 5 or N � 6 equilibrium, a nontrivial
lattice perturbation that preserves zero energy can leave at most one lattice
site unmoved. Hence there are no zero energy perturbations that break
geometrical similarity with the original lattice for N � 5, 6. It seems that
the pentagonal protein aggregate is geometrically stable. An N � 6 equi-
librium, if it exists, would also be geometrically stable. For N 	 7, the
inequality F.8 by itself is not so definitive. One would have to work harder

TABLE 1

N N� 3

2 � N  N� 3

2 �
5 4 1
6 5 1
7 5 2
8 6 2
9 6 3
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to show that an N 	 7 lattice is geometrically stable. But this unresolved
story should not distract us from the main point: at least one class of
geometrically stable protein aggregates (pentagons) exists.

We thank M. Goulian, J. Keller, J. Park, and P. Pincus for critical reading
of the manuscript and comments.
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