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We have obtained exact results for the lower critical solution temperature (LCST) in a two-

dimensional lattice model of an asymmetric binary mixture of large and small molecules (squares A

and triangles B, respectively) in which both couplings e» and e» are present. We find that for a
LCST to exist in addition to the upper critical solution temperature it is required that the free volume
be nonzero, the Flory-Huggins coupling parameter g —= r(cps 2e») be positive, and that —e» be
much larger than yT. The last two conditions imply that both e» and e» must be negative.

PACS numbers: 61.25.Hq, 05.50.+q, 64.75.+g, 82.60.Lf

The phase separation that occurs on cooling a binary
mixture is readily understood in terms of the reduction
of the entropic component of the free energy. This
leaves the enthalpic component caused by attractive or
repulsive forces between the constituents as the major
thermodynamic influence, and phase separation can occur
at the upper critical solution temperature (UCST) [1—3].
In polymer blends, however, phase separation may also
occur on heating a binary mixture to its lower critical
solution temperature (LCST) [4,5]. This phenomenon is
less easily understood, as it runs counter to immediate
intuition. Theoretical demonstrations of the existence of a
LCST have been given within mean-field models [6—10]
using the equation-of-state analysis developed by Flory
[2] and by Sanchez and co-workers [7,9]. This approach
is based on the formulation of an equation relating the
pressure, volume, and temperature, and indicates the
importance of the compressibility and the free volume
of the system. The limits of validity of the mern-field
approach have been discussed by Lifschitz, Dudowicz,
and Freed [11],who have used the lattice cluster theory
to calculate numerically the phase diagrams of specific
materials.
In this Letter we present for the first time an exact

solution of the phase separation problem in a model that
goes beyond the mean-field approximation and which
exhibits a LCST. The importance of this calculation
lies in the fact that the conditions on the enthalpic
contributions necessary for phase separation are clearly
demonstrated.

Our model is a variation of that used by Frenkel and
Louis [12] in their demonstration of phase separation in
a hard-core mixture, and has been used previously in
an exact study of the UCST in an asymmetric binary
mixture [13]. We consider a mixture of large molecules A
(black squares) and small molecules B (shaded triangles)
on a two-dimensional square lattice as shown in Fig. l.
Each black square is allowed to occupy any of the
squares on the lattice, the chemical potential is p,& for
this species, and the nearest-neighbor coupling within
the species is egg. Multiple occupancy by the black
squares is forbidden. Each unoccupied square on the
lattice is then further divided into four triangles. Each
of these triangles can be occupied by at most one small
particle B (the shaded triangles) with a fugacity ztt,
and there is no energy cost for contact between shaded
triangles. A coupling, e~~, between the small and large
molecules is introduced for each edge contact between the
black squares and the shaded triangles. Energy costs for
point contact between the squares and the triangles are
neglected. This model can be thought of in terms of a
mixture of monotners (triangles) and oligomers (squares
consisting of four tightly bound triangles) with a degree
of polymerization of four. The difference between our
model and that of Frenkel and Louis [12] lies in the size
and shape of molecules B (triangles rather than diamonds
consisting of pairs of bonded triangles) and the presence
of the A-B interaction. We will see that the latter is of
crucial importance in finding the LCST.
We now briefly describe the thermodynamics of the

model. The partition function for the mixture is given
by [13]

»„«~= (1 + ztt) /exp [ Peqq + 21n(1 +—ztt) —21n(1 + zBe ~'"')]gn;n~ .
{n,) (i,j)

X exp [Pp,q —81n(1 + zest) + 41n(1 + zBe ~'"')]gn;

where p is the inverse temperature, n; takes the value zero (unoccupied) or one (occupied) and thus describes the
occupancy of the square at position i, and the sum is over all the possible occupation configurations.
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To see if there exists a LCST at fixed pressure, the
most direct way is to establish the thermal relations along
the "surface" of critical points (SCP) and analyze these
relations. Since at a critical point K = K,. —= —, ln(l +
~2), we have, from Eq. (2)

(1+ +2)S' —1
z8 IC=K,

FIG. 1. A phase-separation lattice model for a mixture of
large molecules A (black squares) and small molecules 8
(shaded triangles).
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where 8 —= e P'"', and where u2D and m2D are the
energy per site (with J being unity) and spontaneous
magnetization per site of the zero-field two-dimensional
Ising model, respectively. The molar fraction of the large
particles is defined as

XA = (5)nA+ nB
The pressure of the system is

1P = T 41n(1 + zs) —2K + —lnZ2D(K), (6)N
where Z2o(K) is the partition function of the two-
dimensional square-lattice Ising spin system, and we have
set the Boltzmann constant kB to unity.

By means of the transformation n, = (s; + 1)/2, the
above partition function is mapped into the partition func-
tion of the two-dimensional Ising model with coupling

1 1+zB 1K —= PJ = —ln ——Peag . (2)2 1+ zBe 1'A& 4
and external field h —= PH = 2 In[z~/(I + zs) ] —P Egg,
where z&

—= exp(Pp, &) is the fugacity of the large par-
ticles. The coexistence curves can be obtained from
the exact solution [14—16] of the two-dimensional Ising
model with no external field, as was done in Ref. [12].
Along the coexistence curves, the two fugacities thus obey
the relation zq = (1 + zs)4e2P'"". For squares of unit
area, we find the number density nA of large molecules,
defined as g; n;/N, to be

m2D+ 1

2
and the number density of small molecules to be

zB ~ ln ~mixture

where 6 —= e ~, s is defined as Epp—/(2e&B —e~~), and
1

~AB 2 ~AAT
is the Flory-Huggins coupling parameter. Thus, along the
SCP, the pressure is given by

P„ 1 g(8(s ') —1)41n + cgT InB 1 —(1 + +2)$

(8)

(9)

where C —= 6K, + —
„

lnZ2D(K, ) = 3.57382 is a constant.
We note that for a given pressure P„the left-hand
side of the above equation is a constant independent
of temperature, while the right-hand side is a function
only of 8 and s. We denote this function as g(8, s).
The existence of a LCST in addition to an UCST at a
fixed pressure then requires g(B, s) to be a nonmonotonic
function of 8 for a given s and within the physically
meaningful parameter space (i.e., zs ~ 0, and 8 ~ 0).
Since at a critical point m2D = 0 and u2D = —+2, the
molar fraction of large molecules is

X~l~=sc, =
1+(2+~2) " +(2-~2)1+ zB 1+ HzB

(10)
where zB and 8 satisfied Eq. (7).
Having established these thermal relations, we

are now in a position to find criteria for the exis-
tence of a LCST. Our parameter space (B,s) lies in
([0, +~), (—~, +~)). First, we consider three cases which
cannot be covered by Eq. (9). (i) For an incompressible
system, the fugacity zs is infinite. From Eqs. (3) and
(4) we see that when zs ~, nq + ns/4 1, as was
expected for an incompressible system. In this case,
we have g = 2K„and thus 6 is constant along the
SCP. There is only one critical temperature, and this
corresponds to the UCST, there being no LCST for the
incompressible system. (ii) Consider the case eels = 0,
which implies that there is no interaction between the
small and large molecules. This corresponds to s = 1.
From Eq. (2), we have g = 2K, along the SCP, yielding
the same conclusion as in the incompressible case. This
shows the important role of a nonzero coupling eAB. In
Frenkel and Louis's model, it is not possible to introduce
a nonzero GAB, and so it is correspondingly not possible
to realize the existence of a LCST. (iii) Here we set the
Flory-Huggins coupling g equal to zero. From Eq. (2)
we then find zs~g=g, = [1 —(1 + %2)ep' ~ ]//K&. BV
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placing this into Eq. (6), one can verify that the pressure
is a monotonic function of P along the SCP and within
the physically meaningful region, and so this case is
excluded as well. More generally, for any given s with
s ( 1 (including negative values), we can show that
g(B, s) is a monotonic function of 8 within the restricted
region.
This leaves us with s ~ 1 as the only possible region

for finding a LCST. Further examination shows that this
is indeed the case. For sufficiently large values of s (s &
sp where sp is about 7.5), we have found nonmonotonic
behavior of g(B, s) as a function of B. We also have a
requirement from the physical constraint z& ~ 0 that y be
positive. We have plotted P, as a function of 6 for s = 10
in Fig. 2. From this figure we may deduce the following:
When the system is at a fixed high pressure P & P„,there
is only a single critical temperature, which corresponds
to the UCST. The coexistence curve in 8-XA space
will be essentially the same as that in Ref. [13]. When
the pressure is decreased just below P„,a pair of new
critical points emerges. A further decrease in pressure
will separate the two critical points, creating an island
within which the system is phase separated. Of these two
critical points, the one at larger 8 becomes a new UCST,
while the other becomes a LCST. With further reduction
in pressure the old UCST and the LCST converge, and
finally coalesce at a pressure PI, disappearing when the
pressure is below PI. This results in a joining of the
two phase-separation zones into a single indented (i.e.,
hour-glass shaped) region. To confirm our analysis we
have plotted the coexistence curves in the 8-XA plane
for various pressures at s = 10. Indeed, for P & P„,the
phase diagram is simple. For P = 10, which lies between
P„andPI, the phase diagram is as shown in Fig. 3. One .

can observe two separate phase-separation zones and the
existence of a LCST. For P = 8, which is below PI, the
phase diagram is as shown in Fig. 4. The indented shape
of the phase boundary implies that phase separation by
heating can occur even without a LCST. Because sp is
much larger than one and g is positive, both the couplings
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FIG. 2. This shows the pressure P, at the critical point as
a function of the temperature-dependent parameter 8. Here
s = 10 (i.e., e„~= 0.45e~q) and units have been chosen such
that yT = 1.
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FIG. 3. This illustrates the coexistence curves at a constant
pressure P/XT = 10 in the 8 X„ph-ase plane, where X„is the
molar fraction of molecules A and 8 is related to temperature.
The dots represent the critical points and can be found from
Eqs. (8) and (10).

e~~ and E'gg must be negative in order to find a LCST in
this model.
The qualitative physical picture behind this analysis can

be described in terms of the effect of free volume. A large
value of s indicates that either —E'pg is relatively large or
that gT is relatively small. Let us look at the region in
Fig. 3 where PI & P & P„.At low temperatures, there
is very little free volume, and the entropy plays no
role. Each molecule A is thus in contact with another
molecule of either type A or type B The . effective
coupling e,ff will be gT, and if g is positive the mixture
phase separates. When the temperature is increased,
the free volume increases and the entropy becomes
more important. If g is small, the increasing entropy
will terminate the phase separation of the mixture at a
relatively low temperature (UCST) before the free volume
has any significant effect on the mixture. When the
temperature is raised further, the free volume increases.
Now, since there is a significant amount of free volume,
each molecule may be in contact with another molecule A,
a molecule B, or empty space, and the effective coupling
is no longer gT. In comparison with incompressible
mixtures, the free volume affects the mixture in two
ways. On the one hand, it raises the energy of those
configurations which favor a disordered phase because
of the negative value of E'gg. On the other hand, it
can significantly raise the entropy of the phase-separated
configurations without much increasing their energy since

is also negative. If Egg is large enough, and
the temperature, which is above the UCST, is not too
large, the phase of the mixture can be determined, again,
by those configurations that favor phase separation. At
very high temperatures, there is now too much free
volume, and there are few contacts between molecules.
Consequently, entropy takes over, changing the mixture
back into the disordered phase. For P ~ P„,the increase
with temperature of the free volume slows down, and so
its effect is suppressed. For P ( PI, the free volume can
cause effects even within the two-phase region, resulting
in the indented shape of the coexistence curve shown
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FIG. 4. This illustrates the coexistence curves at a constant
pressure P/gT = 8 in the 8 X„ph-ase plane. The dot repre-
sents the single critical point.

in Fig. 4. In this example, a solution of molar fraction
X~ = 0.9 will show phase separation upon increase of
temperature.
A comparison of these conclusions may be made with

those of a recent mean-field calculation for blends of
diblock copolymers due to Yeung et al. [10]. These
workers chose the parameters g to be positive and X —=

—(ggq + 2gqa)/2 to be much larger than g in order to
conform with the experimental results of Russell et al. [5].
Their calculation thus concerns a regime for which in
our notation s && so. Their finding of the possibility of
phase separation upon heating within their mean-field
model is thus not unexpected from the viewpoint of
the exact solution of our rather different model. One
should, however, be careful to draw a distinction between
the mere phenomenon of phase separation upon heating
and the existence of a LCST. An hourglass-shaped
coexistence curve of the type shown in Fig. 4 can give
rise to the former process without exhibiting any LCST.
In conclusion, we have found an exact solution for a

two-dimensional lattice model of an asymmetric binary
mixture that exhibits a LCST in addition to an UCST

at fixed pressure. We have established criteria for the
existence of this phenomenon, and describe it in terms
of the effects of free volume. These criteria should be
helpful in more general studies of the formation of a
LCST. We have also pointed out that the occurrence of
phase separation induced by heating does not necessarily
imply the existence of a LCST.
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