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Abstract

The protein folding problem has attracted an increasing attention from physicists. The problem
has a !avor of statistical mechanics, but possesses the most common feature of most biological
problems – the profound e"ects of evolution. I will give an introduction to the problem, and
then focus on some recent work concerning the so-called “designability principle”. The des-
ignability of a structure is measured by the number of sequences that have that structure as their
unique ground state. Structures di"er drastically in terms of their designability; highly designable
structures emerge with a number of associated sequences much larger than the average. These
highly designable structures (1) possess “protein-like” secondary structures and motifs, (2) are
thermodynamically more stable, (3) fold faster than other structures. These results suggest that
protein structures are selected in nature because they are readily designed and stable against mu-
tations, and that such selection simultaneously leads to thermodynamic stability and foldability.
According to this picture, a key to the protein folding problem is to understand the emergence
and the properties of the highly desginable structures. c⃝ 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The word “protein” originates from the Greek word proteios which means “of the
#rst rank”. (For an introduction of proteins, see [1–3].) Indeed, proteins are building
blocks and functional units of all biological systems. They play crucial roles in virtually
all biological processes. Their diverse functions include enzymatic catalysis, transport
and storage, coordinated motion, mechanical support, signal transduction, control and
regulation, and immune response. A protein consists of a chain of amino acids whose
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Fig. 1. The protein !avodoxin. (a) The atomic model. Di"erent atoms are shown in di"erent grey scales:
oxygen (dark), nitrogen (dark grey), carbon (light grey), and sulfur (white). Hydrogen atoms are not shown.
(b) The backbone of the structure which is the formed by connecting the C! atoms of each amino acid
along the chain. (c) The ribbon diagram of the backbone. "-strand is shown in dark, !-helix in grey, and
turns and loops in white.

sequence is determined by the information in DNA/RNA. There are 20 natural amino
acids nature uses to make up proteins. These di"er in size and other physical and
chemical properties. The most important di"erence however, as far as the determina-
tion of the structure is concerned, is their hydrophobicity, i.e., how much they dislike
water. An open protein chain, under normal physiological conditions, will fold into a
three-dimensional con#guration to perform its function. This folded functional state of
the protein is called the native state. For single-domain globular proteins which are our
focus here, the length of the chain is of the order of 100 amino acids (from ∼ 30 to
∼ 400). Proteins of longer chains usually form multidomains each of which can usually
fold independently. In Fig. 1 is shown a globular protein !avodoxin whose function
is to transport electrons. Like most water-soluble single-domain globular proteins, it is
very compact with a roughly rounded shape. The folded geometry of the chain can be
best viewed in the cartoonish ribbon diagram (Fig. 1c) of the backbone con#guration
(Fig. 1b). One can see that the geometry of this protein structure is several !-helices
sandwiching an "-sheet. The folded geometries, often referred to as folds, of proteins
usually look far more regular than random, typically possessing secondary structures
(e.g., !-helices and "-sheets) and sometime even having tertiary symmetries. (One can
recognize an approximate mirror symmetry in Fig. 1c). One of the main goals of the
protein folding problem is to predict the three-dimensional folded structure for a given
sequence of amino acids.
The protein folding problem is the kind of biological problem that has an immediate

appeal to physicists. A protein can be folded (to its native state) and unfolded (to
a !exible open chain) reversibly by changing the temperature, pH, or the concentra-
tion of some denaturant in solution. While the study of denaturation of proteins can
be traced back at least 70 years when Wu [4,5] pointed out that denaturation was in
fact the unfolding of the protein from “the regular arrangement of a rigid structure to
the irregular, di"use arrangement of the !exible open chain”. A turning point was the
work of An#nsen on the so-called “thermodynamic hypothesis” in the late 1950s and
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Fig. 2. The schematic energy landscapes of (a) a protein sequence and (b) a random sequence.

early 1960s. An#nsen [6] and later many others demonstrated that for single-domain
proteins (1) the information coded in the amino acid sequence of a protein completely
determines its folded structure, and (2) the native state is the global minimum of the
free energy. These conclusions should be somewhat surprising to physicists. For the
con#gurational “(free) energy landscape” of a heteropolymer of the size of a protein
is typically “rough”, in the sense that there are typically many metastable states some
of which have energies very close to the global minimum. How could a protein al-
ways fold into its unique native state with the lowest energy? The answer is evolution.
Indeed, random sequences of amino acids are usually “glassy” and usually cannot
fold uniquely. But natural proteins are not random sequences. They are a small
family of sequences, selected by nature via evolution, that each has a distinct global
minimum well separated from other metastable states (Fig. 2). One might ask: what
are the unique and yet common properties of this special ensemble of proteinlike se-
quences? In other words, can one distinguish them from other sequences without the
arguably impossible task of constructing the entire energy landscape? The answer lies
in the heart of the question we introduce in the next paragraph and is the focus of this
discussion.
There are about 100 000 di"erent proteins in the human body. The number is much

larger if we consider all natural proteins in the biological world. Protein structures are
classi#ed into di"erent folds. Proteins of the same fold have the same major secondary
structures in the same arrangement with the same topological connections [7], with
some small variations typically in the loop region. So in some sense, folds are distinct
templates of protein structures. Proteins with a close evolutionary relation often have
high sequence similarity and share a common fold. What is intriguing is that com-
mon folds occur even for proteins with di"erent evolutionary origins and biological
functions. The number of folds is therefore much lower than the number of proteins.
Shown in Fig. 3 is the cumulative number of solved protein domains 1 along with the

1 Also shown in Fig. 3 is the cumulative number of domains from all entries in the protein data bank
(PDB) (http:==www.rcsb.org/pdb/), PDB domains. There is a fairly high rebundancy in the PDB entries. For
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Fig. 3. The cumulative numbers of PDB domains, (non-redundant) protein domains, and folds vs. year.
Source: SCOP [7] and Ref. [8]. Courtesy of Dr. Steven Brenner.

cumulative number of folds as a function of the year. It is increasingly less likely that
a newly solved protein structure would take a new fold. It is estimated that the total
number of folds for all natural proteins is only about 1000 [8,9]. Some of the frequently
observed folds, or “superfolds” [10], are shown in Fig. 4. Among apparent features of
these folds are secondary structures, regularities, and symmetries. Therefore, as in the
case of sequences, protein structures or folds are also a very special class. One might
ask: Is there anything special about natural protein folds – are they merely an arbitrary
outcome of evolution or is there some fundamental reason behind their selection?2 Is
the selection of protein structures coupled with the selection of protein sequences? We
will now address these questions via a thorough study of simple models.

2. Simple models and the designability

The dominant driving force for protein folding is the so-called hydrophobic force
[17,18]. The 20 amino acids di"er in their hydrophobicity and can be very roughly
classi#ed into two groups: hydrophobic and polar [19]. Hydrophobic amino acids have
greasy side chains made of hydrocarbons and like to stick together in water to min-
imize their contact with water. Polar amino acids have polar groups (with oxygen or
nitrogen) in their side chains and do not mind so much to be in contact with water.
The simplest model of protein folding is the so-called “HP lattice model” [20–22],

example, there are more than 100 PDB entries for the protein myoglobin, an oxygen transporter in muscle,
from about a dozen species and with engineered mutations. When the redundancies are removed, we arrive
at the number of protein domains.
2 This question has been addressed by a number of authors from di"erent viewpoints. For example, Finkelstein
and co-workers took a purely energetic point of view [11–13], and argued that a structure with lower energy
(averaged over random sequences) will have a larger chance of being the ground state of more sequences.
We will see that this is not the case in our study where all the structures we consider are maximally compact
and have the same average energy. Another approach is by Govindarajan and Goldstein who studied the
“foldability” of structures [14–16] which is closely related to the designability studied here.
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Fig. 4. Representatives of some popular folds.

whose structures are de#ned on a lattice and whose sequences take only two “amino
acids”: H (hydrophobic) and P (polar) (see Fig. 5). The energy for a sequence folded
into a structure is simply given by the short-range contact interactions

H =
∑

i¡j

e#i#j$(ri − rj) ; (1)

where $(ri− rj)= 1 if ri and rj are adjoining lattice sites but i and j are not adjacent
in position along the sequence, and $(ri−rj)=0 otherwise. Depending on the types of
monomers in contact, the interaction energy e#i#j will be eHH, eHP, or ePP, corresponding
to H–H, H–P, or P–P contacts, respectively (see Fig. 5).3 We [23] choose these
interaction parameters to satisfy the following physical constraints: (1) compact shapes

3 The system is surrounded by water. The energy e#$ is the relative energy of forming a #–$ contact in
water. That is that one can think of e#$ = E#$ + Eww − E#w − E$w , where the E’s are “absolute” energies
and the subscript w denotes water molecules.
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Fig. 5. A 3D lattice HP model. A sequence of H (dark disc) and P (light disc) (a) is folded into a 3D
structure (b).

have lower energies than any non-compact shapes; (2) H monomers are buried as much
as possible, expressed by the relation ePP¿eHP¿eHH, which lowers the energy of
con#gurations in which Hs are hidden from water; (3) di"erent types of monomers tend
to seggregate, expressed by 2eHP¿ePP¿eHH. Conditions (2) and (3) were derived
from the analysis [19] of the real protein data contained in the Miyazawa–Jernigan
(MJ) matrix [24,25]4 of inter-residue contact energies between di"erent types of amino
acids. Since we consider only the compact structures all of which have the same total
number of contacts, we can freely shift and rescale the interaction energies, leaving
only one free parameter. Throughout this section, we choose eHH = −2:3; eHP = −1
and ePP = 0 which satisfy conditions (2) and (3) above. The results are insensitive to
the value of eHH as long as both these conditions are satis#ed. (The analysis in Ref.
[19] on the interaction potential of amino acids arrived in a form

e$# = h$ + h# + c($; #) ; (2)

where h$ is the hydrophobicity of the amino acids $ and c is a small mixing term.
The additive term, i.e., the hydrophobic force, dominates the potential. The choice of
eHH = −2:3 in our study can be viewed as a result of a hydrophobic part −2 plus

4 Note that there are two or more matrices in their papers. We use the matrix eij , which is the upper half
of the Table 5 in the #rst paper or the upper half of the Table 3 in the second paper. This is the matrix
containing all interactions including the hydrophobic interaction. Other matrices have removed, to various
degree, the hydrophobic contribution (e.g. the matrix e′ij has removed the additive part and contains only
the mixing term in Eq. (2)). Thus using these modi#ed MJ matrix without care may lead to very di"erent
and often unphysical results.
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Fig. 6. (a) Histogram of NS for the 3 × 3 × 3 system. The dashed line is the Poisson distribution with
the same mean. (b) Average energy gap between the ground state and the #rst excited state vs. NS for the
3× 3× 3 system.

a small mixing part −0:3. Several authors have investigated the e"ect of the mixing
contribution as a small perturbation to the additive potential [26–29].)
We have studied the model (1) on a three-dimensional cubic lattice and on a

two-dimensional square lattice [23]. For the three-dimensional case, we analyze a
chain composed of 27 monomers. We consider all the structures which form a compact
3×3×3 cube. There are a total of 51 704 such structures unrelated by rotational, re!ec-
tion, or reverse labeling symmetries [23,30,31]. For a given sequence, the ground-state
structure is found by calculating the energies of all compact structures. We completely
enumerate the ground states of all 227 possible sequences. We #nd that only 4.75% of
the sequences have unique ground states and thus are potential protein-like sequences.
We then calculate the designability of each compact structure. Speci#cally, we count
the number of sequences NS that have a given compact structure S as their unique
ground state. We #nd that compact structures di"er drastically in terms of their des-
ignability, NS . There are structures that can be designed by an enormous number of
sequences, and there are “poor” structures which can only be designed by a few or
even no sequences. For example, the top structure can be designed by 3794 di"erent
sequences (NS =3794), while there are 4256 structures for which NS =0. The number
of structures having a given NS decreases monotonically (with small !uctuations) as
NS increases (Fig. 6a). There is a long tail to the distribution. Structures contributing
to the tail of the distribution have NS!NS = 61:7, where NS is the average number.
We call these structure “highly designable” structures. The distribution is very di"erent
from the Poisson distribution (also shown in Fig. 6a) that would result if the com-
pact structures were statistically equivalent. For a Poisson distribution with a mean
NS =61:7, the probability of #nding even one structure with NS ¿ 120 is 1:76× 10−6.
The highly designable structures are, on average, thermodynamically more stable

than other structures. The stability of a structure can be characterized by the average
energy gap %S , averaged over the NS sequences that design the structure. For a given
sequence, the energy gap %S is de#ned as the minimum energy di"erence between the
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Fig. 7. The top structure (a) and an ordinary structure with NS = 1 (b) for the 3× 3× 3 system.

ground-state energy and the energy of a di"erent compact structure. We #nd that there
is a marked correlation between NS and %S (Fig. 6b). Highly designable structures have
average gaps much larger than those of structures with small NS , and there is a sudden
jump in %S for structures with N cS ≈ 1400. This jump is a result of two di"erent kinds
of excitations a ground state could have. One is to break an H–H bond and a P–P bond
to form two H–P bonds, which has an (mixing) energy cost of 2EHP−EHH−EPP=0:3.
The other is to change the position of an H-mer from relatively buried to relatively
exposed, so the number of H-water bonds (the lattice sites outside the 3× 3× 3 cube
are occupied by water molecules) is increased. This kind of excitations has an energy
¿1. The jump in Fig. 6b indicates that the lowest excitations are of the #rst kind for
NS ¡N cS , but are a mixture of the #rst and the second kind for NS ¿N cS .
A striking feature of the highly designable structures is that they exhibit certain

geometrical regularities that are absent from random structures and are reminiscent of
the secondary structures in natural proteins. In Fig. 7 is shown the most designable
structure along with a typical random structure. We examined the compact structures
with the 10 largest NS values and found that all have parallel running lines folded in
a regular manner.
We have also studied the model on a 2D lattice. We take sequences of length 36

and fold them into compact 6 × 6 structures on the square lattice. There are 28 728
such structures unrelated by symmetries including the reverse-labeling symmetry. In
this case, we did not enumerate all 236 sequences but randomly sampled them to the
extend where the histogram for NS ’s reached a reliable distribution. Similar to the 3D
case, the NS ’s have a very broad distribution (Fig. 8a). In this case the tail decays
more like an exponential. The average gap also correlates positively with NS (Fig. 8b).
Again similar to the 3D case, we observe that the highly designable structures in 2D
also exhibit secondary structures. In the 2D 6 × 6 case, as the surface-to-interior
ratio approaches that of real proteins, the highly designable structures often have bun-
dles of pleats and long strands, reminiscent of ! helices and " strands in real pro-
teins; in additon, some of the highly designable structures have tertiary symmetries
(Fig. 9).
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Fig. 8. Histogram of NS (a), and the average energy gap between the ground state and the #rst excited state
vs. NS (b), for the 2D 6× 6 HP model.

Fig. 9. The top structure for the 2D 6× 6 system.

To ensure that the above results are not an artifact of the HP model, we have studied
model (1) with 20 amino acids [32]. In this case the interaction energies e#i#j , where
#i can now be any one of the 20 amino acids, are taken from the MJ matrix [24,25].4

For the 3D 3× 3× 3 system and the 2D 6× 6 system, the total numbers of sequences
are 2027 and 2036, respectively, which are impossible to enumerate. So we randomly
sampled the sequence space. Similar to the case of the HP model, NS ’s have a broad
distribution in both 3D and 2D cases. Furthermore, the NS ’s correlate well with the
ones obtained from the HP model (see Fig. 10). Thus the highly designable structures
in the HP model are also highly designable in the 20-letter model.5 With 20 amino

5 Recently, Buchler and Goldstein [33,34] studied the designability for structures on 5 × 5 lattice, using
various alphabet sizes. They obtained very poor or no correlation between the NS ’s from our HP model and
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Fig. 10. (a) Histogram of NS for the 2D 6× 6 model with the MJ matrix, obtained with 3 990 000 random
sequences. (b) NS from the HP model vs. NS from the MJ matrix for 2D 6× 6 structures.

acids, there are few sequences that will have exactly degenerate ground states. For
example, in the case of 3 × 3 × 3 about 96.7% of the sequences have unique ground
states. However, many of these ground states are almost degenerate, in the sense that
there are compact structures other than the ground state with energies very close to
the ground state energy. If we require that for a ground state to be truly unique there
should be no other states of energies within gc from the ground state energy, then the
percentage of the sequences that have unique ground states is reduced to about 30%
and 8% for gc = 0:4 and 0:8 kBT , respectively.

3. A geometrical interpretation

A number of questions arise: Among the large number of structures, why are some
structures highly desginable? why does designability also guarantee thermodynamic
stability? Why do highly designable structures have geometrical regularities and even
symmetries? In this section we address these questions by using a geometrical formu-
lation of the PROTEIN FOLDING PROBLEM [35].
As we have mentioned before, the dominant driving force for protein folding is the

hydrophobicity, i.e., the tendency for hydrophobic amino acids to hide away from water.
To model only the hydrophobic force in protein folding, one can assign parameters h#
to characterize the hydrophobicities of each of the 20 amino acids.6 Each sequence
of amino acids then has an associated vector h = (h#1 ; h#2 ; : : : ; h#i ; : : : ; h#N ), where #i
speci#es the amino acid at position i of the sequence. The energy of a sequence folded
into a particular structure is taken to be the sum of the contributions from each amino

the “MJ” model. The reason for this discrepancy is that they have used a di"erent MJ matrix (see footnote
4 on p. 36).
6 The hydrophobic interaction is of the order kBT (T being the room temperature). That is that the energy
gain for burying a very hydrophobic amino acid is about a few kBT . See, e.g. Ref. [1–3] for values of
hydrophobicity for the 20 amino acids.
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Fig. 11. (a) A 6 × 6 compact structure and its corresponding string. A structure is represented by a string
s of 0’s and 1’s, according to whether a site is on the surface or in the core (which is enclosed by the
dotted lines), respectively. (In fact, two structures, related by the reverse-labeling symmetry, are shown,
corresponding to the two opposite paths indicated by the two arrows. So the s of one structure is the reverse
of the other.) (b) The histogram of NS for the 6 × 6 PH model obtained by using 19 492 200 randomly
chosen sequences.

acid upon burial away from water:

H =−
N
∑

i=1

sih#i ; (3)

where si is a structure-dependent number characterizing the degree of burial of the ith
amino acid in the chain. Eq. (3) is essentially a solvation model [36] at the residue
level and can also be obtained by taking the mixing term of Eq. (2) to zero [26–29,35].
To simplify the discussion, let us consider only compact structures and let si take

only two values: 0 and 1, depending on whether the amino acid is on the surface
or in the core of the structure, respectively. Therefore, each compact structure can be
represented by a string {si} of 0s and 1s: si = 0 if the ith amino acid is on the
surface and si = 1 if it is in the core (see Fig. 11a for an example on a lattice).
Let us make further simpli#cation by using only two amino acids: #i = H or P, and
let hH = 1 and hP = 0. Thus a sequence {#i} is also mapped into a string {&i}
of 0s and 1s: &i = 1 if #i = H and &i = 0 if #i = P. Let us call this model the
purely hydrophobic (PH) model. Assuming every compact structure of a given size
has the same numbers of surface and core sites and noting that the term

∑

i &
2
i is a

constant for a #xed sequence of amino acids and does not play any role in determining
the relative energies of structures folded by the sequence, Eq. (3) is then equivalent
to [35]

H =
N
∑

i=1

(&i − si)2 : (4)

Therefore, the energy for a sequence !={&i} folded onto a structure s = {si} is simply
the distance squared (or the Hamming distance in the case where both {&i} and {si}
are strings of 0’s and 1’s) between the two vectors ! and s.
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Fig. 12. The sequence and structure ensembles in N -dimension.

We can now formulate the designability question geometrically. We have two en-
sembles or spaces: one being all the sequences {!} and the other all the structures
{s}. Both are represented by N -dimensional points or vectors where N is the length of
the chain. The points of all the sequences are trivially distributed in the N -dimensional
space. In the case of the PH model, the points representing sequences are all the ver-
tices of an N -dimensional hypercube (all possible 2N strings of 0’s and 1’s of length
N ). On the other hand, the points representing all the structures {s} have a very dif-
ferent distribution in the N -dimensional space. The s’s are constrained and correlated.
For example, in the case of the PH model where si = 0 or 1, not every string of 0’s
and 1’s actually represents a structure. In fact, only a very small fraction of the 2N

strings of 0’s and 1’s correspond to structures. If we consider only compact structures
where

∑

i si = nc with nc the number of core sites, then the structure vectors {s} cover
only a small fraction of the vertices of a hyperplane in the N -dimensional hypercube.
Now imagine putting all the sequences {!} and all the structures {s} together in the

N -dimensional space (see Fig. 12 for a schematic illustration). (In a more general case
it would be simplest to picture if one normalizes {h} and {s} so that 06hi; si61).
From Eq. (4), it is evident that a sequence will have a structure as its unique ground
state if and only if the sequence is closer (measured by the distance de#ned by
Eq. (4)) to the structure than to any other structures. Therefore, the set of all sequences
{!(s)} that uniquely design a structure s can be found by the following geometrical
construction: Draw bisector planes between s and all of its neighboring structures in the
N -dimensional space (see Fig. 12). The volume enclosed by these planes is called the
Voronoi polytope around s. {!(s)} then consists of all sequences within the Voronoi
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polytope. Hence, the designabilities of structures are directly related to the distribution
of the structures in the N -dimensional space. A structure closely surrounded by many
neighbors will have a small Voronoi polytope and hence a low designability; while a
structure far away from others will have a large Voronoi polytope and hence a high
designability. Furthermore, the thermodynamic stability of a folded structure is directly
related to the size of its Voronoi polytope. For a sequence !, the energy gap between
the ground state and an excited state is the di"erence of the squared distances between
! and the two states (Eq. (4)). A larger Voronoi polytope implies, on average, a larger
gap as excited states can only lie outside of the Voronoi polytope of the ground state.
Thus, this geometrical representation of the problem naturally explains the positive
correlation between the thermodynamic stability and the designability.
As a concrete example, we have studied a 2D PH model of 6 × 6 [35]. For each

compact structure, we divide the 36 sites into 16 core sites and 20 surface sites (see
Fig. 11a). Among the 28 728 compact structures unrelated by symmetries, there are 119
that are reverse-labeling symmetric. (For a reverse-labeling symmetric structure, si =
sN+1−i.) So the total number of structures a sequence can fold onto is (28 728−119)×
2+119=57 337, which map into 30 408 distinct strings. There are cases in which two or
more structures map into the same string. We call these structures degenerate structures
and a degenerate structure can not be the unique ground state for any sequence in the
PH model. Out of the 28 728 structures, there are 9141 non-degenerate structures (or
18 213 out of 57 337). A histogram for the designability of nondegenerate structures is
obtained by sampling the sequence space using 19 492 200 randomly chosen sequences
and is shown in Fig. 11b. The set of highly designable structures are essentially the
same as those obtained from the HP model discussed in the previous section. To further
probe how structure vectors are distributed in the N -dimensional space, we measure the
number of structures, ns(d), at a Hamming distance d from a given structure s. Note
that all the 57 337 structures are distributed on the vertices of the hyperplane de#ned
by

∑

i si = 16. There are a total of C1636 = 7 307 872 110 vertices in the hyperplane. If
the structure vectors were distributed uniformly on these vertices, ns(d) would be the
same for all structures and would be: n0(d) = 'N (d), where '=57337=7 307 872 110 is
the average density of structures on the hyperplane and N (d) = Cd=216 C

d=2
20 is the number

of vertices at distance d from a given vertex. In Fig. 13a, ns(d) is plotted for three
di"erent structures with low, intermediate, and high designabilities, respectively, along
with n0(d). We see that a highly designable structure typically has fewer neighbors
than a less designable structure, not only at the smallest ds but out to ds of order
10–12. Also, ns(d) is considerably larger than n0(d) for small d for structures with
low designability. These results indicate that the structures are very non-uniformly
distributed and are clustered – there are highly populated regions and lowly populated
regions. A quantitative measure of the clustering environment around a structure is the
second moment of ns(d),

(2(s) = ⟨d2⟩ − ⟨d⟩2 = 4
∑

ij

sisjcij ; (5)
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Fig. 13. (a) Number of structures vs. the Hamming distance for three structures with low (circles), inter-
mediate (triangles) and high (squares) designability. Also plotted is n0(d) (solid line). (b) The number of
transitions between core and surface sites vs. ( for all the 6× 6 compact structures.

Fig. 14. NS vs. ( (a) and )′ (b) for all the 6× 6 compact structures.

where

cij = ⟨sisj⟩ − ⟨si⟩⟨sj⟩ (6)

and ⟨·⟩ denotes average over all structures. In Fig. 14a we plot the designability NS
of a structure vs. its (. We see that while larger NS implies smaller ( it is not true
vice-versa. This is because that NS is very sensitive to the local environment at small
ds while ( is more a global measure.
What are the geometrical characteristics of the structures in the highly populated

regions and lowly populated regions, respectively? This is something we are very in-
terested in but know very little about. Naively, the structures in the highly populated
regions are typical random structures which can be easily transformed from one to an-
other by small local changes. On the other hand, structures in lowly populated regions
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are “atypical” structures which tend to be more regular and “rigid”. They have fewer
neighbors so it is harder to transform them to other structures with only small rear-
rangements. One geometrical feature of highly designable structures is that they have
more surface-to-core transitions along the backbone, i.e., there are more transitions be-
tween 0s and 1s in the structure string for a highly designable structure than average
[35,37]. We found a good correlation between the number of surface-core transitions
in a structure string s; T (s), and ((s) (Fig. 13b). Thus, a necessary condition for a
structure to be highly designable is to have a small ( or a large T .
A great advantage of the PH model is that it is simple enough to test some ideas

immediately. Two quantities often used to characterize structures are the energy spectra
N(E; s) [11–13,38] andN(E; s; C) [38]. The #rst one is the energy spectrum of a given
structure, s over all sequences, {!}:

N(E; s) =
∑

{!}

%[H (!; s)− E] : (7)

The second one is over all sequences of a #xed composition C (e.g. #xed numbers of
H-mers and P-mers in the case of two-letter code), {!}C :

N(E; s; C) =
∑

{!}C

%[H (!; s)− E] : (8)

It is easy to see that if two structure strings {si} and {s′i} are related by permutation,
i.e., si = s′ki , for i = 1; 2; : : : ; N , where k1; k2; : : : ; kN is a permutation of 1; 2; : : : ; N ,
then N(E; s) =N(E; s′) and N(E; s; C) = N(E; s′; C). Thus all maximally compact
structures have the same energy spectra Eqs. (7) and (8). Therefore, structures dif-
fer in designability, not because they have di"erent energy spectra, Eqs. (7) and (8)
[11–13,38], but because they have di"erent neighborhood in the structure space.

4. Folding dynamics and thermodynamic stability

Will highly designable structures also fold relatively fast? This question is addressed
in detail in Ref. [39] (see also Ref. [34]). A quantity often used to measure how much
a sequence is “protein-like” is the Z score,

Z =
)
*
; (9)

where ) is the average energy di"erence between the ground state and all other states
and * is the standard deviation of the energy spectrum. Z score was #rst introduced
in the inverse folding problem [40] and later used in protein design [41]. It has been
shown in the context of the Random Energy Model [42,43] that Z score is related
to Tf=Tg where Tf is the folding temperature and Tg the glass transition temperature
[44–46]. We have found a good and negative correlation between the folding time and
the Z score of the compact structure energy spectrum [39]. In the context of the PH
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model (3), for a sequence h and its ground state s,

)=
∑

i

hi(si − ⟨si⟩) ; (10)

* =
√

∑

ij

hihjci; j ; (11)

where cij is given by Eq. (6). So in principle for every structure s one can maximize
the Z score with respect to h to get the “best” or “ideal” sequence for s that gives the
highest Z score, ZS . It is however much easier to obtain a lower bound Z ′

S for ZS by
letting h= s: Z ′

S = )
′=*′ with

)′ =
∑

i

(s2i − si⟨si⟩) ; (12)

*′ = (=2 ; (13)

where ( is given by Eq. (5). In Fig. 14b, the )′ for all the 6 × 6 compact structures
are plotted against NS for the PH model. There is little if any correlation between NS
and )′ for the 6 × 6 PH model. Thus, correlations between NS and Z ′ in this model
come mainly from the one between NS and *′ = (=2 (Fig. 14a). So a large Z ′ is a
necessary but not su%cient condition for a structure to have a large NS .

5. Summary

We have demonstrated with simple models that structures are very di"erent in terms
of their designability and that high designability leads to thermodynamic stability,
“protein-like” structural motifs, and foldability. Highly designable structures emerge
because of an asymmetry between the sequence and the structure ensembles. Our re-
sults are rather robust and have been demonstrated recently in larger lattice models
[47] and in o"-lattice models [48]. A broad distribution of designability has also been
found in RNA secondary structures [49]. However, the set of all sequences design-
ing a good RNA structure, instead of forming a compact “Voronoi polytope” like in
proteins, forms a “neutral network” percolating the entire space [49]. It would be inter-
esting to study the similarities and di"erences of the two systems. Finally, our picture
indicates that the properties of the protein-like sequences are intimately coupled to that
of the protein-like (i.e., the highly designable) structures; the picture uni#es various
aspects of the two special ensembles. It also suggests that understanding the emer-
gence and properties of the highly designable structures is a key to the protein folding
problem.



C. Tang / Physica A 288 (2000) 31–48 47

Acknowledgements

This work was done in collaboration with Hao Li, Ned Wingreen, R&egis M&elin,
Robert Helling, and Jonathan Miller. I am grateful to Jeannie Chen for her critical
reading of the manuscript.

References

[1] T. Creighton, Proteins: Structures and Molecular Properties, Freeman, New York, 1993.
[2] L. Stryer, Biochemistry, Freeman, New York, 1995.
[3] C. Branden, J. Tooze, Introduction to Protein Structure, Garland, New York, 1998.
[4] H. Wu, Chinese J. Physiol. 5 (1931) 321.
[5] H. Wu, Am. J. Physiol. 90 (1929) 562.
[6] C. An#nsen, Science 181 (1973) 223, and references therein.
[7] A.G. Murzin, S.E. Brenner, T. Hubbard, C. Chothia, J. Mol. Biol. 247 (1995) 536. SCOP

(http:==scop.mrc-lmb.cam.ac.uk/scop/) is a cateloged database for protein structures.
[8] S.E. Brenner, C. Chothia, T.J.P. Hubbard, Curr. Opin. Struct. Biol. 7 (1997) 369.
[9] C. Chothia, Nature 357 (1992) 543.
[10] C.A. Orengo, D.T. Jones, J.M. Thornton, Nature 372 (1994) 631.
[11] A.V. Finkelstein, O.B. Ptitsyn, Prog. Biophys. Mol. Biol. 50 (1987) 171.
[12] A.V. Finkelstein, A.M. Gutin, A.Ya. Badredinov, FEBS 325 (1993) 23.
[13] A.V. Finkelstein, A.Ya. Badretdinov, A.M. Gutin, Proteins 23 (1995) 142.
[14] S. Govindarajan, R.A. Goldstein, Biopolymers 36 (1995) 43.
[15] S. Govindarajan, R.A. Goldstein, Proc. Natl. Acad. Sci. USA 93 (1996) 3341.
[16] S. Govindarajan, R.A. Goldstein, Biopolymers 42 (1997) 427.
[17] W. Kauzmann, Adv. Protein Chem. 14 (1959) 1.
[18] K.A. Dill, Biochemistry 29 (1990) 7133.
[19] H. Li, C. Tang, N. Wingreen, Phys. Rev. Lett. 79 (1997) 765.
[20] K.F. Lau, K.A. Dill, Macromolecules 22 (1989) 3986.
[21] K.F. Lau, K.A. Dill, Proc. Natl. Acad. Sci. USA 87 (1990) 638.
[22] H.S. Chan, K.A. Dill, J. Chem. Phys. 95 (1991) 3775.
[23] H. Li, R. Helling, C. Tang, N. Wingreen, Science 273 (1996) 666.
[24] S. Miyazawa, R.L. Jernigan, Macromolecules 18 (1985) 534.
[25] S. Miyazawa, R.L. Jernigan, J. Mol. Biol. 256 (1996) 623.
[26] M. Skorobogatiy, H. Guo, M.J. Zuckermann, Macromol. 30 (1997) 3403.
[27] M.R. Ejtehadi, N. Hamedani, H. Seyed-Allaei, V. Shahrezaei, M. Yahyanejad, Phys. Rev. E 57 (1998)

3298.
[28] M.R. Ejtehadi, N. Hamedani, H. Seyed-Allaei, V. Shahrezaei, M. Yahyanejad, J. Phys. A 31 (1998)

6141.
[29] M.R. Ejtehadi, N. Hamedani, V. Shahrezaei, Phys. Rev. Lett. 82 (1999) 4723.
[30] H.S. Chan, K.A. Dill, J. Chem. Phys. 92 (1990) 3118.
[31] E. Shakhnovich, A. Gutin, J. Chem. Phys. 93 (1990) 5967.
[32] H. Li, C. Tang, N. Wingreen, to be published.
[33] N.E.G. Buchler, R.A. Goldstein, Proteins 34 (1999) 113.
[34] N.E.G. Buchler, R.A. Goldstein, J. Chem. Phys. 112 (2000) 2533.
[35] H. Li, C. Tang, N. Wingreen, Proc. Natl. Acad. Sci. USA 95 (1998) 4987.
[36] D. Eisenberg, A.D. McLachlan, Nature 319 (1986) 199.
[37] C.T. Shih et al., Phys. Rev. Lett. 84 (2000) 386.
[38] E.L. Kussell, E.I. Shakhnovich, Phys. Rev. Lett. 83 (1999) 4437.
[39] R. M&elin, H. Li, N. Wingreen, C. Tang, J. Chem. Phys. 110 (1999) 1252.
[40] J.U. Bowie, R. L'uthy, D. Eisenberg, Science 253 (1991) 164.
[41] A.M. Gutin, V.I. Abkevich, E.I. Shakhnovich, Proc. Natl. Acad. Sci. USA 92 (1995) 1282.
[42] B. Derrida, Phys. Rev. Lett. 45 (1980) 79.



48 C. Tang / Physica A 288 (2000) 31–48

[43] B. Derrida, Phys. Rev. B 24 (1981) 2613.
[44] R.A. Goldstein, Z.A. Luthey-Schulten, P.G. Wolynes, Proc. Natl. Acad. Sci. USA 89 (1992) 4918.
[45] J.D. Bryngelson, P.G. Wolynes, Proc. Natl. Acad. Sci. USA 84 (1987) 7524.
[46] J.D. Bryngelson, P.G. Wolynes, Biopolymers 30 (1990) 171.
[47] H. Cejtin et al., to be published.
[48] J. Miller, C. Zeng, N. Wingreen, C. Tang, to be published.
[49] P. Schuster, W. Fontana, P.F. Stadler, I. Hofacker, Proc. Roy. Soc. (London) B 255 (1994) 279.


