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We show that the combined action of diffraction and convection �walk-off� in wave mixing processes leads
to a nonlinear symmetry breaking in the generated traveling waves. The dynamics near to threshold is reduced
to a Ginzburg-Landau model, showing an original dependence of the nonlinear self-coupling term on the
convection. Analytical expressions of the intensity and velocity of traveling waves emphasize the utmost
importance of convection in this phenomenon. These predictions are in excellent agreement with the numerical
solutions of the full dynamical model.
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There is currently a considerable interest in understanding
the role of convection �drift� in pattern forming systems
�1–4� in such diverse fields as hydrodynamics �5�, plasma
physics �6�, traffic flow �7�, crystal growth �8�, and nonlinear
optics �9�. The most important and common result in these
studies is that convection, modeled by gradient terms ��� ·��

with �� group velocity�, breaks the reflection symmetry �r�
→−r�� and dramatically affects pattern selection in spatially
extended systems. This is a linear symmetry breaking where
convection terms are generally considered to have the only
effect to induce a traveling character to selected patterns, and
to induce a peculiar regime of convective instability �2�. It
has been largely studied how the existence, the type, and the
dynamics of the pattern selected are closely related to the
linear transition from convective instability �propagation
overcomes amplification of perturbations� to absolute insta-
bility �amplification dominates�.

In contrast, in this paper, we discuss an unforeseen effect
of convection in the dynamics of spatially extended systems
that does not rely on such a transition. Here, we show how
convection, that is a linear phenomenon, actually modifies
the intrinsic nonlinearity of the system. More precisely, we
show that convection affects the nonlinear mode interaction
at onset of the instability leading to a nonlinear symmetry
breaking in the generated, otherwise symmetrical, traveling
waves. Our analytical description of this mechanism, based
on the amplitude equation of the degenerate optical paramet-
ric oscillator �DOPO�, demonstrates an original dependence
of the nonlinear self-coupling term upon convection. Al-
though we present our investigations in the context of optics,
we believe that our result is generic for spatially extended
systems with convection and characterizes the key role of
convection in the nonlinear dynamics of such systems.

In a DOPO degenerate optical parametric oscillator a laser
beam is injected in a cavity containing a nonlinear �qua-
dratic� crystal and a signal beam with half the pump fre-
quency is generated. When the signal has polarization or-
thogonal to the pump the DOPO is in type-I phase matching.
It is well known that, due to the birefringence of the crystal,

the Poynting vectors of pump and signal fields are not par-
allel and walk-off each other �10�. Therefore convection
�walk-off� arises naturally in these devices. Degenerate opti-
cal parametric oscillators are also at the basis of interesting
quantum phenomena, stemming from their quadratic nonlin-
earity, as, for instance, entanglement between off-axis modes
�11�. It has been shown that the walk-off strongly influences
such twin beam correlations: in the convective regime �in-
duced by walk-off� the entanglement is destroyed by macro-
scopic amplification of quantum noise �12�. Increasing the
pump intensity, an absolutely stable traveling pattern arises
in the signal and the entanglement is restored. Still, impor-
tant walk-off effects are observed, as one of the twin beams
is more intense and fluctuates more than the opposite one
�13�.

We start from the description of a type-I DOPO in the
mean-field approximation including diffraction and walk-off
�10�,

�tAp = �p�− �1 + i�p�Ap + iap��
2 Ap − As

2 + E0�
�1�

�tAs = �s�− �1 + i�s�As + ias��
2 As + ApAs

* − �s�xAs� ,

where Ap and As are the normalized slowly varying enve-
lopes for pump and signal fields, respectively. In these equa-
tions, the diffraction is described by ��

2 =�x
2+�y

2 where �x ,y�
are the spatial transverse coordinates. The parameters �p,s,
�p,s, and ap,s are the detunings, the cavity decay rates, and
the diffraction coefficients, respectively. E0 is the normalized
external pump and �s is the signal walk-off coefficient that
characterizes convection in this system. We stress that the
walk-off cannot be eliminated from Eqs. �1� by a change of
reference frame, being relative between pump and signal.

Both convective and absolute instabilities have been re-
ported for the stationary solution Ap=E0 / �1+ i�p�,As=0 �10�.
We just recall that for the case �s�0 and �s�p−1�0,
which we are interested in, degenerate OPOs exhibit a super-
critical bifurcation at E0

c =�1+�p
2. This is the linear threshold

at which stationary homogeneous solutions become unstable
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to traveling wave perturbations with wave vectors k�
= �kx ,ky� with modulus k=kc=�−�s /as and frequency �c=
−�s�skc. Under periodic boundary conditions the convective
instability is suppressed and the traveling rolls arising at the
signal generation threshold are absolutely stable.

To study the role of convection in the nonlinear symmetry
breaking of the generated traveling waves, and to keep math-
ematics as simple as possible, we perform the reduction of
the model �1� into a single Ginzburg-Landau �GL� equation
valid close to threshold of the DOPO emission. In the sequel
we set �p=E0 / �1+ i�p� with �= ��p�=E0 /�1+�p

2, and B
=Ap−�c where �c=1. We expand the signal as As=�A�1�

+�2A�2�+�3A�3�+¯ with a similar expansion of the pump.
The small parameter � measures the distance from the DOPO
emission threshold: �2=�−�c. This fixes the choice of mul-
tiple scales for t and x to t=T0+	T1+	2T2+¯, x=X0+	X,
and y=Y0+�	Y �see Refs. �14� for details�. The temporal and
spatial derivatives in Eqs. �1� are then replaced by �t=�T0
+	�T1

+	2�T2
+¯, �x=�X0

+	�X, �y =�Y0
+�	�Y. We set

A�1�=A exp i��cT0+kcX0�+A* exp− i��cT0+kcX0�, that is a
wave traveling in the walk-off direction, with A and its com-
plex conjugate A* slowly varying amplitudes. By substitution
of the above expansion of the signal As in Eqs. �1� and using
the new scalings and derivatives, a hierarchy of equations for
each successive correction is obtained. Applying the solv-
ability condition at order O��3� we get the following ampli-
tude equation, which describes the evolution of the signal
written in the scaled time 
=�st, and in the variable S=�A:

�
S + �s�xS = �� − 1�S − 2as�sLxy
2 S − ��S�2S �2�

with

� =
2

1 + �p
2 +

C2 + 1 + D2 + iD�C2 − 1 − D2�
�1 + �C + D�2��1 + �C − D�2�

. �3�

We have set Lxy = ��x+�y
2 /2ikc� in Eq. �2� and C=�p+4apkc

2

and D=2�c /�p=−2�s��s /�p�kc in the expression of the non-
linear self-coupling coefficient �. In the absence of convec-
tion ��s=0�, the parameter D vanishes and the expression of
� greatly simplifies to �=2/ �1+�p

2�+1/ �1+C2� and station-
ary rolls arise in the signal profile �15�. We show here that
the presence of convection drastically affects the pattern for-
mation mechanism with respect to both linear and, more im-
portantly, nonlinear dynamics. Indeed, the most important
result is that the parameter D, that characterizes convection,
strongly modifies the nonlinear self-coupling term �. It af-
fects the saturation term �Re���� and induces intrinsic non-
linear phase modulations �Im����. This result is in contrast
with almost all previous studies of model equations describ-
ing the near-threshold dynamics such as the Ginzburg-
Landau or Swift-Hohenberg equations where the convection
only yields to the propagation term of Eq. �2�.

At this stage one has to notice that the presence of con-
vection via the nonzero Im��� breaks the well-known varia-
tional form of the GL Eq. �2� in its one-dimensional version
�where Lxy =�x�, since all the remaining coefficients are real
�16�. As a consequence Eq. �2�, obviously, cannot exhibit
stationary homogeneous solutions �or stationary rolls�. More-

over, the nonvariational effect leads to �i� a symmetry break-
ing in the opposite traveling waves and �ii� an excess veloc-
ity �with respect to convection velocity� in these waves
stemming from the nonlinear frequency modulation. Both
points are analytically characterized below.

Let us find the solutions of Eq. �2�, corresponding to the
nonlinear saturated selected modes, in the form Sst
=S0 exp i��
+kx�. They read �S0�2= ��−1+2as�sk

2� /Re���
and �=−�sk−Im����S0�2, and represent the leading contri-
bution to the fundamental modes �±kc�. This leading contri-
bution is not sufficient since the total intensity of each mode
is now fixed during their nonlinear interaction induced by the
convection. For our purpose, to characterize the nonlinear
symmetry breaking, we need to take into account the contri-
butions up to the third order in �. This can be achieved by
solving the hierarchy of the inhomogeneous linear problems,
at each order in �, by means of Fredholm alternative. After
lengthy but straightforward calculations, we get the solution

As�x,t� = �1 + �1/2�F3�Sst�2�Sst exp i��ct + kcx�

+ �1 − �1/2�F3
*�Sst�2�Sst

* exp − i��ct + kcx� , �4�

where F3 is defined as Re�F3�=2CD /NDE and Im�F3�
=2�p / �1+�p

2�+C�1+C2−D2� /NDE with NDE= �1+ �C
+D�2��1+ �C−D�2�. Note that the spatial modulations of
these traveling waves are not relevant here and have been
neglected �i.e., k=0� in writing the above solution that is still
composed of two asymmetric nonlinear traveling waves. The
nonlinear symmetry breaking depends on the set of param-
eters in which the DOPO operates via the ratio between the
intensities �i.e., R2= �As

2�kc�� / �As
2�−kc��= I�kc� / I�−kc�� of the

two transverse modes of the signal �Eq. �4��. This ratio has
the explicit form

R2 = 1 +
Re�F3�
Re���

2

u1
2 + u2

2 �� − 1� �5�

with u1=1− �Re�F3� /2 Re������−1� and u2= �Im�F3� /
2 Re������−1�.

This is the main analytical result. It allows a quantitative
characterization of the nonlinear convection effects. Equa-
tion �5� emphasizes the coupling between convection and the
distance from threshold. In the absence of convection R2=1,
the two transverse modes have the same intensity and the
amplitude equation exhibits stationary rolls. The presence of
convection greatly complicates the expression of R2. How-
ever, near threshold ��1�, the ratio of intensities R2, up to
the leading order in �−1, is

R2 � 1 + 4
C�1 + �p

2�
2NDE + �1 + �p

2��1 + C2 + D2�
D�� − 1� . �6�

Note that R2−1 is an odd function of �s, reflecting the im-
portance of the sign of the velocity convection. Therefore,
the choice of the convection direction �±�s� can be useful to
select one of the two modes by enhancing its parametric
gain. Figure 1 shows a typical variation of R2 upon the physi-
cal pump amplitude E0=��1+�p

2. We find a very good
agreement between the analytical ratio R2 and the numerical
simulations of the Eqs. �1�. In order to set the validity range
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of our predictions we have plotted the results obtained by
increasing the pump until twice the threshold. Even for pump
values 20% above threshold the agreement is within 1‰ �see
inset of Fig. 1�.

The ratio between the intensities of the two critical modes
also provides the quantitative characterization of the effects
of the convection strength in the nonlinear symmetry break-
ing. The numerical and analytical estimations of R2 versus
convection parameter �s, displayed in Fig. 2, are again in
very good agreement. Finally, note in Fig. 2 the existence of
extrema leading to the most asymmetric configuration.

Let us now comment on the physics underlying the non-
linear symmetry breaking induced by convection. The most
relevant physical parameter in the nonlinear interaction,
above threshold, stems from the difference in frequencies of
oscillations of each mode �±kc�. This difference results from
the presence of convection and disappears with it. Although
both traveling waves are propagating in the direction of the
convection, their phase rotation is no more opposite. Hence,
the two traveling modes interact with a time delay with the
pump. This gives rise to different gain from the pump lead-
ing to the nonlinear symmetry breaking observed in the sig-
nal. The energy transfer depends on two time scales and thus
involves the pump decay rate ��p� as can be seen from the
expression of D. We emphasize that in contrast with all pre-
vious studies dealing with the weakly nonlinear dynamics of
optical parametric oscillators near threshold, �p appears, in
the cubic Ginzburg-Landau model because of the induced

pump excitation phenomenon. This fixes the parameter range
of the pump decay rates leading to a nonlinear symmetry
breaking in the generated traveling waves. The stronger the
pump decay rate, the weaker the asymmetry is. In the limit of
adiabatic elimination of the pump, no asymmetry exists in
the signal, consistent with the possibility to remove the walk-
off by a change of reference frame. We have performed nu-
merical simulations �not shown� with the same parameters as
in Fig. 1 except that �p is decreased ten times. In this case we
have observed a vanishing asymmetry �R2�1� with respect
to the result of Fig. 1.

The second important feature that results from the
convection-induced nonlinear symmetry breaking concerns
the propagation velocity of the generated traveling waves.
Indeed, the convection effect on the signal is not only a
translation of its transverse profile at the convection velocity.
An increase in the pump enhances the action of convection
in the nonlinear coupling between the fields leading to the
velocity variation with the pump intensity. So that, if we set
�s�=�cor, the corrected frequency of the traveling waves is
�R=�c+�cor. Therefore, their actual velocity is given by

v =
�c + �s�

kc
= − �s�s − �s

Im���
kc Re���

�� − 1� . �7�

The above velocity expression shows that, in addition to the
usual convection velocity �the first term of the right-hand
side� there is an excess velocity depending on the convection
but, and most interestingly, it depends linearly on the inci-
dent pump above threshold ��−1�. Figure 3 shows the pre-
dicted deviation of the actual velocity from the velocity con-
vection by integrating the full nonlinear equations governing
the DOPO dynamics �Eqs. �1�� when increasing the pump E0
until twice the threshold. As can be seen from this figure,
there is a very good quantitative agreement for a pump until
10% above threshold. Only at threshold do the nonlinear
wave velocities coincide with the convection velocity.

To summarize, we have shown, in case of a degenerate
optical parametric oscillator, that convection �walk-off� in-
duced a nonlinear symmetry breaking in the traveling waves.
We have also demonstrated that near threshold this mecha-
nism is still described by a Ginzburg-Landau model with an
original dependence of the nonlinear self-coupling term upon
convection. As a result, nonlinear traveling waves are no

FIG. 1. Dependence of R2 on the pump parameter E0 above
threshold �E0

c =1�. Numerical data obtained from integration of
Model �1� �continuous line� compared with predictions of Eq. �5�
�dashed-dotted line� and Eq. �6� �dashed line�. The inset shows the
ratio between the continuous and the dashed-dotted lines. The pa-
rameters are: �p=�s=1, �p=0, �s=−1, ap=0.25, as=0.5, and �s

=0.25.

FIG. 2. �Color online� Dependence of R2 on convection ��s�.
Numerical data �continuous line� are compared with Eq. �5�
�dashed-dotted line� and Eq. �6� �dashed line�. E0=1.05E0

c �dark
lines�, E0=1.1E0

c �light lines�, �p=�s=1, �p=−0.2, �s=−0.5, ap

=0.5, as=1.

FIG. 3. Analytical velocity given by Eq. �7� �continuous line�
compared with numerical results �symbols� from the original model
�1�. In the inset plot we compare the velocities far from threshold.
Same parameters of Fig. 1.
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more symmetrical and the explicit analytical expressions of
their intensity variations with both convection and the dis-
tance from threshold are derived. Moreover, convection leads
to nonlinear phase modulations that give rise to an interest-
ing variation of the traveling wave’s velocity with the dis-
tance from threshold. Besides the context of optics, our re-
sults are relevant to many spatially nonlinear extended
systems with convection. For instance, in the context of hy-
drodynamics, the competition between right- and left-
propagating nonlinear waves in the convective flow, gener-
ated by a horizontal thermal gradient, leads to an
experimental observation of the nonlinear symmetry break-

ing. The broken symmetry has been evidenced via the esti-
mation of the variation of the amplitude ratio of the right and
left waves with the distance from threshold �17�.
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