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Abstract

We consider a large class of optical cavities and gain media with an off-axis external feedback

which introduces a two-point nonlocality. This nonlocality moves the lasing threshold and opens

large windows of control parameters where weak light spots can be strongly amplified while the

background radiation remains very low. Furthermore, transverse phase and group velocities of a

signal can be independently tuned and this enables to steer it non mechanically, to control its

spatial chirping and to split it into two counter-propagating ones.

PACS numbers: 42.65.Sf, 42.55.-f, 89.75.Kd
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In this letter we study the effects introduced by a two-point nonlocality [1] on a broad

class of nonlinear equations with both diffusion and diffraction. Systems modelled by this

type of equations can be experimentally realised in optics by cavities with an off-axis external

feedback, which is the spatial analogous of a feedback with temporal delay [2]. Off-axis feed-

back has been subject of theoretical and experimental study in liquid crystals light valves [3],

Kerr-like media [4, 5] and generic nonlinear systems with diffusive coupling [6]. Here instead

we consider a broad class of optical cavities using a general formalism that can be applied

to gases, solid state and semiconductor media with fast decay of the polarization, including

media with negative refractive index and devices with soft apertures. The simultaneous

presence of diffusive and diffractive terms appears in universal Ginzburg-Landau equations

describing the behaviour of any spatially extended system near the onset of oscillations,

such as, for instance, reaction-diffusion systems and lasers [7]. These equations describe also

properties of systems with time-delayed feedback and no spatial degrees of freedom when

the delay is order of magnitude larger than the other time scales [8], with the slow time

formally taking the role of the spatial variable.

We show that the inclusion of a two-point nonlocality generalises these equations introduc-

ing new regimes and is a powerful way to amplify, characterise and control perturbations,

either external or intrinsic to the system. In particular, nonlocality changes the nature of

the first instability, which without nonlocality leads to a spatially extended, lasing state.

With nonlocality, on the contrary, there are large windows of control parameters where

small localized signals can be strongly amplified while the background radiation in other

region of the system remains very low. Furthermore, the signal moves across the cavity with

transverse phase and group velocities that are easily managed to have the same or opposite

signs. It is indeed possible, without altering the mechanical alignment of the set-up, to

control signals motion, tuning continuously the group velocity so that a localized perturba-

tion is steered either towards or against the off-set direction and can even be split into two

counter-propagating components. The tunability of the phase velocities allows to control the

spatial chirping of light signals independently from the direction of steering. These unusual

properties open new possibilities for light control and can underpin applications in optical

communications, imaging and micromanipulation.

In the following we analyse how the first threshold depends on nonlocality, diffusion and

diffraction, determine the nature of the instability, find a second threshold and derive the
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equations for the phase and group velocity of localized perturbations. We consider optical

systems described by non-dimensional equations of the type

∂tE = g1(|E|2, N ; µ)E + eiδ∂2
xxE + reiφE∆x, (1)

∂tN = g2(|E|2, N, ∂2
xxN ; µ),

where E is the slowly-varying amplitude of the electric field, N is the population inversion

and µ is a control parameter. We consider here one transverse dimension x as nonlocality

changes only the spatial dependence of the dispersion along the direction of the shift. Time

and space are scaled with field decay and with the square root of the modulus of the Laplacian

coefficient. Our analysis encompasses devices with diffusion that is due to Fourier filtering

by intracavity soft apertures [9] or to elimination of the fast variables [10], as well as media

with positive or negative refractive index [11]. δ gives the relative strength of diffusion and

diffraction, with δ ∈ (0, π/2) for positive refractive indexes and δ ∈ (−π/2, 0) for negative

indexes, corresponding to left-handed materials. The term reiφE∆x represents nonlocal

coupling of the field E in a point x with the field E∆x in a point x+∆x and is the consequence

of an off-axis, single-passage feedback loop. This is characterised by an amplitude 0 < r < 1

and a phase shift φ accumulated by the fast component of the electric field in the external

loop. We assume here that the temporal delay of the feedback is negligible compared to the

time scales of E and N . The generic complex functions g1,2 allow us to describe all class B

lasers, including semiconductor. The following analysis immediately applies also to (i) the

simpler case of systems in which the variable N can be eliminated (class A) and (ii) a more

general class of equations in which the feedback term is nonlinear [12].

We consider perturbations δE ∝ exp (ωt + ikx) of the non lasing solution E0 = 0 and N0

such that g2(0, N0) = 0. These perturbations have complex dispersion relation

ω = β − eiδk2 + rei(φ+k∆x), (2)

with β = g1(0, N0; µ) also complex. In the following real and imaginary parts of complex

quantities have subindices R and I, respectively. In the limit of vanishing shift ∆x =

0, the laser threshold, given by βth
R = −r cos(φ), decreases when the feedback interferes

constructively with the intracavity field and increases when the interference is destructive.

Because the fast relaxation of the polarization implies that the gain bandwidth is very large,

all travelling waves have the same gain/loss if there is no diffusion. The effect of diffusion is
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to filter the high Fourier components so that the most unstable mode is the homogeneous

one (k = 0) independently from the relative strength of diffusion and diffraction (δ). When

∆x 6= 0, on the other hand, the most unstable mode can have k 6= 0. The nonlocality gives

rise to a modulation instability and allows for the existence of several bands of unstable

wavevectors (ωR > 0) [3].

The off-axis feedback, besides modulation instability to several bands of wavevectors,

provides a wide tunability of the properties of the device and enables to control the first

threshold. Inspection of Eq. (2) shows that the instability threshold can be expressed as a

function of four relevant parameters, namely φ, δ, r∆x2, and βR∆x2 (see Figs. 1a-b); there-

fore increasing the shift size ∆x produces on the device the same effect of larger gain βR

and feedback r. As a specific effect of the nonlocality, we find that the relative strength

of diffusion and diffraction, δ, also becomes an effective parameter to control the threshold

position. Indeed, the lowest gain and feedback thresholds (independently on the feedback

phase φ) are generally found in the purely diffractive limit (δ ∼ π/2). The effect of diffu-

sion on the feedback lasing threshold can be appreciated in Fig. 1a: for any not vanishing

feedback phase φ, the threshold value for the scaled feedback strength r∆x2 increases with

the diffusion, being independent on the sign of the refractive index (sign of δ). Both βR

and r can be increased to cross the laser threshold as shown in Fig. 1b, and –similarly to

the case of perfect alignment– if the feedback is out of phase then stronger gain is required.

For fixed values either of the gain or of the feedback the nonlocality strongly decreases the

FIG. 1: a) Instability thresholds for βR∆x2 = −0.2 and for φ = nπ/4 with n = 0, 1, 2, 3, 4 (from

dark to light colors). The lowest threshold is found for φ = 0 and the instability takes place on the

right of the lines. b) Thresholds for δ = 0.45π and different feedback φ as in (a). c) Thresholds

for βR = −0.2 , δ = 0.45π and different feedback φ as in (a). d) First (continuous line) and second

(dashed line) thresholds for δ = 0.45π, r = 0.8 and φ = π/2.
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threshold values for the gain as well as for the feedback field, as seen in Figs. 1c and d. This

can be understood considering that the most unstable mode has k 6= 0 so that the effect of

the nonlocal coupling is equivalent to a reduction of the feedback dephasing. Consistently

with this interpretation, in the case of feedback perfectly in phase with the intracavity field

(φ = 0) the threshold is independent on the lateral shift ∆x because the most unstable mode

is the homogeneous one (k = 0).

FIG. 2: Sign of velocities for β∆x2 = −0.02 − i0.2, and for φ = π/2 (a) and δ = 0.2π (b). The

dashed regions show where phase and group velocities are positive, while the continuous line marks

the instability threshold (the system is below threshold on the left sides). Negative values of δ

correspond to negative refractive indexes.

Another effect of the nonlocality concerns the possibility to tune transverse phase and

group velocities independently from one another. This property enables non mechanical

steering and spatial chirping of light beams as the high spatial frequencies can accumulate

in the left or right side of the beam. We remark that, as for conventional lasers without

off-axis feedback [14], phase travelling waves are exact solutions of the model. Phase and

group velocities follow from Eq. (2):

vp = −
ωI(k)

k
= k sin δ −

βI + r sin (k∆x + φ)

k
(3)

vg = −∂kωI = 2k sin δ − r∆x cos (k∆x + φ). (4)

They can be tuned independently because the parameter βI enters only in the expression

of the phase velocity. Evaluation of the velocities for the critical wavevectors kc allows us

to identify the manifolds in the control parameter space that separate regions in which the

group and the phase velocity have the same sign from region in which these velocities have

opposite sign. In particular, the group velocity is null for r∆x2 = −2δ ± (4n + 1)π ∓ 2φ.

As shown in Fig. 2 equal or opposite signs of the velocities can be observed also at the
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instability threshold of the device (continuous line) depending on the values of δ, r∆x2 and

φ. The latter is a promising candidate to tune non mechanically the velocities, for instance

by changing the refractive index in the feedback loop.

Whenever the group velocity is non null, one has to determine whether amplified pertur-

bations of the unstable reference state E0 will drift away (convective instability), or will fill

the entire system (absolute instability). The convective regime is the one where the control

of localized light signals is possible. The nature of the instability is determined by finding

the limit of the Green function of the linearised system of equations for large time. The

asymptotic local behaviour of the perturbation is found by generalising the saddle point

technique developed in [6, 13] –the details will be reported elsewhere. In Fig. 1d we show

an example of thresholds of convective (I) and absolute (II) instabilities; for any choice of

parameters there are windows of convective instability before reaching the lasing thresholds.

By using the information in Figs. 1-2 and Eqs. (3-4) we can determine linear amplification,

direction of propagation and spatial chirping of any light spot in the transverse plane.

FIG. 3: Spatio-temporal diagram for the field intensity |E|2 starting from a small Gaussian per-

turbation of the vanishing state E0, obtained by numerical simulation of Eqs. (5). Parameters:

µ = 0.98, θ = 0.2, δ = 0.49π, r = 0.5, ∆x = 1 (coupling each point with a shifted one on the right)

and φ = π/2 (a), φ = −π/2 (b).

In order to check to what extent the linear analysis we reported predicts the dynamics of

the full nonlinear device we consider the standard model for class A lasers, obtained from

Eqs. (1) with

g1 = −(1 + iθ − N)E, N = µ/(1 + |E|2)], (5)

with the usual parameters θ for the detuning with respect to the medium resonance, and µ for

the pump [15]. The dispersion relation for the field perturbations around the homogeneous

steady state E0 = 0 are given by Eq. (2) with β = µ−1− iθ. Numerical simulations confirm
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the predicted thresholds, in agreement with the stability diagrams in Fig. 1. Moreover,

the wavenumbers dynamically selected and the velocities are well approximated by those

obtained from linear dispersion. In view of applications it is interesting to see the dynamics

of local perturbation of the homogeneous state: In Fig. 3 we demonstrate the ability of

steering and amplifying beams in the convective region; furthermore, one or both the signs

of phase and group velocities can be changed with the proper parameters choice (Figs. 3a-b),

consistently with predictions presented in Fig. 2. Numerical simulations also confirm the

possibility of chirping; the phase of the field shows indeed a spatial dependent modulation.

FIG. 4: a) Evolution of a Gaussian perturbation as in Fig. 3 but for φ = π. b) Phase (dashed

lines) and group (dahsed-dotted lines) velocities. The upper (lower) curves are the velocities for

kc (−kc). For r∆x > 0.26 (star point) the homogeneous state is unstable.

Special attention needs the case |φ| = π where a small spot of light is amplified and

splits in two separate spots travelling in opposite directions as shown in Fig. 4a. Both

positive and negative wavevectors with values around the critical ones are selected and

then separate moving in opposite regions of the beam area. Our analysis for |φ| = π gives

ωR(k) = ωR(−k) but, in general, ωI(k) 6= ±ωI(−k). This is important because in order

to see a propagating stripe, for instance E ∝ cos(kx + ωt), it would be necessary to have

an antisymmetric dispersion ωI(k) and the simultaneous instability of both positive and

negative wavenumbers. This would guarantee that the interfering waves k and −k have the

same velocities. As shown in Fig. 4b this is not the case for off-axis feedback: the phase and

group velocities of opposite waves with critical wavenumbers have opposite signs, and in the

diffraction limit δ → π/2 both velocities are odd functions of kc. Therefore, even if for φ = π

both +kc and −kc are unstable, from the linear analysis we do not expect intensity stripe
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patterns above threshold. The existence of exact travelling phase patterns as well as the

lack of intensity waves are also known in lasers without feedback [14]. The novelty here is

the prediction of a state in which two waves with wave-vectors ±k travel apart with opposite

velocities. In spite of the definite direction associated to the break of reflection symmetry

due to two-point nonlocality, both transverse direction of propagation are equally linearly

amplified. As shown in Fig. 4a, numerical simulations of the model (5) for |φ| = π fairly

agree with these predictions. Even if the linear amplification of both waves has the same

strength, one wave is nonlinearly favoured over the other so that a slightly larger intensity

and size of the packet are found on one side with respect to the other, depending on the

sign of the shift. As a matter of fact, one mode in the far field is more intense of the other,

similarly to what is found in systems with drift [16]. We also note that in this case only the

Green function correctly characterises the convective or absolute nature of the instability.

The standard evaluation of the instability solely in terms of the velocities of the external

fronts of a perturbation would erroneously describe the convective instability as absolute.

We have seen in fact that here a Gaussian perturbation splits into two wave-packets with the

external fronts moving in opposite directions, as is usually the case for absolute instabilities,

even if the signal eventually decays between the external fronts.

In conclusion, we have reported a general analysis of the effects of off-axis feedback in

a large class of optical cavities and gain media, and shown the threshold dependence on

two-point nonlocality, diffusion and positive as well as negative diffraction. The possibility

to observe travelling waves at the onset of the instability in media with fast relaxation of the

polarization is an important effect of nonlocality, that induces the modulations character of

the instability. We have determined the convective and absolute threshold extending our

analysis of purely diffusive systems [6]. In presence of nonlocality phase and group velocities

of optical fields can be easily tuned to parallel or opposite directions, which enable steering

and spatial chirping. Surprisingly, for a particular phase of the feedback loop (φ = π) we have

found the simultaneous presence of waves travelling apart. The effect is almost symmetrical

in the positive and negative directions, even if the off-axis feedback introduces a directional

coupling in the transverse plane. The possibility to amplify an initial spot of light, control

its velocity and spatial chirping and even split it in two counter-propagating signals makes

cavities with off-axis feedback a promising candidate in view of applications in all-optical

communications based on the control of light signals, such as optical triggering, switching,
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routing, delay lines, beam recovery and steering and in manipulation of microparticles.

Finally, our theoretical results formally apply to a broad class of devices and similar effects

can be observed for localized perturbations of any nonlocal and spatially extended system

near the onset of oscillations.
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