Erratum: Macroscopic quantum fluctuations in noise-sustained optical patterns

Roberta Zambrini, Stephen M. Barnett, Pere Colet, and San Maxi Miguel
(Published 10 April 2002)

During the production process, some typing errors were introduced in the paper.
i) On page 023813-2, three lines after Eq. (7), the linearized equations for the signal and pump fluctuations should be
\[\delta A_i(x,t) = A_i(x,t) - A_i^{\text{ref}} \quad (i = 0,1), \]
and six lines after Eq. (7), perturbations have the form
\[\exp[i \vec{k} \cdot x + \lambda(\vec{k}) t]. \]

(ii) Equation (10) should be
\[e^{i\Phi_\pm} = \pm \frac{i\Delta_1 + 2i|\vec{k}|^2 \mp \sqrt{|A_0^\ast|^2 - (\Delta_1 + 2|\vec{k}|^2)^2}}{A_0^\ast}. \]

(iii) Equations (12) and (13) should be
\[\begin{align*}
\partial_t \hat{A}_0(x,t) &= -\gamma_0 [1 + i\Delta_0 - ia_0 \nabla^2] \hat{A}_0(x,t) - \frac{g}{2} A_1^2(x,t) + E_0(x) + \hat{F}_0, \\
\partial_t \hat{A}_1(x,t) &= -\gamma_1 [1 + i\Delta_1 - ia_1 \nabla^2 - \partial_j] \hat{A}_1(x,t) + g \hat{A}_0(x,t) \hat{A}_1^\dagger(x,t) + \hat{F}_1,
\end{align*} \]

(iv) The drift term in the Hamiltonian on page 023813-4 should be
\[i \gamma_1 v \hat{A}_1^\dagger(x) \partial_x \hat{A}_1(x). \]

(v) Equations (17) should be
\[\partial_x \hat{A}_0(x,t) = -\gamma_0 [1 + i\Delta_0 - ia_0 \nabla^2] \hat{A}_0(x,t) - \frac{g}{2} \hat{A}_1^2(x,t) + E_0(x). \]

(vi) Equation (14) should read
\[\langle \hat{F}_j(x,t) \hat{F}_j^\dagger(x',t') \rangle = 2\gamma_j \delta_{ij} \delta(x-x') \delta(t-t'). \]

(vii) Equation (15) should read
\[\frac{\partial \hat{\rho}}{\partial t} = \frac{1}{i\hbar} [\hat{H}, \hat{\rho}] + \Lambda \hat{\rho}. \]

(viii) Also on page 023813-4, the Liouvillian should be
\[\Lambda \hat{\rho} = \sum_{j=0,1} \int d^2x \gamma_j \{ [\hat{A}_j(x), \hat{\rho} \hat{A}_j^\dagger(x)] + [\hat{A}_j(x) \hat{\rho}, \hat{A}_j^\dagger(x)] \}. \]

(ix) In the first paragraph of page 023813-7 the variable Φ_\pm was wrongly quoted as $\Phi \pm$ and $\Phi \pm$. The correct sentence is:
"In fact, due to the symmetry $\omega(k) = -\omega(-k)$ we have $V_\pm(k, -k) = e^{i\Phi_\pm} \delta A_i^\ast(k) \mp \delta A_i^\ast(-k)$, so that the relative phase $e^{i\Phi_\pm}$ between \ldots \"