
PHYSICAL REVIEW A 66, 013809 ~2002!
Quantum properties of transverse pattern formation in second-harmonic generation
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We investigate the spatial quantum noise properties of the one-dimensional transverse pattern formation
instability in intracavity second-harmonic generation. TheQ representation of a quasi-probability distribution
is implemented in terms of nonlinear stochastic Langevin equations. We study these equations through exten-
sive numerical simulations and analytically in the linearized limit. Our study, made below and above the
threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern
formation in second-harmonic generation. Close to the threshold for pattern formation, beams with opposite
direction of the off-axis critical wave numbers are shown to be highly correlated. This is observed for the
fundamental field, for the second-harmonic field, and also for the cross-correlation between the two fields.
Nonlinear correlations involving the homogeneous transverse wave number, which are not identified in a
linearized analysis, are also described. The intensity differences between opposite points of the far fields are
shown to exhibit sub-Poissonian statistics, revealing the quantum nature of the correlations. We observe twin
beam correlations in both the fundamental and second-harmonic fields, and also nonclassical correlations
between them.

DOI: 10.1103/PhysRevA.66.013809 PACS number~s!: 42.50.Dv, 42.50.Lc, 42.65.Sf
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I. INTRODUCTION

Pattern formation has been an active area of researc
many diverse systems@1#. Numerous similarities to patter
formation in other systems have been reported in recent s
ies in nonlinear optics@2–6#. However similar, nonlinear op
tics also displays properties that are wholly unique due to
relevance of quantum aspects in optical systems, one m
festation of this is the inevitable quantum fluctuations
light. In the last decade an effort has been made to study
interplay in the spatial domain between optical pattern f
mation, known from classical nonlinear optics, and the qu
tum fluctuations of light@7,8#. New nonclassical effects suc
as quantum entanglement and squeezing in patterns
predicted@8,9#. Another interesting example is the phenom
enon of quantum images: below the instability threshold,
formation about the pattern is encoded in the way the qu
tum fluctuations of the fields are spatially correlated@10#.

Nonlinearx (2) materials immersed in a cavity have show
most promising quantum effects. A paradigm of spatiote
poral quantum behavior has been the optical parametric
cillator ~OPO!, which despite its striking simplicity is able t
display highly complex behavior@11–13#. In the degenerate
OPO, pump photons are down-converted to signal photon
half the frequency and with a high degree of quantum co
lation. This might be attributed to the fact that the sign
photons are created simultaneously conserving energy
momentum, leading to the notion of twin photons. In t
opposite process of second-harmonic generation~SHG! fun-
damental photons are up-converted to second-harmonic
tons at the double frequency. On a classical level, both
OPO and intracavity SHG display similar spatiotemporal
havior. The essential difference between them is that in
1050-2947/2002/66~1!/013809~17!/$20.00 66 0138
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OPO an oscillation threshold for the process exists, wh
simultaneously acts as the threshold for pattern format
On the contrary, SHG always takes place no matter
strength of the pump field, but there is a threshold that ma
the onset of pattern formation. This gives pronounced diff
ences with the OPO in the linearized behavior below
threshold for pattern formation. In the OPO the pump and
signal fields effectively decouple and only the latter becom
unstable at threshold. At a microscopic level, the behavio
the OPO close to the threshold can be understood in term
a unique process in which a pump photon decays into
signal photons with opposite wave numbers. In SHG the f
damental and second-harmonic fields are coupled and
become unstable at threshold. This complicates the pic
mainly by the number of microscopic mechanisms that
relevant to describe the pattern formation process. But
complexity, on the other hand, is likely to generate intere
ing correlations between the fundamental and the seco
harmonic field. Recently, transverse quantum properties
the singly resonant SHG setup were investigated@14#. There,
squeezing in the fundamental output was observed clos
the critical wave number, but since the second-harmoni
not resonated the question of possible correlations betw
the two fields was not addressed. However, since the sec
harmonic in the singly resonant case is given directly a
function of the fundamental, correlations similar to the on
observed in the fundamental should be expected. In this
per we will consider the case of doubly resonant SHG w
the aim of investigating the spatial correlations not on
within each field ~fundamental field and second-harmon
field!, but also between the two fields.

For this purpose we use the formalism of qua
probability distributions@15#. Choosing the use of theQ rep-
©2002 The American Physical Society09-1
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resentation we are able to derive a set of nonlinear Lang
equations that describes the time evolution of the quan
fields in the SHG setup~Sec. II!. In Sec. III, the linear sta-
bility analysis of this system will be discussed and a pro
regime of parameters specified, for which the formali
adopted here is applicable. Section IV will be devoted to
analysis, on a microscopic level, of the implications of t
three-wave interactions in the nonlinear crystal. These c
siderations allow one to identify the most important spa
correlations expected in this two-field system and to de
suitable quantities to be calculated. In particular, we w
focus on equal time correlation functions of intensity flu
tuations and we will study photon number variances wh
looking for nonclassical features of the intracavity fields.
systematic study of the spatial correlations is presented
through analytical results in the framework of a lineariz
theory below the threshold for pattern formation~Sec. V!,
and also through extensive numerical simulations of the n
linear Langevin equations reported below~Sec. VI! and
above~Sec. VII! the threshold for pattern formation. We co
clude in Sec. VIII.

II. NONLINEAR QUANTUM MODEL
FOR INTRACAVITY SHG

We consider a nonlinearx (2) material with type I phase
matching immersed in a cavity with a high reflection inp
mirror M1 and a fully reflecting mirrorM2 at the other end,
cf. Fig. 1. The cavity is pumped at the frequencyv1 and
through the nonlinear interaction in the crystal photons
frequencyv252v1 are generated. This is the process
SHG. The cavity supports a discrete number of longitudi
modes, and we will consider the case where only two
these modes are relevant, namely the modev1,cav closest to
the fundamental frequency andv2,cav closest to the second
harmonic frequency. In the setup shown in Fig. 1v2,cav
52v1,cav, but we will allow the cavity resonances to b
independent in order to control the detunings individua
The pump beam propagates along thez direction and using
the mean field approximation, variations in thez direction
are averaged out. This approach is justified as long as
losses and detunings are small. Due to diffraction the tra
verse section perpendicular to thez direction spanned by the
xy plane also comes into play. We consider the simple o
dimensional~1D! case where only one of the transverse
rections is relevant, so variations along they direction are
neglected and only thex direction is taken into account. Thi
could be achieved experimentally by, e.g., using a slit ap
ture between pump and crystal, as done in Ref.@16#, or use a
waveguide crystal confining the field in one direction. L
Â1(x,t) andÂ2(x,t) denote the 1D intracavity boson oper
tors @17# of the fundamental field~FH! and second-harmoni

FIG. 1. The model setup in a top view.
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field ~SH!, respectively. They obey the following equal tim
commutation relation:

@Âi~x,t !,Âj
†~x8,t !#5d i j d~x2x8!, i , j 51,2. ~1!

The Hamiltonian operator describing SHG including diffra
tion can be written as done in Ref.@13# for the OPO,

Ĥ5Ĥ free1Ĥ int1Ĥext, ~2!

where the free Hamiltonian is given by

Ĥ free5\E dxÂ1
†~x,t !S 2d12

c2

2v1

]2

]x2D Â1~x,t !

1\E dxÂ2
†~x,t !S 2d22

c2

4v1

]2

]x2D Â2~x,t !. ~3!

Hered j5v j2v j ,cav are the detunings from the nearest ca
ity resonances,]2/]x2 describes the diffraction, andc is the
speed of light. The interaction Hamiltonian describes
nonlinear interaction in the material

Ĥ int5
i\g

2 E dx~Â2~x,t !@Â1
†~x,t !#22H.c.!, ~4!

whereg is the nonlinear coupling parameter proportional
thex (2) nonlinearity of the crystal. The external Hamiltonia
describes the effects of the pump injected into the cavity
the fundamental frequency, which is taken to be a class
quantityEin , so we have

Ĥext5 i\E dx~EinÂ1
†~x,t !2Ein* Â1~x,t !!. ~5!

Then the master equation for the density matrixr̂ in the
interaction picture is given by

]r̂

]t
52

i

\
@Ĥ,r̂ #1~ L̂11L̂2!r̂. ~6!

The cavity losses are assumed to occur only through
input coupling mirror to the external continuum of mode
and are here included through the Liouvillian terms

L̂ j r̂5E dxg j~2Âj~x,t !r̂Âj
†~x,t !2 r̂Âj

†~x,t !Âj

2Âj
†~x,t !Âj~x,t !r̂ !, ~7!

whereg j are the cavity loss rates. Here we have assum
that thermal fluctuations in the system can be neglected.

Using the standard approach of expanding the density
trix into coherent states weighted by a quasi-probability d
tribution function, the master equation~6! is mapped onto a
functional equation, depending on the order for creation a
destruction operators@18,19#. For a Hamiltonian that is qua
dratic in the field operators this results in a Fokker-Plan
equation, implying that the dynamical evolution of the d
tribution function may be modeled by an equivalent set
9-2
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classical stochastic Langevin equations. However, due to
contributions of higher order to the Hamiltonian~4! prob-
lems may arise. When using the Wigner representation
evolution equation of the quasi-probability functional co
tains third order derivatives so it is no longer on a Fokk
Planck form, and this means that no equivalent Lange
equations can be found. These third order terms, which h
been shown to model quantum jump processes@20#, are gen-
erally neglected and the resulting Fokker-Planck equa
turns out to be a good approximation to the original proble
When using theP or Q representations problems of negati
diffusion in the Fokker-Planck equation come into play@15#.
To avoid negative diffusion in theP representation, som
techniques have been developed where the phase spa
doubled@21#, but then numerical problems due to diverge
stochastic trajectories generally appear@22,23#. We choose
here to use theQ representation which in a restricted doma
of parameters has a non-negative diffusion matrix and
been shown to be a useful alternative in the similar prob
of calculating nonlinear quantum correlations in the OP
@24#. The Q representation has no singularity problems,
bounded, and always non-negative.

Introducinga i anda i* as thec-number equivalents of the

intracavity boson operatorsÂi and Âi
† , the evolution equa-

tion for the quasi-probability distribution functionQ(a) is

]Q~a!

]t
5S ]

]a1
F ~g12 id1!a12ga1* a22 i

c2

2v1

]2

]x2
2EinG

1
]

]a2
F ~g22 id2!a21

g

2
a1

22 i
c2

4v1

]2

]x2G
2

g

2
a2

]2

]a1
2

1g1

]2

]a1]a1*
1g2

]2

]a2]a2*

1c.c.D Q~a!, ~8!

with a5$a1 ,a1* ,a2 ,a2* %. This is just an extension to th
diffractive case of the result obtained by Savage@25#. Equa-
tion ~8! has the form of a Fokker-Planck equation, and it h
positive diffusion if

ua2u,2
g1

g
. ~9!

As shown below, it is possible to fix the parameters of
system in such a way that the stable solution for the SH fi
is well below the value 2g1 /g. Fluctuations around this
stable solution are small, so that the probability violating
condition ~9! is almost zero. Neglecting then stochastic t
jectories violating this condition, we may write a set
equivalent Langevin stochastic equations by applying the
formalism for the stochastic integration@26#. We then obtain
the following nonlinear Langevin equations
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] ta1~x,t !5~2g11 id1!a1~x,t !1ga1* ~x,t !a2~x,t !

1 i
c2

2v1

]2

]x2
a1~x,t !1Ein1A2g1j1~x,t !,

~10a!

] ta2~x,t !5~2g21 id2!a2~x,t !2
g

2
a1

2~x,t !

1 i
c2

4v1

]2

]x2
a2~x,t !1A2g2j2~x,t !,

~10b!

with multiplicative Gaussian white noise sources correla
as follows

^j i* ~x,t !j j~x8,t8!&5d i j d~x2x8!d~ t2t8!, ~11a!

^j2~x,t !j2~x8,t8!&50, ~11b!

^j1~x,t !j1~x8,t8!&52
ga2~x,t !

2g1
d~x2x8!d~ t2t8!.

~11c!

We rescale space and time according to

t̃ 5tg1 , x̃5x/ l d , ~12!

wherel d is the characteristic length scale given by

l d
25

c2

2g1v1
. ~13!

We also normalize the fields and noise according to

Aj~x,t !5a j~x,t !
g

g1
, j̃ j~x,t !5j j~x,t !A l d

g1
,

E5Ein

g

g1
2

. ~14!

This allows us to rewrite the Langevin equations in dime
sionless form:

] t̃A1~ x̃, t̃ !5~211 iD1!A1~ x̃, t̃ !1A1* ~ x̃, t̃ !A2~ x̃, t̃ !

1 i
]2

] x̃2
A1~ x̃, t̃ !1E1A 2

nth
j̃1~ x̃, t̃ !, ~15a!

] t̃A2~ x̃, t̃ !5~2g1 iD2!A2~ x̃, t̃ !2
1

2
A1

2~ x̃, t̃ !

1
i

2

]2

] x̃2
A2~ x̃, t̃ !1A2g

nth
j̃2~ x̃, t̃ !, ~15b!

whereg5g2 /g1 and D j5d j /g1, andE may be taken real.
Moreover we have introduced
9-3
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BACHE et al. PHYSICAL REVIEW A 66, 013809 ~2002!
nth5
g1

2l d

g2
, ~16!

which in the OPO coincides with the number of photons
the characteristic ‘‘area’’l d required to trigger the oscillation
The noise strength is seen to scale likenth

21/2. The normal-
ized noise sources are correlated by

^j̃ i* ~ x̃, t̃ !j̃ j~ x̃8, t̃ 8!&5d i j d~ x̃2 x̃8!d~ t̃ 2 t̃ 8!, ~17a!

^j̃2~ x̃, t̃ !j̃2~ x̃8, t̃ 8!&50, ~17b!

^j̃1~ x̃, t̃ !j̃1~ x̃8, t̃ 8!&52
A2~ x̃, t̃ !

2
d~ x̃2 x̃8!d~ t̃ 2 t̃ 8!.

~17c!

These noise sources turn out only to be defined for

uA2~ x̃, t̃ !u,2, ~18!

which coincides with the condition~9! for a positive diffu-
sion expressed in terms of the rescaled fields.

In the following the tildes are dropped, and only norm
ized dimensionless equations are considered. We will a
use the terminologyv[v1 and 2v[v2.

III. LINEARIZED EQUATIONS
AND BIFURCATION DIAGRAM

In this section we consider the linearization of the nonl
ear Langevin equations in theQ representation around th
homogeneous steady state solutions below the threshold
pattern formation. This approach relies on the assump
that the fluctuations are small with respect to the field m
values, and therefore we expect this approach to break d
close to the instability threshold. We will come back lat
~Sec. VI B! to the question of the validity of the linear ap
proximation. We write the fields asAj (x,t)5Aj1b j (x,t),
where b j (x,t) represent the fluctuations aroundAj . The
classical homogeneous valuesAj of the fields are given by
the homogeneous steady state solutions of the determin
limit ( nth→`) of Eqs.~15!, as found in Ref.@6#. Using this
in Eqs.~15! we find the following set of linearized equation

] tb1~x,t !5~211 iD1!b1~x,t !1A2b1* ~x,t !1A1* b2~x,t !

1 i
]2

]x2
b1~x,t !1A 2

nth
j1~x,t !, ~19a!

] tb2~x,t !5~2g1 iD2!b2~x,t !2A1b1~x,t !

1
i

2

]2

]x2
b2~x,t !1A2g

nth
j2~x,t !. ~19b!

The correlations of the stochastic sourcesj i(x,t) in the lin-
earized limit become

^j i* ~x,t !j j~x8,t8!&5d i j d~x2x8!d~ t2t8!, ~20a!
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^j1~x,t !j1~x8,t8!&52
A2

2
d~x2x8!d~ t2t8!, ~20b!

^j2~x,t !j2~x8,t8!&50. ~20c!

With A2 being merely a constant, the noise in the line
approximation is not multiplicative any more. However, as
the nonlinear equations we have the restriction

uA2u,2. ~21!

We would like to mention that the Wigner representation,
the linear regime, would lead to equivalent results witho
suffering from any limitation since it satisfies a Fokke
Planck equation for any value ofuA2u. However, for the sake
of a consistent presentation of our results we have chose
consider theQ representation also in the linear case.

It is instructive to introduce the spatial Fourier transfor
of the fluctuations

b j~k,t !5E
2`

` dx

A2p
b j~x,t !eikx. ~22!

In the following we use the term far field for these intraca
ity Fourier modes, a term normally referring to the Four
modes of the fields outside the cavity. Considering Eqs.~19!
and their complex conjugates, it is readily shown that th
amplitudesb j (k,t) fulfill a set of equations which can b
written in the following matrix form:

] tS b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D 5M ~k!S b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D
1A 2

nthS h1~k,t !

h1* ~2k,t !

Agh2~k,t !

Agh2* ~2k,t !

D , ~23a!

M ~k!5S s1~k! A2 A1* 0

A2* s1* ~k! 0 A1

2A1 0 s2~k! 0

0 2A1* 0 s2* ~k!
D , ~23b!

where s1(k)5211 i (D12k2) and s2(k)52g1 i (D2
2k2/2) have been introduced and each noise termh j (k,t) is
the Fourier transform of the noise term appearing in the r
space linearized Langevin equations~19!. Their correlations
are given by

^h i* ~k,t !h j~k8,t8!&5d i j d~k2k8!d~ t2t8!, ~24a!

^h1~k,t !h1~k8,t8!&52
A2

2
d~k1k8!d~ t2t8!, ~24b!
9-4
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^h2~k,t !h2~k8,t8!&50. ~24c!

The linear stability of the classical equations obtained
the nth→` limit of Eqs. ~19! was investigated by Etrich
et al. @6#. A rich variety of instabilities was shown to exist:
self-pulsing instability, that leads to oscillations of the hom
geneous steady states without any transverse structure,
present for all parameters. The oscillatory transverse insta
ity leading to patterns traveling in space and time was o
present for certain parameters and branched out from
self-pulsing instability. Bistability was demonstrated f
large detunings of same sign and forg small. Most impor-
tantly, for all parameters also stationary transverse insta
ties were found to exist, i.e., instabilities at a critical tran
verse wave numberk5kc and with zero imaginary
eigenvalue. It was shown that stripe-type solutions exist
are always unstable, and numerical simulations showed
instead hexagons are the dominating stationary transv
instability. The 1D configuration we have chosen to consi
here has the advantage that the pattern will always be a s
and therefore leads to simpler interpretation of the corre
tions. We will choose a range of parameters in which
stationary transverse instability is accessible as the prim
bifurcation. This bifurcation is supercritical in the 1D mode

The choice of parameters must take into account the
quirement of applicability of theQ representation. One find
that Eq.~21! can only be satisfied forD1.0 @27#. Using the
expressions presented in Ref.@6# and fixing D152.0 andg
50.5 we obtain the bifurcation diagram shown in Fig. 2@28#.
We observe that forD2,0 it is possible to obtain stationar
patterns~solid line! as the primary bifurcation at a critica
value of the pump,Et ; increasing the pump beyondEt even-
tually the system will also become self-pulsing unstable~dot-
ted line!. For D2.0 the transverse oscillatory bifurcatio
~dashed line! is the primary one, and therefore travelin
waves are observed in this region. The bistable area is
cated forD2.8.3 and hence beyond the range shown he

Expressing the onset of transverse instability, seen in
2, in terms of the intracavity value of the SH we have t
bifurcation diagram for the transverse instability shown
Fig. 3. We see that forD2,0 we are well below the limit for

FIG. 2. Stability diagram forD152.0 and g50.5, showing
transverse stationary instability~solid line!, transverse oscillatory
instability ~dashed line!, and self-pulsing instability~dotted line!.
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positive diffusion@Eq. ~21!#. Therefore the probability of tra-
jectories violating the condition~18! of the nonlinear equa-
tions is almost zero@29#. For D2.0, increasingg or de-
creasingD1 towards zero, this threshold gets closer touA2u
52.

We will therefore use the parametersD152.0, D25
22.0, andg50.5 in the rest of this paper, which gives
pattern formation threshold ofEt57.481 757 and a critica
wave numberkc51.833. The noise strength is set tonth
5108 which is a typical value for the cavity setup discuss
here@30#.

The main task of the following section is to identify th
most important correlations we expect to find in the syste
For this purpose it is useful to have a good knowledge of
spatial structures that emerge in the system.

Numerical simulations@31# of the nonlinear Eqs.~15!
confirmed the instability at a finite transverse wave num
k5kc predicted by the linear stability analysis. Above th
threshold for pattern formation modulations were observ
around the steady state with wavelengths correspondin
kc . This is shown in Fig. 4 where the far field intensi
shows distinct peaks atk50, corresponding to the homoge
neous background, and atk56kc corresponding to the
modulations observed in the near field, as well as hig
harmonics.

FIG. 3. Transverse instability forD152.0 andg50.5 shown for
the intracavity second-harmonic field, along with the limit for theQ
representation,uA2u,2.

FIG. 4. Numerical simulation of the Langevin equations abo
threshold withE/Et51.01 andL5102.84. Left: The absolute valu
of the near field of the FH~above! and SH~below!. Right: Far field
average intensity of FH,̂uA1(k)u2&. The far field of the SH shows
a similar structure.
9-5



as
o

t
yp
s
t

ne
a
on
in
t

tia

n
ia
ol
er
at
ar
an
-
t

at
it
ia

ns
fa
a
ca
tio
a
ha
ar
a
t

rre-
are

y

-
,
-
the
or-

of
ify-
ken

must
aws.
pro-
the
ve
a

H

to
stem,

eme
th

wo
rsa,

sid-
ine

ove,
nd

ho-
he
alue
ns.

f a
of

BACHE et al. PHYSICAL REVIEW A 66, 013809 ~2002!
Below threshold the quantum noise will excite the le
damped modes and precursors of the spatial pattern are
served. This is shown in Fig. 5 where a space-time plo
presented for the FH near and far field. Clearly a stripe-t
pattern is formed, but as time progresses the noise diffu
the pattern@10,32# so that averaging over time will wash ou
this emerging structure and a spatially homogeneous
field will remain. On the contrary, as we will show, the sp
tial correlation functions do encode precise informati
about the emerging pattern, even after this time averag
has been carried out, as illustrated through the concep
quantum images@10#.

IV. CORRELATIONS, PHOTON INTERACTION, AND
PATTERN FORMATION

Our general objective is the investigation of the spa
intracavity field correlations emerging in this system as
result of the coupling of FH and SH fields through the no
linearity of the crystal, and the implications of the spat
instability on these correlations. This study has a two-f
purpose: First, to obtain a precise picture on how patt
formation occurs in cavity SHG. In particular, we will aim
identifying the relevant mechanisms, in terms of element
three-wave processes that are important for the underst
ing of the intracavity field dynamics. Second, it will be in
teresting to investigate whether these correlations are
manifestation of nonclassical states of the fields. Such st
are identified by investigating the statistics of the intracav
intensities, looking in particular for possible sub-Poisson
features@33#.

A. Photon interaction

We will start by investigating the equal time correlatio
between intensity fluctuations at different points in the
field. The intensity of each field being directly proportion
to the number of photons in the corresponding mode, we
relate the intensity fluctuations to the creation or destruc
of photons. The idea is that the way these fluctuations
correlated gives information about the microscopic mec
nisms that take place in the cavity and, ultimately, that
involved in the pattern formation process. Generally spe
ing, a positive correlation tells us that there should exis

FIG. 5. Numerical simulation withE/Et50.9999 and L
5103.057, showing the space-time evolution ofuA1u in the near
field ~left! and far field~right!. A similar behavior is seen for the
SH.
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coherent mechanism that creates simultaneously the co
sponding photons. The following normalized correlations
considered:

Ci j
n ~k,k8!5

^dN̂i~k,t !dN̂j~k8,t !&

A^dN̂i~k,t !2&^dN̂j~k8,t !2&
, ~25!

where the superscriptn denotes normalization. The intensit
fluctuations are given bydN̂j (k,t)5N̂j (k,t)2^N̂j (k,t)&,
which involves the photon number operatorN̂j (k,t)
5Âj

†(k,t)Âj (k,t). The normalization of the correlations im
plies thatCi j

n (k,k8)51 for perfectly correlated fluctuations
whereasCi j

n (k,k8)521 will be the signature of perfect an
ticorrelation between the intensity fluctuations. As usual,
absence of any correlation will translate into a vanishing c
relation functionCi j

n (k,k8)50. In the following we will refer
to C11

n (k,k8) andC22
n (k,k8) as self-correlations~between dif-

ferent modes of a given field! and to C12
n (k,k8) as cross-

correlations~between modes in different fields!.
As a guideline for the investigation of the properties

these correlation functions, the first step consists of ident
ing the basic photon processes when the system is ta
close to a transverse instability. These photon processes
obey the standard energy and momentum conservation l
Whereas the former merely implies that each elementary
cess must connect one SH photon with two FH photons,
latter will translate into a condition on the transverse wa
numbers. Keeping in mind that the cavity is pumped with
homogeneous field at the frequencyv, the first process to
consider consists of two homogeneous FH photons,@v#(k
50)[@v#(0), combining to give one homogeneous S
photon, @2v#(0), which will be written as@v#(0)1@v#
3(0)→@2v#(0). This is encoded in the Hamiltonian term
Â1

2Â2
† in Eq. ~4!. The inverse process, which corresponds

the degenerate OPO process, also takes place in the sy
as shown by the presence of the term (Â1

†)2Â2 in Eq. ~4!.
Elaborating on these considerations we propose the sch
in Fig. 6 as the simplest way of obtaining a pattern in bo
fields.

~1! The first step is the basic SHG channel where t
homogeneous FH photons give a SH photon and vice ve
i.e., the channel@v#(0)1@v#(0)↔@2v#(0). It is important
to realize that fluctuations around the steady state are con
ered, hence it is not considered how the FH photons comb
to give the steady state SH photons via the channel ab
but rather how the fluctuations invoke the channel beyo
this.

~2! The second step is the down-conversion of a SH p
ton into two FH photons. Momentum conservation in t
process implies that the two FH photons have the same v
of the transverse wave number but with opposite sig
These are called twin photons since an emission of a@v#
(1k8) photon must be accompanied by an emission o
@v#(2k8) photon, and they therefore show a high degree
correlation. This channel written as@2v#(0)↔@v#(2k8)
1@v#(1k8) generates off-axis FH photons.
9-6
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QUANTUM PROPERTIES OF TRANSVERSE PATTERN . . . PHYSICAL REVIEW A66, 013809 ~2002!
~3! Off-axis SH photons are obtained by combining t
created off-axis FH photon from step~2! with a photon from
the homogeneous background to give a SH photon, which
momentum conservation must have the same wave num
as the off-axis FH photon. This channel can be written
@v#(0)1@v#(1k8)↔@2v#(1k8).

Of course, these are not the only three-wave proce
which are kinematically allowed in the nonlinear cryst
since the interaction Hamiltonian~4! induces any process o
the form @v#(k8)1@v#(k9)↔@2v#(k81k9), with arbitrary
wave numbersk8 andk9. In fact, the basic scheme we pro
pose in Fig. 6 only takes into account those three-wave p
cesses which involve at least one photon of the homogen
background fields. Empirically, this choice is motivated
the observation that below the threshold these are the
field modes that are macroscopically populated, so that
process involving them should be stimulated in analogy
what occurs in standard stimulated emission. Formally,
selection of these particular elementary processes co
sponds precisely to the approximation made by lineariz
the field equations around the steady state solution. As
easily be checked, the full equations for the far field fluctu
tions contain additional terms quadratic in the fluctuat
amplitudes, which indeed account for other three-wave p
cesses. Linearizing we are left with Eq.~23a!, which only
takes into account the processes represented by steps~2! and
~3!. These processes translate into nondiagonal elemen
the matrixM (k) of the linear system, and as a consequen
for any value ofk, the time evolution of the four amplitude
b1(k,t), b1(2k,t), b2(k,t), andb2(2k,t) will be coupled.
This coupling is expected to translate into correlations
tween the intensity fluctuationsdI 1(k), dI 1(2k), dI 2(k)
anddI 2(2k).

This preliminary observation already allows us to give
more explicit interpretation of the basic scheme of Fig.
Splitting the dynamics of the intracavity fields into indepe
dent elementary steps, as suggested in the discussio

FIG. 6. The basic picture of pattern formation on a microsco
level through SHG. The single arrows (→) symbolize FH photons,
while double arrows (⇒) symbolize SH photons. The dashed a
rows are photons from the homogeneous background.
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Fig. 6, would not explain any correlations either betwe
@v#(k8) and @2v#(2k8) nor between@2v#(k8) and @2v#
3(2k8). Hence the inspection of the linearized equatio
shows that the interpretation of Fig. 6 in terms of a cascad
too naive. Instead, we have to understand steps~2! and~3! as
two coherent, joint processes, which generate simultaneo
correlations between the four modes@v#(k8), @v#(2k8),
@2v#(k8), and@2v#(2k8). Finally, it is important to stress
that the linearized analysis does not predict any correla
between intensity fluctuations in field modes with wa
numbers of different modulus. Mathematically, this is due
the fact that in the linear approximation all correlation fun
tions ~25! have the structure

Ci j ~k,k8!5Ci j
(2)~k!d2~k2k8!1Ci j

(1)~k!d2~k1k8!,
~26!

as will be shown in the next section. Close enough to thre
old, however, this will not be true any more because of
emergence of additional correlations of nonlinear nature.

Let us finally briefly address the fundamental differen
between OPO and SHG: Whereas in SHG, the two fieldsA1
andA2 are always nonzero regardless of the pump level
the OPO case below the oscillation thresholdA2 is fixed by
the pump andA150. Considering the scheme presented
Fig. 6, the vanishing ofA1 implies that there is no macro
scopic population of the mode@v#(0) and therefore step~3!
of Fig. 6 is not present. The route to pattern formation sim
consists of step~2! in Fig. 6, generating correlations betwee
dN̂1(k,t) anddN̂1(2k,t). Mathematically, the consequenc
for the stability of the homogeneous solution is that the t
equations~19! effectively decouple and that only the FH b
comes unstable at the threshold.

B. Correlations below shot noise

Once correlations between intensity fluctuations are id
tified, it is interesting to investigate if they are connected
nonclassical states of the intracavity fields. A coherent fi
obeys Poissonian photon statistics, which implies that
variance and the mean of the photon number operatorN̂ are
equal. Let us consider the photon number operators ass
ated with the sum and difference of the intensities at differ
far-field points N̂i(k)6N̂j (k8), where N̂i(k)5âi

†(k)âi(k)

and N̂j (k)5â j
†(k)â j (k) are the number operators of tw

statesâi(k,t) andâ j (k,t). Since we will consider equal time
correlation functions in the steady state of the system, fr
now on we will drop the time argument of the field operato
Taking out the special casei 5 j and k85k which will be
treated separately, the variance expressed in normal o
~indicated by dots! reads

Var@N̂i~k!6N̂j~k8!#5:Var@N̂i~k!6N̂j~k8!#:

1^:N̂i~k!:&@ âi~k!,âi
†~k!#

1^:N̂j~k8!:&@ â j~k8!,â j
†~k8!#,

~27!

c

9-7
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BACHE et al. PHYSICAL REVIEW A 66, 013809 ~2002!
where Var(X)[^X2&2^X&2. For a coherent state, the norm
ordered variance vanishes, and the mean, given by the
two terms in Eq.~27!, represents the shot noise level for t
considered quantity

CSN5^:N̂i~k!:&@ âi~k!,âi
†~k!#1^:N̂j~k8!:&@ â j~k8!,â j

†~k8!#.
~28!
w
tio
e

e
or

01380
st
If the normal ordered variance becomes negative

:Var~N̂i6N̂j !:,0, ~29!

the variance becomes less than the mean, indicating
Poissonian behavior. Such a nonclassical state is ident
when the correlation normalized to the shot-noise level,
fined as
ring in
Langevin

s,
Ci j
(6)~k,k8![

:Var@N̂i~k!6N̂j~k8!#:

^:N̂i~k!:&@ âi~k!,âi
†~k!#1^:N̂j~k8!:&@ â j~k8!,â j

†~k8!#
11, ~30!

is such thatCi j
(6)(k,k8),1. The computation of this quantity requires one to write the normal ordered quantities appea

Eq. ~30! in terms of antinormal ordered quantities, since these are the quantities that are computed as averages in our
equations associated with theQ representation. Using the identities

AN̂i~k!A5âi~k!âi
†~k!5:N̂i~k!:1@ âi~k!,âi

†~k!#, ~31a!

AN̂i
2~k!A5âi~k!âi~k!âi

†~k!âi
†~k!

5:N̂i~k!2:14:N̂i~k!:@ âi~k!,âi
†~k!#

12@ âi~k!,âi
†~k!#2, ~31b!

with three dots indicating antinormal ordering, Eq.~30! reads, when expressed in terms of antinormal ordered quantitie

Ci j
(6)~k,k8!5

AVar@N̂i~k!6N̂j~k8!#A2^AN̂i~k!A&@ âi~k!,âi
†~k!#2^AN̂j~k8!A&@ â j~k8!,â j

†~k8!#

^AN̂i~k!A&@ âi~k!,âi
†~k!#1^AN̂j~k8!A&@ â j~k8!,â j

†~k8!#2@ âi~k!,âi
†~k!#22@ â j~k8!,â j

†~k8!#2
. ~32!
ed

s

Then, e.g., the normalized correlation Var@N̂1(k)6N̂1
(2k)#/CSN may be found by settingi 5 j 51 andk852k.
Equation~32! is valid for k,k8Þ0, while the special casek
50 will be addressed in the specific cases.

V. LINEARIZED CALCULATIONS BELOW THRESHOLD

Below threshold, the linear approximation scheme allo
one to derive semianalytical expressions for the correla
functions defined in the previous section. These may be
pressed in terms of the auxiliary correlation function

Ci j
Q~k,k8!5^AdN̂i~k,t !dN̂j~k8,t !A&, i , j 51,2

5^uAi~k,t !u2uAj~k8,t !u2&

2^uAi~k,t !u2&^uAj~k8,t !u2&, ~33!

where the superscriptQ indicates that the average is don
with the Q representation, corresponding to antinormal
dered quantities, as indicated in the first line of Eq.~33!.
s
n
x-

-

The starting point of our analysis is the set of lineariz
Langevin equations~23a! which have the exact solutions

S b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D 5eM (k)tS b1~k,0!

b1* ~2k,0!

b2~k,0!

b2* ~2k,0!

D 1A 2

nth
eM (k)t

3E
0

t

dt8e2M (k)t8S h1~k,t8!

h1* ~2k,t8!

Agh2~k,t8!

Agh2* ~2k,t8!

D .

~34!

The first term in Eq.~34! describes how the intracavity field
9-8
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QUANTUM PROPERTIES OF TRANSVERSE PATTERN . . . PHYSICAL REVIEW A66, 013809 ~2002!
with arbitrary initial conditions relax to the steady state s
lution and it does not contribute to the steady state corr
tions. The second term in Eq.~34! gives the response of th
intracavity fields to the vacuum fluctuations entering the c
ity through the partially transparent input mirror. Startin
from Eq. ~34!, it is possible to derive semianalytical expre
sions for the correlations~33!

Ci j
Q~k,k8!5^ub i~k,t !u2ub j~k8,t !u2&

2^ub i~k,t !u2&^ub j~k8,t !u2&

12Re$Ai* Aj^b i~k,t !b j* ~k8,t !&

1Ai* Aj* ^b i~k,t !b j~k8,t !&%d~k!d~k8!, ~35!

where Re$•% denotes the real part. Whereas the first t
terms in the right-hand side~rhs! of Eq. ~35! measure the
correlations in the intensities of the fluctuations, the last t
terms can be traced back to interferences between the
tuations and the homogeneous component of each fi
Since these interferences only contribute to the equal t
correlations whenk5k850, we will first concentrate on
k,k8Þ0 and come back later to this special case. Hencefo
unless otherwise specified we consider the casek,k8Þ0.

The Gaussian character of the fluctuations in this line
ized Langevin model allows us to factorize Eq.~35! in terms
of second order moments of the field fluctuations

Ci j
Q~k,k8!5u^b i~k,t !b j* ~k8,t !&u21u^b i~k,t !b j~k8,t !&u2.

~36!

The field correlations ^b i(k,t)b j* (k8,t)& and
^b i(k,t)b j (k8,t)& can be best evaluated for the solution E
~34! if we introduce the set of eigenvectors$v( l )(k)% l 51, . . . ,4
of the matrixM (k), defined through

M ~k!v( l )~k!5l ( l )~k!v( l )~k!. ~37!

An arbitrary four-component vectorw can be decompose
on this basis

w~k!5S w1~k!

w2~k!

w3~k!

w4~k!

D 5(
l 51

4

w( l )~k!v( l )~k!, ~38!

and its componentsw( l ) in the new basis are calculated v
the linear transformation

w( l )~k!5 (
m51

4

Tlm~k!wm~k!. ~39!

This involves a 434 matrix Tlm(k) calculated asT(k)
5V(k)21 with Vlm(k)5v l

(m)(k). Decomposing now the
noise vector appearing on the rhs of Eq.~34! on this basis
01380
-
a-

-

o
c-

ld.
e
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r-
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S h1~k,t8!

h1* ~2k,t8!

Agh2~k,t8!

Agh2* ~2k,t8!

D 5(
l 51

4

h ( l )~k,t8!v( l )~k!, ~40!

allows us to rewrite Eq.~34! in the large time limit as

S b1~k,t !

b1* ~2k,t !

b2~k,t !

b2* ~2k,t !

D 5A 2

nth
E

0

t

dt8

3(
l 51

4

el( l )(k)(t2t8)h ( l )~k,t8!v( l )~k!.

~41!

The needed field correlations are given as

^b i~k,t !b j* ~k8,t !&

5
2

nth
E

0

t

dt8E
0

t

dt9 (
l ,m51

4

v2i 21
( l ) ~k!v2 j 21

(m) * ~k8!

3el( l )(k)(t2t8)el(m)* (k8)(t2t9)^h ( l )~k,t8!h (m)* ~k8,t9!&,

~42a!

^b i~k,t !b j~k8,t !&

5
2

nth
E

0

t

dt8E
0

t

dt9 (
l ,m51

4

v2i 21
( l ) ~k!v2 j 21

(m) ~k8!

3el( l )(k)(t2t8)el(m)(k8)(t2t9)^h ( l )~k,t8!h (m)~k8,t9!&.

~42b!

The noise correlations in the new bas
^h ( l )(k,t8)h (m)* (k8,t9)& and ^h ( l )(k,t8)h (m)(k8,t9)& are

^h ( l )~k,t8!h (m)* ~k8,t9!&5Alm~k!d~k2k8!d~ t82t9!,
~43a!

^h ( l )~k,t8!h (m)~k8,t9!&5Blm~k!d~k1k8!d~ t82t9!,
~43b!

where the matrix elements of the 434 matricesA(k) and
B(k) can easily be evaluated in terms of the matrix eleme
Tlm[Tlm(k) as

Alm~k!5Tl1Tm1* 2
A2

2
Tl1Tm2* 1Tl2Tm2* 2

A2*

2
Tl2Tm1*

1gTl3Tm3* 1gTl4Tm4* , ~44a!

Blm~k!5Tl1Tm22
A2

2
Tl1Tm11Tl2Tm12

A2*

2
Tl2Tm2

1gTl3Tm41gTl4Tm3 . ~44b!
9-9
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BACHE et al. PHYSICAL REVIEW A 66, 013809 ~2002!
Inserting Eqs.~43! in Eqs. ~42! we can easily carry out the
time integration, and neglecting transient contributions,
end up with the following expressions

lim
t→`

^b i~k,t !b j* ~k8,t !&5
2

nth
Gi j

(2)~k!d~k2k8!, ~45a!

lim
t→`

^b i~k,t !b j~k8,t !&5
2

nth
Gi j

(1)~k!d~k1k8!, ~45b!

with

Gi j
(2)~k!5(

l 51

4

(
m51

4

Alm~k!
v2i 21

( l ) ~k!v2 j 21
(m) * ~k!

2@l ( l )~k!1l (m)* ~k!#
,

~46a!

Gi j
(1)~k!5(

l 51

4

(
m51

4

Blm~k!
v2i 21

( l ) ~k!v2 j 21
(m) ~k!

2@l ( l )~k!1l (m)~k!#
.

~46b!

In terms ofGi j
(2)(k) andGi j

(1)(k), Eq. ~36! is given by

Ci j
Q~k,k8!5

4

nth
2 @ uGi j

(2)~k!u2d2~k2k8!

1uGi j
(1)~k!u2d2~k1k8!#. ~47!

A. Intensity fluctuation correlations

It is now easy to compute the normalized correlati
function Eq.~25!. This involves taking into account the com
mutation relation Eq.~1! which reads

@Âi~k,t !,Âj
†~k8,t !#5d i j

1

nth
d~k2k8!, ~48!

after rescaling space and time according to Eq.~12! and the
operators similar to thec-number fields in Eq.~14!. We fi-
nally find

Ci j
n ~k,k8!5

uGi j
(2)~k!u2

Ah i~k!Ah j~k!

d~k2k8!2

d~0!2

1
uGi j

(1)~k!u2

Ah i~k!Ah j~k!

d~k1k8!2

d~0!2
, ~49!

with h j (k)5Gj j
(2)(k)@Gj j

(2)(k)21/2#, the21/2 in the paren-
thesis reflecting the conversion from antinormal to direct
dering. Unlike the mathematical expression~49! derived for
an ideally infinite system, the correlation functions det
mined from the simulations will have peaks of a finite widt
which will be determined by the discretization ink space
used in the numerical codes, i.e., the inverse of the t
length of the system. This difference, however, will not al
01380
e

-

-
,

al
r

the only relevant information, which is the height of each
these peaks. In fact, the quantities

Cj j
n ~k,2k!5

uGj j
(1)~k!u2

h j~k!
, ~50a!

C12
n ~k,6k!5

uG12
(7)~k!u2

Ah1~k!Ah2~k!
, ~50b!

characterize the strength of the correlations between
modes @v#(k) and @v#(2k), @2v#(k) and @2v#(2k),
@v#(k) and @2v#(k), and @v#(k) and @2v#(2k), respec-
tively. One easily checks thatCii

n (k,k)51, as a result of an
autocorrelation.

All the expressions derived so far are only valid for no
vanishing transverse wave numbers. Atk5k850, we al-
ready observed that there are extra contributions to the e
time correlation function, as expressed by Eq.~35!. Further-
more, in the framework of an expansion in the small para
eterA2/nth, it is obvious that these extra terms even dom
nate, since they scale withub i(k,t)u2;2/nth , whereas the
contributions on the first line of Eq.~35! scale with
ub i(k,t)u4;(2/nth)2. Hence, in the leading order, the corr
lation function atk5k850 is given by

C12
Q ~k,k8!uk5k8505

2d~0!

nth
2Re~A1* A2G12

(2)~0!

1A1* A2* G12
(1)~0!!d~k!d~k8!uk5k850 .

~51!

Similar calculations as before allow us to derive the follo
ing expression for the value of the normalized cro
correlation atk5k850,

C12
n ~0,0!5

Re~A1* A2G12
(2)~0!1A1* A2* G12

(1)~0!!

Az1Az2

, ~52!

wherez j5uA j u2@Gj j
(2)(0)21/4#1Re$Aj*

2Gj j
(1)(0)%.

B. Nonclassical photon number variances

The photon number variances considered in Sec. IV B
be calculated in terms of the auxiliary functionsGi j

(2)(k) and
Gi j

(1)(k) as well. The antinormal ordered quantities in E
~32! can be directly calculated by averages in the Lange
equation, so below threshold the antinormal ordered varia
is for kÞ0,

AVar@N̂i~k!6N̂j~2k!#A5Var@ ub i~k,t !u26ub j~2k,t !u2#.
~53!

Using the commutation relations~48!, the commutators in
Eq. ~32! are @aj (k),aj

†(k)#5d(0)/nth , and the normalized
self-correlations take the form
9-10
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Cj j
(6)~k,2k!5

2~ uGj j
(2)~k!u26uGj j

(1)~k!u2!2Gj j
(2)~k!

Gj j
(2)~k!21/2

. ~54!

Similarly, the cross-correlations are

C12
(6)~k,nk!5

2S (
j

uGj j
(2)~k!u262uG12

(2n)~k!u2D 2(
j

Gj j
(2)~k!

(
j

Gj j
(2)~k!21

, n511,21. ~55!

Whenk5k850 Eq. ~53! is no longer valid. Instead, following the procedure outlined for the normalized correlation
have to the leading orderO(nth

21),

C12
(6)~0,0!54

ReF(
j

Aj*
2Gj j

(1)~0!62A1* ~A2* G12
(1)~0!1A2G12

(2)~0!!G1(
j

uA j u2Gj j
(2)~0!

(
j

uA j u2
21. ~56!
h
w
io
an
w

ul

om

re
ou
a

ee
fo
q
u

lyti-

re-
ed

ore
um-
rn
m-

n

lyti-
The self-correlations become

Cj j
(2)~0,0!50, ~57a!

Cj j
(1)~0,0!54 Re@e2 i2fAjGj j

(1)~0!#14Gj j
(2)~0!21,

~57b!

wherefAj
is the phase ofAj . Note thatCj j

(1)(0,0) is actually

Var@N̂j (0)# normalized to shot noise. The result of Eq.~57a!
is simply because the correlationCj j

(2)(k,k8) amounts to cal-
culating the variance of zero fork5k850.

VI. CORRELATIONS BELOW THRESHOLD

The linearized results of Sec. V give an analytical insig
to the behavior below threshold for pattern formation. Ho
ever, very close to the threshold this linear approximat
breaks down because of critical nonlinear fluctuations,
additional contributions may emerge as, for example, sho
in a vector Kerr model by Hoyueloset al. @34#. Such nonlin-
ear correlations can be calculated through numerical sim
tions of the full nonlinear evolution equations.

In this section we present numerical results obtained fr
simulations of the nonlinear equations~15! below threshold,
with the parameters discussed in Sec. III. Our numerical
sults are compared with the analytical results of the previ
section, and therefore also serve as a cross-check of our
lytical and numerical methods.

A. Linear correlations: Analytical and numerical results

We first consider the strength of the correlations betw
symmetric points in the far fields below the threshold
pattern formation. In Fig. 7 the four quantities defined by E
~25! are plotted. The data are obtained from numerical sim
01380
t
-
n
d
n

a-

-
s

na-

n
r
.
-

lations and from the analytical results of Eqs.~50! and~52!.
Very good agreement is found between numerics and ana
cal results.

There are three main features to be considered in the
sults of Fig. 7. First, all curves present a distinctly peak
behavior around the critical wave numberkc for pattern for-
mation, which means that the corresponding modes are m
strongly correlated than the modes at any other wave n
ber. Manifestly, this behavior is connected with the patte
formation mechanism and is closely related to the pheno
enon of quantum images@10#. Second, we also note that i
all four plots the correlations show a jump atk50. In Figs.

FIG. 7. The linear self-correlations~a! C11
n (k,2k), and ~b!

C22
n (k,2k), and linear cross-correlations~c! C12

n (k,k), and ~d!
C12

n (k,2k) as functions of the transverse wave number forE/Et

50.99. The points are numerical results while the lines are ana
cal results.
9-11
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BACHE et al. PHYSICAL REVIEW A 66, 013809 ~2002!
7~a! and 7~b! it is the trivial manifestation of an autocorrela
tion, since fork50, k and 2k coincide, while in 7~c! and
7~d! the jump is due to the extra interferences with the h
mogeneous background fields as predicted from Eq.~52!.
Finally, we observe that the peaks localized aroundkc are
superimposed onto smooth correlation profiles.

The strong correlations appearing between the modes
sociated with wave numbers aroundkc indicate a strongly
synchronized emission of photons in the modes@v#(1k),
@v#(2k) and@2v#(1k), @2v#(2k). This behavior reflects
the direction of instability of the system. As a matter-of-fa
regardless that all transverse modes of both fields are eq
excited by the vacuum fluctuations entering the cavity,
fluctuations of the intracavity field modes around the criti
wave vector will be less damped than the fluctuations in
other modes. The closer to the threshold, the more the
havior of the intracavity fields will be dominated by th
mode that becomes unstable at the threshold and gives ri
the pattern. In the four-dimensional phase space spanne
the fluctuation amplitudes$b1(k,t),b1* (2k,t),b2(k,t),b2*
(2k,t)%, this mode is characterized by a vector with a giv
direction. What we learn from the correlation functions
that the emerging instability results in an almost perfec
synchronized emission of photons in the modes@v#(1k),
@v#(2k) and @2v#(1k), @2v#(2k).

The dominance of this particular mode when the thresh
is approached is confirmed by the study of the strength
these correlations as a function of the pump. In Fig. 8
follow the height of the peaks atk5kc of the four linear
correlations displayed in Fig. 7, as a function of the pu
level E/Et . The most immediate observation is that all t
correlations become perfect in the limitE→Et . This
asymptotic behavior can be understood from the lineari
fluctuation analysis presented in Sec. V. It is enough to
serve that Eqs.~46! involve the inverse of the real part of th
eigenvalues of the linear system~23a!. The dominance at the
threshold of the undamped eigenmode of the linear sys
~23a! emerges from the fact that here the real part of

FIG. 8. The self-correlationsC11
n (kc ,2kc) ~full line, squares!

and C22
n (kc ,2kc) ~dashed line, circles! and the cross-correlation

C12
n (kc ,2kc) ~dotted line, triangles! and C12

n (kc ,kc) ~dash-dotted
line, diamonds! as functions of the pump normalized to the thres
old. The points are numerical results while the lines are analyt
results.
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associated eigenvalue precisely goes to zero. Thus the
crease in the correlations as we move away from thresh
can be seen as the result of the coexistence of diffe
eigenmodes. Physically the emergence of these correlat
is much less intuitive than the ones in an OPO. As a mat
of-fact, in the OPO below the threshold momentum cons
vation is enough to predict the existence of correlations
tween the fluctuations in the modes@v#(1k) and @v#
(2k). In the presence of the four-mode interaction of SH
the momentum conservation gives a global condition invo
ing all four beams@at @v#(1k), @v#(2k) and @2v#(1k),
@2v#(2k)#. These correlations in fact arise in connecti
with the emergence of an instability.

Turning now to the cross-correlation between the hom
geneous components of the fields, we observe thatC12

n (k
50,k850) in Fig. 7 is negative, reflecting an anticorrelatio
of the photons associated with the FH and SH homogene
waves. In other words, the creation of a photon@2v#(0)
implies the destruction of~two! photons@v#(0) and vice
versa. The origin of this correlation is much simpler to u
derstand than the previous one: The two modes@v#(0) and
@2v#(0) being macroscopically populated, the vacuum flu
tuations simply induce transitions between these two mod
according to step~1! in the scheme in Fig. 6. In Fig. 9 we
plot this correlation as a function of the pump. Compari
the value of the correlations below and above threshold,
observe that very close to, but below, the threshold, the
dency of the curve is reversed and it anticipates the beha
of the correlation above threshold. These are nonlinear
relation effects that will be discussed in Sec. VI B.

Finally, we would like to discuss the smooth contributio
to the correlations displayed in Fig. 7. We first note that th
are not connected with the pattern instability. This w
checked by considering very low pump values for which t
peaks aroundkc completely vanish, while the smooth stru
tures of the curves remain. Considering the central region
the curves, roughly foruku,kc , the most striking observa
tion is the absence of correlations between the fluctuation
the modes@v#(k) and @2v#(k), whereas@v#(k) and @2v#
3(2k) are correlated, as well as@2v#(k) with @2v#(2k).
This behavior seems to indicate the existence of a symm

-
al

FIG. 9. The linear cross-correlationC12
n (k50,k850) as a func-

tion of the pump normalized to the threshold, comparing numer
results~points! with the analytical result~line!. Open~closed! sym-
bols are numerics below~above! Et .
9-12
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QUANTUM PROPERTIES OF TRANSVERSE PATTERN . . . PHYSICAL REVIEW A66, 013809 ~2002!
restoring principle in the dynamics of the intracavity field
As a matter-of-fact, the absence of correlations betw
@v#(k) and @2v#(k) implies that the fluctuations of th
numbers of pair productions through step~2! and the fluc-
tuations of the number of conversions@v#(k)→@2v#(k)
through step~3! occur independently of each other. Howev
while step~2! of Fig. 6 conserves thek→2k symmetry of
the system, step~3! does not. As a consequence, a posit
fluctuation in the number of times step~3! occurs@@v#(k)
1@v#(0)→@2v#(k)#, automatically implies that there wil
be less @v#(k) than @v#(2k) in the system, and more
@2v#(k) than@2v#(2k). The correlations observed may in
dicate that the system will try to restore thek→2k symme-
try by down-converting@2v#(0)→@v#(k)1@v#(2k), pro-
ducing a surplus of@v#(2k) which again will produce more
@2v#(2k). These mechanisms seem to fit well with the re
tive strengths of the correlations observed in the central
gion of Fig. 7. The strongest is alwaysC11

n (k,2k), in agree-
ment with the fact that the twin photon emission is t
principal source of correlations in the system. Weaker is
correlation C12

n (k,2k) and even weakerC22
n (k,2k). This

interpretation is consistent with the way the correlations
k5kc depart from the value 1 at threshold, when the pum
lowered, as displayed in Fig. 8.

We now turn our attention to the study of the fluctuatio
in the sum and difference of the photon numbers at sy
metrical points of the far field. We first consider the tw
beam photon variances for the FH,C11

(6)(k,2k) defined in
Eq. ~30! and shown in Fig. 10. The results are symmet
with respect to the substitutionk→2k, wherefore we plotted
this quantity for positivek, shifting the origin for better view
of the specific behavior atk50. The linearized calculation
predicts sub-shot-noise statistics in the differenceN̂1(k)
2N̂1(2k) for all wave numbers. For large wave numbe
the analytical result for the correlation approaches the va
1/2. It is interesting to keep in mind that for the OPO, t
same quantity is equal to 1/2 independently of the wa
number@35,36#. In the SHG case additional processes tak
place in the cavity result in a smoothk-dependence o
C11

(2)(k,2k). These characteristics do not depend much
the value of pump, and are not changed significantly e

FIG. 10. Photon number variances forE/Et50.99 showing
C11

(2)(k,2k) ~full line, diamonds! and C11
(1)(k,2k) ~dashed line,

squares!. The lines are analytical results while the points are n
merical simulations. The shot-noise levelC51 is indicated by a
thin dotted line.
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when the pump level is taken beyond threshold, cf. Sec. V
Therefore the statistics of the intensity difference are
directly affected by the pattern formation mechanism. A ra
cally different situation occurs for the sum-correlatio
C11

(1)(k,2k), which shows a strong peak aroundk5kc . For
the pump value used in Fig. 10 the peaks correspond
maximum valueC11

(1)(kc ,2kc).35. This behavior is con-
nected with the increase of the fluctuations in the mo
associated with the pattern instability when the threshold
approached, leading to a large excess noise in the statisti
the intensity of the individual modes@v#(k) and @v#(2k).
This excess noise in each intensity cancels when the di
ence N̂1(k)2N̂1(2k) is considered leading to sub
Poissonian statistics, while it is still present in the su
N̂1(k)1N̂1(2k). For largek the correlation approaches 1.
coinciding again with the corresponding value for the OP
Finally, as before, the jumps atk50 are due to contributions
from the homogeneous steady states, cf. Eqs.~56! and ~57!.
The corresponding photon number variancesC22

(6)(k,2k)
for the SH field are shown in Fig. 11. In contrast to the F
correlations there is almost no sub-shot-noise behavior in
difference correlationC22

(2)(k,2k). In other words, the SH
beams only display very weak nonclassical correlations.
for the FH field, the emerging instability does not influen
the noise level inC22

(2)(k,2k), but C22
(1)(k,2k) displays a

large amount of excess noise in the vicinity ofkc . The
asymptotic largek behavior for both correlationsC22

(2)(k,
2k) andC22

(1)(k,2k) is analytically found to correspond t
the shot-noise limit 1.0.

The cross-correlationsC12
(2)(k,k) and C12

(1)(k,k) are
shown in Fig. 12. The linearization approach predicts t
these correlations are always above the shot-noise limit.
thermore, at small wave numbers we note that the varian
of the sum and difference coincide. This can only occ
when the fluctuations in the individual modes@v#(k) and
@2v#(k) are uncorrelated, what was indeed observed in F
7. Moreover, both the sum and difference correlations sho
large excess noise atk5kc , which is slightly weaker for the
difference, as the result of a partial noise cancellation.

The cross-correlationsC12
(2)(k,2k) and C12

(1)(k,2k) are
shown in Fig. 13, and here the difference correlations in
estingly go below the shot-noise limit as long ask is not too
close to the critical wave number. It is worth pointing o

-

FIG. 11. Photon number variances forE/Et50.99 showing
C22

(2)(k,2k) ~full line, diamonds! and C22
(1)(k,2k) ~dashed line,

squares!.
9-13



-

th

i-
rr
F
ee

ut

um
um
u

ec

re

te
re
lin

he

he

k
to

al-
har-
ical
nd

la-
r
e

be-

k
en

the

ng
na-

he
s
s
a
the
r

s

ns

BACHE et al. PHYSICAL REVIEW A 66, 013809 ~2002!
that the differenceN̂1(k)2N̂2(2k) shows nonclassical be
havior while the differenceN̂1(k)2N̂2(k) ~shown in Fig. 12!
does not. This somehow paradoxical situation is related
what was observed in the normalized correlations where
cross-correlation betweenN̂1(k) and N̂2(2k) was stronger
than the almost vanishing cross-correlation betweenN̂1(k)
and N̂2(k). At k5kc a large amount of excess noise dom
nates the behavior of both the sum and the difference co
lation and the two correlations show a pronounced peak.
largek the correlations approach the shot noise limit, as s
for the other cross-correlations in Fig. 12.

Olsen et al. @37# have investigated the system witho
spatial coupling corresponding to our results atk50, and
they find that, for certain detunings, the variance of the s
of the FH and SH intensities are more strongly quant
correlated than the variance of the individual intensities, d
to the anticorrelation between them. Var@N̂1(0)#/CSN and
Var@N̂2(0)#/CSN can be seen from Figs. 10 and 11, resp
tively, at k50. Both are larger than the Var@N̂1(0)
1N̂2(0)#/CSN observed in Figs. 12 and 13, so that our
sults confirm the ones of@37#.

B. Nonlinear correlations: Numerical results

So far we have only considered the correlations predic
by the linearized equations. In order to go beyond this
gime, we use our numerical simulations to search for non

FIG. 12. Photon number variances forE/Et50.99 showing
C12

(2)(k,k) ~full line, diamonds! and C12
(1)(k,k) ~dashed line,

squares!.

FIG. 13. Photon number variances forE/Et50.99 showing
C12

(2)(k,2k) ~full line, diamonds! and C12
(1)(k,2k) ~dashed line,

squares!.
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ear fingerprints in the correlations and in particular for t
emergence of new correlations, i.e.,Ci j

n (k,k8) with kÞ6k8.
Of particular interest is to look for correlations between t
homogeneous steady states (k50) and the states withk5
6kc , Ci j

n (0,6kc). From a technical point of view this tas
turned out to be difficult because nonlinear contributions
the correlation functions were only observable for pump v
ues extremely close to threshold, in a region where the c
acteristic time of the dynamics diverges because of crit
slowing down. This translates into very long transients a
the need of equally long simulations.

We have observed some indication of nonlinear corre
tions for a pumpE/Et50.999 99, which became very clea
when usingE/Et50.999 999. For this value of the pump, w
show in Fig. 14 our results forC12

n (k,k850) and C12
n (k8

50,k): these curves put into evidence an anticorrelation
tween the modes@v#(6kc) and @2v#(0), and between
@2v#(6kc) and @v#(0). They present a very sharp pea
structure, with a width determined by the distance betwe
two adjacent points of the discretizedk space used for the
simulations. This is due to the fact that we now consider
correlation functions at fixedk8 and letk vary. These corre-
lations are a result of nonlinear amplification of the divergi
fluctuations as the threshold is approached. The negative
ture of the correlation is connected with the fact that t
fields with nonzero average values~here the homogeneou
components! act as a ‘‘reservoir’’ of photons for all processe
occurring in the cavity. As we will show later, they are
precursor of the behavior of the correlations above
threshold. The correlations atk50 correspond to the linea
correlation shown in Fig. 9. The bottom plot in Fig. 14 show

FIG. 14. Above: Nonlinear cross-correlationsC12
n (k,k850)

~left! and C12
n (k850,k) ~right! as functions of k for E/Et

50.999 999. Below: Semilog plot of the nonlinear correlatio
Ci j

n (k51kc ,k850) as a function ofE/Et .
9-14
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QUANTUM PROPERTIES OF TRANSVERSE PATTERN . . . PHYSICAL REVIEW A66, 013809 ~2002!
the nonlinear correlationsCi j
n (k51kc ,k850) as the thresh-

old is approached. The correlations are nonzero only
E/Et.0.9999, as the nonlinear correlations set in the n
linear channels in steps~2! and~3! of Fig. 6 become stronge
and this weakens the correlations induced by the channe
step ~1!, which is exactly what we observed in Fig.
C12

n (0,0) becomes less correlated very close to the thresh
Moreover, we see that the correlationsC11

n (0,1kc) and
C12

n (0,1kc) have almost identical values, and the same ho
for C22

n (1kc,0) andC12
n (1kc,0). This interesting behavio

can be traced back to the fact that close to the threshold
fluctuationsdI 1(kc) anddI 2(kc) are perfectly correlated, a
displayed by Fig. 8, whereas the slight anticorrelation
tweendI 1(0) anddI 2(0) is responsible for the lower value
of C22

n (1kc,0) andC12
n (1kc,0) with respect toC11

n (0,1kc)
andC12

n (0,1kc).

VII. CORRELATIONS ABOVE THRESHOLD

Above the threshold for pattern formation the lineariz
equations~19! are no longer valid. As displayed in Fig. 4
above the threshold not only the homogeneous modes,
also all modes with wave numbersk56kc ,62kc ,
63kc , . . . , will present a macroscopic photon number. Li
earizing around the steady state pattern solution above
threshold under the assumption of small fluctuations,
obtains new linear equations for the far field fluctuation a
plitudes, which take into account three-wave processes s
as @2v#(kc)↔@v#(k)1@v#(kc2k) or @2v#(k)↔@v#(kc)
1@v#(k2kc). In analogy to the situation below the thres
old a linear fluctuation analysis above the threshold predi
in addition to the correlations already present below
threshold, the existence of additional correlations betw
the fluctuationsdI 1(k) anddI 1(kc2k), and betweendI 2(k)
and dI 1(k2kc). We will not report here the explicit result
of this cumbersome linear analysis and refer directly to
numerical analysis of the full nonlinear Langevin equatio

To investigate the implications of the new field config
ration above the threshold on the intensity correlations,
first consider the correlationsCi j

n (k,k8). The same normal-
ized correlations discussed in Fig. 7 below the threshold
plotted in Fig. 15 for a pump value above the threshold.
observe that the correlations atk56kc decrease from thei
threshold value and are no longer perfect as they were a
threshold. A closer look actually reveals a dip in the corre
tions exactly at the pixels corresponding tok56kc . A ten-
tative explanation for this is based on the fact that now
modes at the critical wave number have a finite aver
value, connected with macroscopic photon numbers in th
modes, whereas the neighboring pixels are significantly
populated, cf. the far field of Fig. 4. In comparison the n
malized correlationsCi j

n (k,k8) show a much smoother be
havior aroundkc . Hence the observed reductions in the c
relations above threshold atk56kc are connected with
spontaneous population exchanges between these m
scopically populated modes.

In Fig. 8 the peaks atk56kc of Fig. 15 are followed as
functions of the pump. The behavior is very similar to wh
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is seen below the threshold. Close to the threshold the
relations are perfect, and as the pump is taken further a
from Et the correlations become weaker. Below the thresh
this was explained through an eigenvalue competition, wh
above the threshold the explanation is that the competiti
between the states become stronger.

Thek50 cross-correlation is plotted in Fig. 9, and abo
the threshold there is a loss of anticorrelation or there is e
a small positive correlation. This might be attributed to t
macroscopic and independent occurrences of the proce
of steps~2! and ~3! in Fig. 6.

We saw in Sec. VI B nonlinear correlations just below t
threshold, and in Fig. 16 the peaks corresponding to th
correlations are plotted in order to follow the progress abo
the threshold. The strongest anticorrelation is observed
above the threshold,E/Et51.0001 and as the pump is in
creased the correlations become weaker due to increa
competition of processes involving higher harmonics. Mo
over, the connection between the self-correlations and cr
correlations seen belowEt only remains very close to the

FIG. 15. The self-correlations~a! C11
n (k,2k) and ~b! C22

n (k,
2k) and cross-correlations~c! C12

n (k,k) and ~d! C12
n (k,2k) as

functions of the transverse wave number forE/Et51.05.

FIG. 16. The correlationsCi j
n (k51kc ,k850) as functions of

the pump relative to the threshold. The gray symbols are the co
lations below the threshold from Fig. 14.
9-15
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BACHE et al. PHYSICAL REVIEW A 66, 013809 ~2002!
threshold, so as the pump is increasedC11
n (0,1kc)ÞC12

n (0,
1kc) and C22

n (1kc,0)ÞC12
n (1kc,0). This is related to the

loss of perfect correlations away from the threshold.
In Fig. 17 the photon number variancesC11

(6)(k,2k)
above the threshold are presented. Comparing these re
with the corresponding ones below the threshold from F
10 we observe that they are very similar. Generally, the c
relation C11

(2)(k,2k) does not change much with the pum
level, and this fact has also been observed in the OPO@38#.
The sum correlationC11

(1)(k,2k), however, contains peak
that are very sensitive to the pump level, both below a
above the threshold. The behavior discussed here for the
is also valid for the SH and the cross-correlations.

VIII. CONCLUSION AND DISCUSSION

We have used the master equation approach to des
the spatiotemporal dynamics of the boson intracavity ope
tors in second-harmonic generation, and we included in
model quantum noise as well as diffraction. Our study
based on theQ representation to describe the dynamics
the quantum fields in terms of a set of nonlinear stocha
Langevin equations for equivalentc-number fields. The
choice of theQ representations gives some restraints on
parameter space in order to maintain negative diffusion.
have checked that similar results are obtained by using
approximated Wigner representation, both in the regions
cussed here and also the regions unaccessible by theQ rep-
resentation. This indicates that the results presented in
paper are quite general.

A simple scheme describing the microscopic photon in
action that underlies the process of pattern formation
guided us in our analytical and numerical studies of the s
tial correlations. Equal time correlations between intens
fluctuations were used to investigate the strength of the
relations between different modes. Also, possible noncla
cal effects, such as twin beam correlations, were consid
by calculating the photon number variances of the inten
sums and differences between spatial modes of the FH
SH fields.

We have found that at the threshold for pattern format
the Fourier modes with the critical wave number are p
fectly correlated for the FH field, the SH field, and also b
tween the FH and the SH field. As the distance to the thre

FIG. 17. Photon number variances forE/Et51.05 showing
C11

(2)(k,2k) ~diamonds! andC11
(1)(k,2k) ~squares! from a numeri-

cal simulation.
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old is increased these correlations become weaker, w
was shown analytically to be due to the competition of t
eigenvalues of the linear system describing the system be
the threshold. At large wave numbers, only the correlat
between opposite points of the FH far field survives. T
correlation is always found to be stronger than the othe
which is consistent with the fact that the twin photon em
sion at the fundamental frequency is the primary source
correlations in the system. For far field modes around
critical wave number the self-correlations as well as
cross-correlations between FH and SH photons are linke
the pattern forming instability.

Very close to the threshold the linear analysis brea
down. The numerical simulations below the thresho
showed the existence of nonlinear correlations which invo
the k50 mode and these are also seen above the thresh
The other correlations described above are also found ab
the threshold, but their strength decreases when mov
away from the threshold. This can be understood from
fact that additional processes come into play, mainly cons
ing in population exchanges between the macroscopic fi
at the critical wave number and its harmonics.

The intensity differences between opposite points of b
the FH and SH far fields, as well as the cross-correlat
between the two have been shown to exhibit nonclass
sub-shot-noise behavior. These properties for the inten
difference turn out not to be sensitive to the process of p
tern formation, since the corresponding correlations dep
very weakly on the distance to the threshold and show
particular structure close to the critical wave number. T
emerging pattern is connected with increased fluctuation
the modes with wave numbers around the critical wave nu
ber, leading to an excess noise in the corresponding i
vidual intensities. Therefore the sub-Poissonian statistics
the intensity differences reveal a partial noise cancellati
On the contrary, the sum of intensities clearly exhibit pea
around the critical wave number, originating from exce
noise connected with the formation of a pattern.

In this work we considered equal time correlations calc
lated for the intracavity fields. This approach turned out to
very useful to understand the intracavity field dynamics. F
the output fields we expect that the nonclassical correlati
of the intracavity fields will remain below shot noise. Th
quantitative assessment of the amount of noise reductio
excess noise with respect to the shot-noise level requir
specific additional calculation. For future work it would als
be interesting to calculate the output fluctuation spectra a
frequency for the difference and sum of intensities, wh
reflect the full amount of quantum correlations induced
the microscopic processes taking place inside the cavity
for example, considered for a vectorial Kerr model in@32#.
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