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We consider diffusive nonlinear systems with nonlocal two-points coupling, generally induced by misalign-
ment in optical feedback. We expand the stability analysis in F. Papoff and R. Zambrini �Phys. Rev. Lett. 94,
243903 �2005�� to determine convective and absolute thresholds. Nonlocality leads to different effects in
comparison to well-known problems with drift, as the existence of opposite phase and group velocities for
some modes and an instability region. The theoretical predictions are in agreement with numerical results in a
nonlocal system with saturable nonlinearity over wide parameter regions. The knowledge of the stability
diagram for any uniform state allows us to interpret the rich dynamics due to the interplay between finite size,
noise, and multiple states.
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I. INTRODUCTION

Important dynamical effects induced by nonlocality have
been recently reported, both in the temporal domain and in
the spatial one, in systems with long-range correlations. Of-
ten these effects are modeled by integrodifferential equa-
tions; some examples include dispersive �1� and photorefrac-
tive materials �2�, Bose-Einstein condensates �3�, and
population dynamics �4�. A fundamental kind of nonlocality
arises by coupling any point in the system with a shifted one,
leading to a discrete two-points coupling. In the temporal
domain, a two-points coupling would model, for instance, a
laser device with delayed feedback �5�. In the spatial domain,
two-points nonlocal coupling arises naturally in any optical
device with light confined by cavities or mirrors, whenever
the optical elements providing the feedback are not perfectly
aligned �7–9�. Indeed, the field in a point x in the medium is
coupled with the field in a shifted point x+�x. It is worth to
stress that other often-called nonlocal terms, such as spatial
derivatives �i.e., drift, diffusion, and diffraction terms� �6�,
lead to an infinitesimal coupling range, whereas the two-
points nonlocality considered here has a finite and arbitrarily
large coupling distance �x.

Specific effects of two-points nonlocality have been re-
ported in several nonlinear optical systems with not aligned
feedback. Examples are experiments with sodium vapors �7�
as well as liquid-crystal light valves �8� and liquid crystals
�9�. An observed effect of the misalignment is the traveling
character of the spatial pattern formed in the transverse pro-
file of the light beam, making these devices good candidates
for convective instabilities �10–13�. These instabilities have
been recognized in a wide class of systems, in plasma phys-
ics �14�, fluids �15�, optics �16�, surface science �17�, chemi-
cal reactions �18�, and traffic �19�. Whenever a localized dis-
turbance of an unstable state does drift, two possible
scenarios can arise: if the perturbation grows locally the in-
stability is absolute, while if the perturbation spreads slower
than it drifts, decaying locally, the instability is convective.
The existence of these instabilities has been shown in sys-
tems whose dynamics is characterized by drift or walk off,
modeled by a gradient term �11–16�. Only recently these
instabilities have been experimentally observed in a mis-

aligned optical system �9� and theoretically predicted in a
large class of diffusive systems with two-points coupling
�20�.

In this paper we extend the analysis of Ref. �20�, discuss-
ing the main aspects of the stability analysis of nonlinear
diffusive equations with nonlocal coupling in comparison to
the case of drift modeled by gradient. Section II is devoted to
the theoretical linear stability analysis. The complexity and
peculiarities of the dispersion relation are discussed both lo-
cally and globally in order to obtain the correct stability dia-
gram. Phase and group velocities are compared and shown to
be of opposite sign for the critical mode. We also show by a
counterexample that local criteria based on the second-order
derivative of the dispersion are neither sufficient nor neces-
sary to find the points relevant for the evaluation of the ab-
solute threshold.

In Sec. III, we study, numerically, the rich dynamics of
the nonlocal saturable nonlinear equation in different re-
gimes. These results not only confirm some quantitative pre-
dictions of our general analysis �as thresholds position, most
unstable modes, phase and group velocities� but allow us
also to see in a huge parameter region to which extent the
presented general linear stability can be useful to interpret
the spatiotemporal dynamics of the specific model here con-
sidered.

II. NONLOCAL DIFFUSIVE SYSTEM

We consider equations of the type

��t − �x
2���x,t� = f1„��x,t�;�� + f2���x + �x,t�;�… , �1�

where � is a real variable, t is in units of the diffusion time,
x and the spatial shift �x are in unit of the diffusion length,
and � is a control parameter independent on x. f1, f2 are real
functions that can be derived with respect to �. The uniform
states �m of Eq. �1� are the solutions of f1+ f2=0, and their
domains of existence depend on � but not on �x in the limit
of infinitely extended systems. The dispersion relation for
perturbations exp��t+ ikIx� of a uniform state of Eq. �1� is

PHYSICAL REVIEW E 73, 016611 �2006�

1539-3755/2006/73�1�/016611�11�/$23.00 ©2006 The American Physical Society016611-1

http://dx.doi.org/10.1103/PhysRevE.73.016611


D��,kI� = � + kI
2 − ��f1��m;�� − ��f2��m;��eikI�x = 0.

�2�

As a consequence of the term eikI�x, which is present in all
systems with shift, there are bands of kI for which the real
part of the dispersion relation �R can be positive. For
��f1��m ;���0, as in the experiments in Ref. �8�, these
bands are within the regions where ��f2��m ;��cos kI�x�0.
As a result, the homogeneous solution �m is unstable and
plane wave perturbations are amplified. As the imaginary
part of � �phase velocity� is, in general, non-null, these
waves move across the system. For each unstable band, the
wave number of the most unstable perturbation is implicitly
given by

kIC = −
1

2
��f2��m;���x sin kIC�x . �3�

From this, we find that the phase and group velocities, vph
and vG, of the most unstable mode are

vph = −
�I�kIC�

kIC
=

2

�x
, �4�

vG = − �kI
��I�kIC

= − ��f2��m;���x cos kIC�x . �5�

Equations �4� and �5� show two peculiar effects of the non-
locality: for each band the phase velocity of the most un-
stable perturbation depends only on the shift �x �in units of
the diffusion length� and not on the nonlinear functions
f1 , f2; for spatially localized perturbations the sign of the
group velocity and of the phase velocity of the most unstable
wave number are always opposite. Given the phase velocity
for a generic mode vph=��f2��m ;��sin�kI�x� /kI, it also fol-
lows that, if ��f2��m ;���0, a perturbation with kI=� /�x
becomes unstable with null phase velocity when ��f1−��f2
= �� /�x�2. Beyond this point, the instability band contains
perturbations with positive, negative, and null phase velocity.

When the group velocity is nonvanishing, one has to con-
sider whether localized perturbations produce absolute or
convective instability. We have shown that nonlocality can
be at the origin of convective instabilities in a wide class of
diffusive systems, similarly to what was observed with drift
�20�, and it is worth here to analyze similarities and differ-
ences between these two classes of systems. In the limit of
small shift, the field in the point x+�x can be approximated
by ��x+�x����x�+�x�x� and this might suggest that both
terms lead to similar effects. However, a fundamental differ-
ence appears when we compare the dispersion in �2� to the
dispersion relation for a diffusive system with shift,

� = a − kI
2 + ivkI, �6�

with a constant depending on control parameters and homo-
geneous solutions. The walk-off term leads to a purely
imaginary contribution to the dispersion relation being at the
origin of Hopf instabilities. On the other hand, the nonlocal
coupling contributes both to the real and imaginary parts of
�, influencing also the instability thresholds. Therefore, non-
locality allows for the existence of new regimes of convec-
tive as well as absolute instability, not accessed when drift

effects instead of nonlocal couplings are considered in the
same system.

Beside the dispersion relations, a common feature of both
drift and shift is that the reflection symmetry x→−x is bro-
ken, but there is also a fundamental difference. Given one
dynamical equation, a drift term disappears in the proper
moving reference frame, so that stationary solutions of the
equation without drift lead immediately to the traveling so-
lutions of the system with drift. On the other hand, a nonlo-
cal coupling cannot be eliminated in any reference frame and
this leads to surprising effects, such as the possibility to ob-
serve phase and group velocities with opposite sign. Travel-
ing patterns that cannot be reduced to stationary states in any
reference frame have also been shown to be able to exhibit
nonlinear waves modulations �23�.

Important differences between problems with nonlocality
and with drift appear already in the linear stability analysis.
In the following, we show that the stability diagrams re-
ported in Ref. �20� can be rigorously derived by using the
saddle-point technique. To find the nature of the instability,
we determine whether, in the laboratory frame, the perturba-
tion caused by an impulse ��x���t� fills the entire system or
disappears for large times. Mathematically, this means to find
whether the Green’s function of the linearized equation,

G�x,t� =
1

�2��2�
	−i


	+i
 �
−


+
 eikIx+�t

D��,kI�
dkId� , �7�

with 	 a real constant, diverges or vanishes for t→ +

�12,24�. To evaluate the integral, we integrate first in �, us-
ing a 	 such that all the branches ��kI� with D(��kI� ,kI)
=0 lie on the left the �=	 contour. By appropriately closing
the contour with infinite semicircles and using residue evalu-
ation �24�, we find that G�x , t� vanishes for t�0, while for
t�0 we have

G�x,t� =
− i

�2���−


+
 eikIx+��kI�t

��D„��kI�,kI…
dkI. �8�

In our case, ��D=1 as D�� ,kI� is linear in �. In order to
estimate Eq. �8�, it is convenient to extend analytically ��kI�
in the complex plane k=kR+ ikI and apply the saddle-point
method. An even number �at least four� of paths with �I
constant start from each saddle point with d� /dk=0, as
shown in Fig. 1. On half of these equiphase paths, the steep-
est descents, �R decreases fastest; on the remaining half, the
steepest ascents, wR increases fastest. If one can form a
closed integration contour with the imaginary axis and steep-
est descents, then the asymptotic value of the integral is
given by the values of � at the saddle points on the integra-
tion contour �21�.

This method has been extensively used to find the thresh-
old between convective and absolute instabilities in systems
with drift, where the dispersion has, in general, few saddle
points. In the case of drift �6�, there is indeed only one saddle
point. However, for nonlocal systems, the exponential term
in the dispersion �2� originates always a countable infinity of
saddle points. Moreover, the saddles and their steepest de-
scents move and can suddenly collide and disappear as the
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control parameters change. It is therefore essential to deter-
mine if one can limit the analysis to a finite number of saddle
points and, if this is possible, to find which of these points
have equiphase paths that correctly close the integration con-
tour as the control parameters change. In the following, we
solve both of these problems by studying how the local and
global geometrical organization of the saddles and of the
equiphase paths changes with the control parameters.

We note that one could have chosen to integrate Eq. �7�
first in k. In this case, one does not apply the saddle-point
technique, but only the residue theorem, and the stability of
the system is determined by the local and global properties
of branch points where two or more different branches kn���,
with D(� ,kn���)=0, intersect, as explained in Ref. �25�. Be-
cause also the number of branch points is infinite �they turn
out to coincide with the saddle points�, the main problem is
again to find a limit to the number of points that need to be
analyzed, with the further difficulty that in our case there is
not an explicit equation for the branches kn���. As a final
remark, we have found in the recent literature, the condition
Re�d2� /dk2	�0 used to identify the saddle points relevant
to the stability. We show in the following that this procedure,
in general, does not correctly select the saddles whose
equiphase paths close the integration contour; these points
are instead identified by the global analysis described here.

From here onward, we consider the analytic extension of
the dispersion relation

w = ��x2 + q2 + ��x2eq, �9�

with w=��x2, q=k�x, and parameters �=��f1��m ;��, �
=��f2��m ;��. The symmetry w�q�=w*�q*� allows us to con-
sider only the semi-plane qI0. Note that the dispersion
relation and the stability depend only on the effective param-
eters ��
��x2 and ��
��x2.

In order to close the integration contour entirely with
steepest descents, we need a steepest descent path that ends
on or is asymptotic to the real axis �qR� and another
asymptotic to the imaginary axis �qI�. These steepest de-

scents must either come from the same saddle or be con-
nected by other steepest descents.

A. Local analysis: Saddle points’ position, motion, and order

First of all, we need to find how many saddles, i.e., points
q=s, that solve the equation

�dw

dq
�

q=s
= 2s + ��es = 0, �10�

exist for each value of the control parameters. As previously
noted, Eq. �10� is invariant under sI→−sI; thus, for each
saddle �sR���� ,sI����� there is also a saddle �sR���� ,
−sI�����. Moreover, sI=0, with appropriate sR and ��, is a
solution of Eq. �10� and, for all values of ��, it must be sI
� �n+1��, with n�N.

In the case sI=0, we find that Eq. �10� has no solution for
���−2/e �Fig. 2�a��, two degenerate solutions for ��
=−2/e �Fig. 2�b��, two nondegenerate solutions for −2/e
����0 �Fig. 2�c�� and one solution for ���0 �Fig. 2�d��.
For saddle points with sI�n�, the real and imaginary parts
of Eq. �10� can be recast as

sR = sI cot sI, �11�

−
2

��
sI = sin sIe

sI cot sI. �12�

We can only analyze sI because sR is a function of sI. We first
consider the interval sI� �0,��: for ���−2/e, Eq. �12� ad-
mits one solution, while there are no solutions for ��
�−2/e. We now introduce the notation s0���� to indicate the
left-most saddle on the real axis for ���−2/e and the saddle
with sI� �0,�� for ���−2/e. For all n�0, there is also one
solution sn in the interval �2n� , �2n+1��� for ���0 and in
the interval ��2n+1�� , �2n+2��� for ���0.

We consider now how the saddle points move as �� var-
ies. When �� decreases from +
 to 0+, snI decrease mono-
tonically from 2�n+1�� to �2n+1��, and snR increases
monotonically from −
 to +
. At the same time, the saddle
point on the real axis moves from −
 to 0−. For ��=0−,
another saddle point appears on the on the real axis at +
;
these two saddle points move toward one another until they
collide in sR=1 for ��=−2/e, as shown in Fig. 2�b�. Two
new points are then generated in the intervals 0�sI�� and
−��sI�0 �Fig. 2�a�� and move from sR=1 to sR=−
. In
each interval 2n��sI� �2n+1��, with n�0, snI increases
monotonically from the lower bound to the upper bound of
the interval as �� decreases from 0 to −
. At the same time,
snR decreases monotonically from +
 to −
. For ease of
notation, in the following we will drop the index from the
saddle points whenever it is not necessary. We now deter-
mine the number of the equiphase path emerging from a
saddle point by using the fact that each of these paths has a
tangent at the saddle point along which, in a small neighbor-
hood of the saddle, the phase remains constant.

From the Taylor expansion of w near a saddle,

FIG. 1. �Color online� Real part of the dispersion relation for
��=−30 in the region of the saddle point s0. The most intense
regions have light colors, and both equiphase �continuous� and
equiamplitude �dashed� lines are represented. The arrows delimit a
wedge of �−� /4 ,� /4� around the parallel to the imaginary axis.
The steepest descent path at the saddle point is contained in this
wedge because it satisfies the condition Re�d2� /dk2	�0.
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w�s + � exp�i��� � w�s� +
1

m!
�dmw

dqm �
s
�meim�, �13�

where m is the order of the lowest nonvanishing derivative,
one can see that there are m directions along which the phase
remains constant for ��1. For the class of equations consid-
ered here, ��dw /dqI��s= ��d2w /dqI

2��s=0 only when s= �1,0�
and ��=−2/e. This is where the two points on the real axis
merge into a single saddle with m=3, which has six
equiphase lines: three steepest descent and three steepest as-
cent, as shown in Fig. 2�b�. Apart from this point, all the
others have m=2 and two steepest descent lines with tan-
gents at � /2 to one another and at ±� /4 to the tangents to
the two steepest ascent lines.

B. Global analysis: Equiphase and equiamplitude
paths at infinity

The equation for equiphase and equiamplitude paths
emerging from the saddle s are

2qIqR + ��eqR sin qI = wI�sI� , �14�

�� + qR
2 − qI

2 + ��eqR cos qI = wR�sI� , �15�

respectively. Because the dispersion relation is analytic for
all finite values of q, its equiphase paths can intersect each
other only at saddle points if they have the same phase, or

merge at 
 even if they have different phases �22�. We have
already found the saddle points, we now need to find the
limits of the equiphase lines at 
. Before doing that, note the
following properties of the equiphase lines: �i� On any circle
around one saddle point, including one with infinite radius,
an interception of a steepest ascent with the circle must be
between interceptions of two steepest descents and vice
versa; �ii� only one of the equiphase paths emerging from
any saddle can cross the lines qI=n�, as can be seen by the
fact that, for qI=n�, qR=wI /2n� is the only value that sat-
isfies Eq. �14�; �iii� for wI=0, qI=0 is an equiphase line; �iv�
for wI�0, it must be qI�0, which means that the equiphase
lines are confined in the semi-planes qI�0 and qI�0; and
�v� for wI�0, qR=0 only if �wI /���1 �in that case, qI
=arcsin�wI /���+2n� or qI=arcsin�−wI /���+ �2n+1���.

Equations �14� and �15� implicitly define qR as a function
of qI and vice versa. We look then for asymptotic expressions
of qI�qR� for qR→ ±
 and qR�qI� for qI→ +
 able to fulfill
asymptotically these equations. We show in the Appendix
that the asymptotes of the equiphase paths are q
= �+
 ,n�� , �−
 ,0� , �0, +
�. The asymptotes of the steepest
descent paths are those where wR→−
, i.e., �0, +
� for all
�� and �+
 ,2n�� for ���0 or �+
 , �2n+1��� for ���0.
The remaining cases are asymptotes of the steepest ascent
paths �wR→ +
�. Similarly, we show that the asymptotes for
the equiamplitudes paths are �+
 , �n+1/2��� and �−
 , ±
�.

FIG. 2. �Color online� Equi-
phase lines �2qIqR+�� sin�qI�
�exp qR=const� for ��=−3 �a�,
−2/e �b�, −0.5 �c� and +0.5 �d�.
The labels si identify the saddle
points as discussed in the text.
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This information allows us to determine the geometrical
organization of the steepest descents. From Eq. �A1�, we see
that the saddle with the smallest phase wI �s1 in Fig. 3 and s0
in Figs. 2�a�–2�d�� has always the upper steepest descent to
the left of all the other steepest descents and is asymptotic to
the imaginary axis. Indeed, this saddle is always necessary to
close the integration contour. If s0 happens to be the saddle
with the smallest phase, then the steepest descents of s0 close
the integration contour because s0 either lies on the real axis
�Figs. 2�b�–2�d�� or has another steepest descent asymptotic
to the real axis �Fig. 2�a��. If instead there is another saddle
sn1

with wI�sn1
��wI�s0� �for instance the saddle s1 in Fig. 3�,

than we find from Eq. �A3� that the upper steepest descent
from s0 remains below sn1

and is connected to the steepest
descent from sn1

at infinity �in Fig. 3, these two steepest
descents are asymptotically connected at qI=��. In this case,
we use a steepest descent from sn1

to reach values of qI

above sn1
itself and a steepest descent from s0 to reach the

real axis. If sn1
is the saddle with the smallest phase, then the

steepest descents of s0 and sn1
close the integration contour

�symbol lines in Fig. 3�, otherwise we will have to include
also the first saddle, sn2

, with n2�n1 and wI�sn2
��wI�sn1

�. In
order to find the saddles to be used to close the integration
contour, we repeat this process, including all the saddles
whose phase is the minimum of the phases of the saddles
below them. Because wI�s0��0, only saddles with null or
negative phase can be used to close the integration contour,
although not all of these saddles can be used. Furthermore,
one can show that if wI�sn��

��0, we have wI�sn��0 for all

n�n��. Therefore, for each finite ��, this procedure gives the
finite set of saddles

P�� = �sn�0 � n � n��,wI�sn� = min
0�j�n

�wI�sj�	� , �16�

whose steepest descent paths close the integration contour.

From Eq. �2�, we identify the region wR�0,qI��0 in
which the homogeneous solutions are stable. This is the re-
gion S in Fig. 4 and its contour is the convective threshold. If
wR�0,qI��0 for some qI and if at least one saddle sn� P��
has wR�sn��0, the instability is absolute. However, we need
to find only a small subset of saddles in P�� to determine the
stability because wR�sn��0 only if there is instability with
wR�0,qI��0 for qI in the nth interval. This follows from the
fact that, for sn� P��, wR�sn��0 only if snR�0 and that, for
snR�0, there is a path with wR constant that connects the
saddle with a point on the imaginary axis within the nth
interval. Therefore, for each �, we can determine the nature
of the instability by finding the values of w at the saddles in
P�� that are in bands with instability threshold �n�

c below the
threshold �0�

a where wR�s0�=0. The absolute threshold ��a is
then the value of �� where

max�wR�sn��sn � P��,��n
c � ��0

a	 = 0. �17�

The importance of Eqs. �16� and �17� is twofold. On the one
hand, they guarantee that we can apply the method of steep-
est descents by properly closing the integration contour; on
the other hand, they allow us to find the absolute threshold
simply by inspection of w at a finite number of saddles. This
is remarkable in view of the infinite number of saddles pro-
duced by the shift. Moreover, P�� is the same for all systems
with the same �� in the class considered because the global
geometrical organisation of the saddles and of their steepest
descents does not depend on �.

FIG. 3. �Color online� Equiphase �continuous� and equiampli-
tude �dashes� lines for ��=−12 and ��=−1 �see Eq. �9��. The clos-
ing path is marked with symbols. Even if the �three� shown saddle
points si �i=0,1 ,2� all satisfy the condition Re�d2� /dk2	�0 �col-
ored �shaded� region�, s2 is actually not in the integration path.

FIG. 4. �Color online� Instabilities diagram: Stable �S�, convec-
tively unstable �C� and absolutely unstable �A� regions in the cases
of two-points coupling �a� and drift �b�. The dispersion relations Eq.
�2� with ��0 and Eq. �6� are considered, respectively. The dashed
�red� line in �a� is the instability threshold for modes with vanishing
phase velocity, while the dotted lines indicate where different wave-
numbers bands become unstable.
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We now consider the condition Re�d2� /dk2	�0: by using
Eq. �10�, we find that this condition is fulfilled if and only if
sR�1 �an example is given in Fig. 1�. This condition is not
satisfied by s0 for ��=−2/e: for this value s0 is degenerate,
but, nevertheless, its steepest descent paths close the integra-
tion contour. Furthermore, when sI�0, we can see from the
identity �I�s�=2sI�sR−1� that Re�d2� /dk2	�0 is equivalent
to �I�s��0. Comparing this to the previous analysis, we find
many saddle points that fulfill this condition, but whose
steepest descents are not part of the integration contour. An
example is the saddle s2 in Fig. 3. Therefore, the condition of
the positive concavity of the dispersion relation does not
distinguish the relevant saddle points to obtain the absolute
threshold. Only the global analysis of the steepest descent
paths correctly identifies the points that have to be used in
the evaluation of the Green’s function with the saddle point
technique.

Applying this technique, we obtain the instabilities dia-
gram in Fig. 4 valid for any ��0 �including the typical case
of a linear damping term �=−1�. For ��0, the instability
bands have qI�0 and the lowest convective threshold is very
far from the absolute threshold. For ��0, the instability with
respect to perturbations with qI=0 is absolute for �=0 and
convective for ��0, with the convective instability windows
increasing as � decreases. Comparing the instabilities dia-
gram of diffusive systems with finite shift to those with
walk-off �13� �Fig. 4�, we note that the whole modulation
instability region for negative values of � is a specific effect
of a finite shift, as was already recognized by �8�. What our
analysis reveals by direct calculation of the absolute thresh-
old is that, in this parameter region, the system is mainly
convectively unstable and shows noise-sustained modulated
patterns. Only for very negative values of � / ��� is the abso-
lute threshold crossed.

It is important to extend this analysis to systems moving
with velocity v with respect to the laboratory frame in order
to find the velocities of the instability fronts in the linear
regime. The velocities of the leading and trailing fronts are
the velocities of the reference frames in which the Green’s
function does not grow or decay �24�. Using a the rescaled
velocity v�=v�x, the dispersion relation in the moving frame
is

w = �� − v�q + q2 + ��eq. �18�

We hasten to say that the analysis of Eq. �18� along the
lines of what was done previously is necessary, but does not

require new calculations. By defining q̃=q−v� /2, �̃=��
− �v� /2�2, and �̃=��e�v� /2�, we recast Eq. �18� in the same
form as the dispersion relation in the laboratory frame.
Therefore, for each couple of values ��� ,���, we find the
velocities of the instability fronts by determining the values

of ��̃ , �̃� corresponding to the absolute threshold in Eq. �17�.
This concludes the analysis of the linear stability in this class
of systems.

III. NONLOCAL SATURABLE NONLINEAR EQUATION

We consider the nonlocal saturable nonlinear �NSN� equa-
tion

��t − �x
2���x,t� = − ��x,t� + �

��x + �x,t�
1 + ��x + �x,t�2 . �19�

This is a particular case of Eq. �1� obtained when f1=−� and
f2=�� /1+�2. Saturable nonlinearities, are well known to
model the interaction between light and matter �26� as well
as biological systems �27�. Our choice of this model is due
the advantage of having a nonlinear term bounded for any
value of �, being �f2��� /2. Therefore, the dynamical model
�1� is found to be always stable, even in the presence of
nonlocality. As a matter of fact, some care is, in general,
necessary in the choice of the nonlocal dynamical model in
order to avoid divergent trajectories. If, for instance, the non-
linear term of a stable Ginsburg-Landau equation is acting
nonlocally, on a shifted point of the field, the solutions are
found to diverge for some parameters �20�. Otherwise, an
example of a stable nonlocal model, which actually has a
bounded f2, is the liquid-crystal light valve �8�.

Because of the saturable nonlinearity, Eq. �19� has three
uniform states

�0 = 0, �± = ± � − 1, �20�

with the vanishing solution always well defined and �± ex-
isting only for �1. From the Jacobian evaluated in these
states, we obtain the relevant parameters

�0 = � , �21�

�± =
2 − �

�
. �22�

Given �0,±��� and �=−1, the instability diagram in Fig. 4
provides the thresholds of the NSN in terms of the specific
parameters � and �x. We note that the function �± is actually
bounded to take the values in the interval �−1,1�. Therefore,
it follows from Fig. 4 that the homogeneous states �± are
always stable in their regime of existence ��1�. On the
other hand, all the instability in Fig. 4 are predicted for the
state �0 �existing for any ��.

In the following, we study, numerically, the dynamics and
the spatial structures emerging in this system as effect of the
nonlocal spatial coupling. Noise-sustained structures are ob-
served by considering a source of noise in the NSN equation
�19�. As a general remark, it is important to remember that
there is no convectively unstable regime if the boundary con-
ditions for any Eq. �1� are periodic �13�. Convective instabil-
ity can be observed with Dirichlet boundary conditions for
the field ���−L�=��L�=0, with 2L size of the system� as
well as by fixing the reference frame through a spatially de-
pendent control parameter ��x� not vanishing only within a
finite region. In every simulation result presented in the fol-
lowing, we specify which of the two approaches is used.

A. Case ��1

For control parameter ��1, Eq. �19� admits only one
homogeneous steady state �0. In this regime, the parameter
�0 �Eq. �21�� takes the values �−
 ,1�. This allows us to
explore the large region of convective instability first pre-
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dicted in Ref. �20� where an example of noise-sustained
stripe pattern was also shown. Here we detail some charac-
teristics of these patterns, also as a function of the control
parameter.

First of all, we have confirmed the position of the convec-
tive threshold for the homogeneous state: in particular, for
shift �x=2.88 the predicted theoretical threshold occurs for
�=−2.06. Numerical simulations in a large system, allowing
a localized perturbation of the vanishing state to grow or
vanish before to reach the boundaries, show that an initial
Gaussian perturbation evolves in a wave packet; for �
=−2.1, after a transient dynamics, the wave-packet maxi-
mum increases exponentially till saturate, while it vanishes
everywhere for �=−2. The traveling wave packet developed
after perturbing �0 is modulated, and for �=−2.1, the most
intense mode in the far field is k�0.98. This value is in
agreement with the theoretical maximally amplified wave
vector �3�.

A source of noise is able to sustain a pattern in this re-
gime, as shown in Fig. 5. This noise-sustained structure
shows not only strong changes of wavelength �Fig. 5�b�� but
also important variations of the phase velocity that can be
recognized by the change of steepness of the stripes in the
spatiotemporal diagram �Fig. 5�a��. Indeed, several simula-
tions show that waves can travel through the systems not
only at different velocities, but also in different directions,
being in some cases almost stationary. Comparing to the the-
oretical predictions of our stability analysis, we note that all
the observed wave vectors in Fig. 5�b� are linearly amplified
with positive phase velocities vph=−� sin�kI�x� /kI �waves
propagating in the right direction�, as observed by numerical
simulation of the full nonlinear model. In particular, the lin-
ear analysis predicts a phase velocity approaching a vanish-
ing value for larger wave vectors, changing sign for k�1.1.

This is also in good agreement with the numerical results: an
almost stationary wave is observed, for instance, in Fig. 5 for
time �20 in correspondence of large wave vectors 1�k
�1.1.

The wavelength spread in noise-sustained patterns is be-
cause there are different unstable modes in the system that
can be linearly amplified. Through a nonlinear process, these
modes are selected to form a traveling structure with finite
amplitude. Figure 6 shows several spatiotemporal diagrams
of the far field for decreasing values of the control parameter
� from −3 to −22. The most evident effect increasing the
distance from the threshold is the nonlinear excitation of
more and more spatial harmonics within the traveling struc-
tures. The widening of the band of excited wave vectors
around each harmonic can also be appreciated. For strong
pump, a huge number of modes is then observed. As noted
before, the NSN equation has the advantage of not develop-
ing divergences even for large values of the control param-
eter ��=−22�, allowing one to explore large instability re-
gimes.

Interestingly, in Fig. 6 there are not evident signatures of
the transition from convective to absolute instability that oc-
curs for ��−15 for shift �x�2. As a matter of fact, noise-
sustained patterns are observed where stable patterns would
be expected. To understand this phenomenon, we have to
carefully consider the dynamics at the boundary of the sys-
tem. Here we have considered a smooth super-Gaussian con-
trol parameter ��x�=� exp�−�x /��2m� with m=10. Then,
even if within the super-Gaussian plateau the control param-
eter is such that the state �0 is absolutely unstable, the state
develops instability at the edges of the system, where the

FIG. 5. �Color online� Noise-sustained pattern obtained from
simulation of Eq. �19� with a white Gaussian noise. �a� Section
−37�x�0 of the spatiotemporal diagram of the near field ��x , t�.
�b� Most intense wave vector k at each time. The control parameter
� has a super-Gaussian profile varying between 0 and −4 and ex-
ponent 10; noise amplitude 0.01, shift �x=2.88. Simulation with
temporal grid 0.001, spatial grid 0.12.

FIG. 6. �Color online� Sequence of far-field spatiotemporal dia-
grams decreasing the control parameter � from −3 to −22, shift
�x=2.04, and other parameters as in Fig. 5. A logarithmic scale is
used in order to show also the spatial harmonics.
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control parameter is below the absolute threshold. The noise-
sustained traveling waves originate, indeed, in this spatial
region, where the state is convectively unstable. A noise-
sustained pattern is excited at the right edge of the system
and travels toward the left edge, invading then the region that
should be occupied by the stable pattern. Only removing any
perturbation �switching off the noise source�, we can observe
the expected transition from convective to absolute instabil-
ity. This scenario is confirmed in Fig. 7, where an initial
noise-sustained pattern leaves the system when the noise is
removed. In conclusion, under realistic physical conditions,
as a control parameter exciting only a finite region of a sys-
tem and the presence of some noise, a stable pattern cannot
be observed. This can be anticipated from our linear analysis
considering the convective or absolute instability in different
points of the system, where the control parameter changes.

The amplitude of the noise-sustained rolls shown in Fig. 5
is plotted in Fig. 8. This amplitude increases with the dis-
tance from the instability threshold, and the square of this
amplitude has approximately a linear dependence on the con-
trol parameter �inset in Fig. 8�, even for very large �negative�
values of �. The amplitude of the rolls has, therefore, the
typical dependence ���−�c� with �c threshold of the con-

vective instability, characterizing this bifurcation as super-
critical. Also in this case, no signatures are observed of the
second transition ��a=−15�, consistently with the fact that,
for control parameter not vanishing only in a finite spatial
region, the pattern is always sustained by noise.

B. Case ��1

The existence of different stationary solutions �i �i=0,
+ ,−� for � larger than 1 allows us to observe a very rich
dynamics. In the following, we explain some aspects of the
dynamics starting from our linear stability analysis. Let us
consider Eq. �19� with an additive white Gaussian noise and
with control parameter �=3. Then �0=3 and �±=−1/3 and
the stability diagram Fig. 4 tells us that the homogeneous
vanishing solution is convectively unstable while the states
�+ and �− are absolutely stable. When the system evolves
from a noisy initial condition, it departs from the vanishing
�unstable� state toward the stable states �±, as expected from
the linear analysis. Regions with states �+ and �− are con-
nected by fronts as shown in Fig. 9�a�. The dynamics is
characterized by a random succession of traveling fronts,
Fig. 10�a�, consistently with the convective instability of the
vanishing state �0, that is imposed by the Dirichlet boundary
conditions. Indeed perturbations induced by noise grow ex-
ponentially from the �vanishing� right edge of the system
either toward �+ or �−. The coexistence of stable and con-
vectively unstable states predicted by the linear stability

FIG. 7. �Color online� Near-field ��x , t� and far-field ���k , t��2
spatiotemporal plots. The control parameter has a super-Gaussian
profile with value �=−22 within the plateau central region. The
noise is switched off at time 25, and the noise-sustained waves
leave the system. After a longer transient, the right edge of the
stable traveling pattern reaches a stationary position. Note also an
interesting example of waves with phase and group velocities in the
same direction �0� t�5� as predicted by the linear stability
analysis.

FIG. 8. Amplitude of the noise-sustained rolls of Fig. 6 for
decreasing values of the control parameter. The inset shows the
squared value of this amplitude. Note that the calculated threshold
for the absolute instability is at �c=−3.37.

FIG. 9. �Color online� Temporal evolution of � given by Eq.
�19� in presence of an additive white Gaussian noise. The field ��x�
is plotted at different times �from dark to light colors� sampled
within the intervals from t=0 to t=14 �a�; from t=15 to t=22 �b�;
from t=23 to t=30 �c�. The stationary states are plotted in dotted
lines. Parameters: �=3, noise amplitude 0.01, shift �x=2.88. Simu-
lation with temporal grid 0.001, spatial grid 0.12, and Dirichlet
boundary conditions.
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analysis prevents the system to reach a stationary state �28�.
Increasing the control parameter value from �=3, Fig. 10�a�,
to �=10, Fig. 10�b�, the vanishing state becomes absolutely
unstable. Any initial perturbation of the vanishing state aris-
ing from the noise source grows locally and after a transient
dynamics, in which the fronts are advected away, the system
reaches a stationary state given either by �+ or �−. Also in
this case, the linear stability analysis allows us to understand
the observed deterministic evolution in comparison to the
noise-sustained structure in Fig. 10�a�.

Interestingly, fronts between the two stable states travel at
fixed velocity, depending on the sign of the shift �x, being
v�−4 in Figs. 9�b� and 9�c�. In a system with drift �Eq. �6��,
this velocity would be exactly given by v, as these fronts
would actually be stationary in the proper Galilean frame.
However, the situation in presence of nonlocal coupling is
far more complicated, as the nonlocality is present in any
reference frame and there are several phase and group modes
velocities, as discussed in Sec. II. The analysis of the motion
of fronts between equally stable states is actually a question
open to future investigations.

A characteristic feature of the domain walls presented
above is the shape of the fronts connecting the stable solu-
tions �− and �+. Because of the break of the reflection sym-
metry in space induced by the shift, the fronts are not sym-
metric �Fig. 9�. As can be appreciated in more detail in Fig.
11, the leading edge of the fronts �left side in this case� is
steepest and can develop spatial oscillations, while the tail of
the fronts �right side, in this case� is smoother. The amplitude

of the leading-edge oscillation increases with the control pa-
rameter �. The same shape of the front but for a change of
sign is observed both when the front is from �− to �+ and in
the opposite case �Fig. 11�.

IV. CONCLUSIONS AND OUTLOOK

We have derived the dispersion relation for a large class
of nonlinear equations with diffusion and nonlocality. These
models show many different features with respect to well-
known systems in which the convective instability is caused
by a drift term. A two-points nonlocality gives rise to an
infinite number of oscillations in the dispersion relation,
making the linear stability analysis rather complex. The con-
vective or absolute nature of the instability of the homoge-
neous states can be determined by studying both local and
global properties of the dispersion relation. In particular, we
have shown how to find, out of an infinite number of saddle
points, the subset of points necessary for the study of the
instability. This subset is finite, and the saddle-point tech-
nique can be successfully used to evaluate the asymptotic
behavior of perturbations. This technique also provides the
stability in reference frames that are moving with respect to
the laboratory without further calculations.

The second part of this paper is devoted to numerical
simulations of a specific nonlocal model with a saturable
nonlinearity. Critical values, convective and absolute thresh-
olds, and phase and group velocities obtained through the
linear stability analysis are in agreement with the values ob-
tained from numerical integration. Several regimes are
shown in which noise-sustained patterns or homogeneous
states connected by fronts arise. The transitions between dif-
ferent regimes as well as the spatial structures observed in
presence of several stable and unstable states need to be care-
fully analyzed considering boundary effects and noise ef-
fects. For instance, finite size can lead to noise-sustained
states that invade the systems running over stable states. It
was possible to understand this rich and sometimes surpris-
ing dynamics knowing the linear stability for any homoge-
neous state. A complete characterization of the observed spa-
tial structures and of the types of bifurcations will need a
nonlinear analysis, which is likely to be as challenging as the
linear one. For instance, the features of drifting fronts in
nonlocal diffusive systems reported for the SN equation are
mainly based on numerical results. The analytical character-
ization of the velocity as well as shape of these fronts is an
interesting subject open to investigation.

We have mentioned liquid-crystal light valves with feed-
back as an example of a diffusive system with two-points
nonlocality �8�. It would be interesting to interpret many ex-
perimental results on these devices in view of the theoretical
predictions of our analysis. Two-points nonlocality plays an
important role also in optical systems with diffraction and
feedback. An interesting open research line is the role of
convective instability in these systems, where the analysis
shown here can also be applied.
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APPENDIX

Equations �14� and �15� are asymptotically satisfied at in-
finity by

qI → + 
, qR �
wI + �� sin qI

2qI
�A1�

qR → − 
, qI �
wI

2qR
�A2�

qR → + 
, qI ��2n� −
e−qR

��
�4n�qR − wI�

�2n + 1�� +
e−qR

��
��4n + 2��qR − wI� �

�A3�

and

qR → + 
 ,

qI � 2n� ± ��/2 −
e−qR

��
�− qR

2 + wR − ��

+ �2n� ±
1

2
�2

�2�� , �A4�

qR → − 
, qI � ± qR
2 − wR − ��, �A5�

respectively. These expressions give the asymptotes for
equiphase and equiamplitude paths and show that the asymp-
totic behavior of the equiphase paths depends on wI /�� and
wI.
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