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Local transfer of optical angular momentum to matter
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We resolve a paradoxical difference between the local density of optical angular
momentum and the associated torque exerted on a trapped particle.

Mechanical properties of light like linear and angular momentum allow for the
trapping, rotation and manipulation of microscopic objects [1]. They underpin
important devices such as optical tweezers [2] and spanners [3, 4], with both
technological and biological applications. Light beams elliptically polarized
or with helical phase profiles have been shown to impart rotations to absorbing
objects [3, 4]. A recent experiment shows that both the spin and the orbital angular
momentum transferred to a small particle held off-axis are proportional to the
local intensity of the beam [5]. An earlier experiment has shown the mechanical
equivalence of spin and orbital angular momentum on small absorbing particles held
on the beam axis [4].

These experimental observations appear to be in conflict with theoretical
considerations [6], which predict that the density of angular momentum carried
by a monocromatic paraxial beam of frequency ! in the propagation direction z is

jz ¼ �0!ljuj
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Here uðr,�, zÞ ¼ u0ðr, zÞ exp ðil�Þ is the characteristic helical phase profile of the field
leading to an orbital angular momentum proportional to l, and � is the degree of
polarization, taking the extreme values �1 for right and left circular polarizations.
Equation (1) shows that the orbital component is indeed proportional to the local
intensity, consistent with experimental observations [5]. The spin angular momentum
density, however, depends on the radial gradient of the intensity [6]. This suggests
that the local sign of the spin density can be different from the global polarization
state of the beam, �, and hints at the possibility that a particle taken away from
the beam axis would change its spinning direction, depending on the local sign of the
gradient in equation (1). Moreover, the local spin density vanishes for a circularly
polarized plane wave [7], as well as along the circle of maximum intensity in
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a doughnut mode, exactly where small particles are typically trapped and observed
to rotate [5].

The conflict between the local (density) and global (polarization) features in the
transfer of spin angular momentum is a long standing problem [6–10]. We might
argue that each photon carries angular momentum �hhðl þ �Þ per photon and that each
absorbed photon, therefore, must transfer this to the absorbing body. However
a consistent analysis within the Maxwell formalism of the relation between the
density of angular momentum and the effective local torque on small objects is still
missing and remains a problem.

The aim of this letter is to resolve the problem of the local and global features
of the angular momentum of light in a consistent treatment of the interaction
with dielectric objects. In spite of the functional dependence of the spin, we obtain
results consistent with experiments through the identification of the angular
momentum flux [11] as the relevant quantity connected to the effective torque.
The dynamics induced by the spin and orbital torques is then shown to be in
agreement with experimental observation. We also identify the origin of the puzzling
functional dependence of the spin density in the constraint of transversality for the
electromagnetic fields.

Following [6] we consider the field described by the Lorenz-gauge vector
potential

Aðx, z, tÞ ¼ ½�x̂xþ �ŷy�uðx, zÞ exp ðikz� i!tÞ , ð2Þ

where x ¼ ðx, yÞ, u is a solution of the paraxial wave equation and j�j2 þ j�j2 ¼ 1.
From the electric and magnetic fields associated with A we can calculate the
total angular momentum density j ¼ r� ð�0=2ÞðE� B�

þ c:c:Þ. Its component
in the propagation direction is given by equation (1), where � ¼ ið��� � ���Þ.
To describe the interaction of the beam with an object of area S we consider
the integral of the density jz over S. The orbital angular momentum is
then proportional to the light intensity in the object area while the integrated
spin is
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We identify a first contribution proportional to the integrated intensity—the
polarization intensity term—and a second boundary term. For objects that are
large with respect to the radius of the illuminating beam [4, 12] the boundary term
vanishes. In general, however, the local value of the spin in a small region depends
on the relative size of the intensity and boundary terms in equation (3). Note that
these two contributions have opposite signs and can lead to a total that is opposite
in sign to the global polarization �. Hence not only the density of angular
momentum but also the integral of this quantity over the object area suggests
a discrepancy with experimental observations.

For a proper description of the effects of the beam on the illuminated object
we have to evaluate the extent to which the beam is modified by the interaction.
We consider a dielectric object weakly interacting with the beam, that is a material
with refractive index differing only slightly from unity. In this weak dielectric limit
we describe the effect of the object through a mask function MðxÞ acting on the
vector potential so that the change in the potential after interacting with the medium
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is then A ! MA (AMA ansatz) with A given in equation (2)y. In the weak dielectric
limit the transmission is almost unity and we can neglect the wave reflected by
the object and other scattering effects. Different dielectrics allow for different
mechanisms of transfer of angular momentum with real and complex masks
M describing absorption and phase shift phenomena respectively. An illustration
of the effect of an absorbing object on the intensity of the beam is plotted
in figure 1 (a). Possible anisotropy of the object can be included through
two different functions MðxÞ and NðxÞ acting on the x and y components of the
potential (2). For an object placed in the region 0 < z < �z the output potential
(for z > �z) is

Aðx, z, tÞ ¼ ½MðxÞ�x̂xþNðxÞ�ŷy�uðx, 0Þ exp ðikz� i!tÞ: ð4Þ

We assume the object is thin so that we can neglect the z variation of the
slowly varying function u in equation (4). It is important to note that our
vector potential description has the calculational advantage that we do not
need to worry about transversality, which is taken account of automatically in
the form of the scalar potential. The x and y components of the E and B fields
after the object are obtained from the input ones by replacing �u ! �Mu and
�u ! �Nuz:

The change of angular momentum density carried by the light beam is

jz � j0z ¼ !
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yWe consider small objects with smooth edges such that the fields after the beam can be
also assumed to satisfy paraxial equations. Hence MðxÞ 6¼ 1 only in a portion of the beam
transverse profile and j@xðMuÞj � kMu and so on for the y and z partial derivatives.
zThis is the assumption made in [9] to describe the perturbed fields (M. Padgett
communication).

(a) (b)

Figure 1. (a) Intensity juðr,�, z ¼ 0Þj2 / r2 exp �2r2 (thick line) of a circularly polarized
beam (� ¼ 1). Intensity ðMiuÞ

2 of the beam interacting with small absorbers placed in Pi

ði ¼ 1, 2, 3Þ (thin lines), with mask functions Miðr,� ¼ 0Þ ¼ 1� c exp ð�½ðr� riÞ=d�
2
Þ

(c, d � 1). (b) Radial profile of the spin angular momentum density, for the unperturbed
beam jz / r@rjuj

2 (thick line) and for the beam interacting with absorbers jz / r@rjMiuj
2

(thin line).
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where the prime distinguishes the output angular momentum j0z and
�0 ¼ ið���MN� � c:cÞ. The first term in equation (5) is the spin angular momentum
density variation, arising for both absorption (for real M ¼ N) and polarization
rotation (M 6¼ N). The contribution of the second term describes the change
of orbital angular momentum due to absorption, for which j�Mj2 þ j�Nj2 6¼ 1.
Finally, the last term in equation (5) is non-vanishing only for M, N not being real
functions and accounts for objects introducing a variation on the field phase profile
with respect to the input exp ðil�Þ. As an example, in figure 1 (b) we show the change
in the local spin angular momentum introduced by an absorber on a circularly
polarized beam. The effect of the mask function is clearly visible, introducing
a strong local oscillation in the spin density, depending on the gradient of the
mask function r@rjMuj2.

The transfer of angular momentum to an object is obtained integrating
the density equation (5). For a paraxial field c

Ð
ðjz � j0zÞ dx is simply the angular

momentum flux over a plane perpendicular to the propagation direction before and
after the object [11]. The spin flux is then
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The (first) intensity term gives a spin transfer with the same sign as ð� � �0Þ. As we
have already seen (equation (3)) the strange local effects arising from the radial
gradient are due to the boundary (second) term. However the field is actually
unchanged around the object (�ðraÞ ¼ �0ðraÞ, �ðrbÞ ¼ �0ðrbÞ) so that this boundary
term variation does not contribute to the flux. We conclude that the peculiar
behaviour of the local density of spin does not give rise to any mechanical effect.
The relevant quantity in the interaction with an object is the change in the flux
of angular momentum given only by the intensity term.

When the flux of angular momentum is considered the predicted mechanical
effects on a small object are in agreement with experimental evidence, as illustrated
in figure 1. Indeed the spin detected by a small absorber, that is the difference of
the integrals around Pi of the functions plotted in figure 1 (b), is equivalent to the
intensity variation, given by the area between the thick and thin lines around Pi

in figure 1 (a). Therefore the transferred angular momentum, i.e. the nett angular
momentum flux, has the same sign at all points Pi, in spite of the local change of
the sign of the spin density in equation (1). Moreover, we note that at P2, where
objects are typically trapped by gradient forces, the most pronounced transfer
of angular momentum is observed. If the beam carries both spin and orbital angular
momentum the amount transferred to the absorber is

!�0

ð�b
�a

d�

ðrb
ra

drrjuj2ð1�M2Þðl þ �Þ, ð6Þ

confirming that spin and optical angular momentum have equivalent effects on
absorbing objects [4].

In order to clarify the meaning of the final term in equation (5), we consider
a dielectric with MðxÞ ¼ NðxÞ ¼ exp ½i�ðxÞ�. The fact that M is complex means
that the term ðM@�M

� � c:c:Þ is non-zero. However for a small regular object,
�ð� ¼ 0Þ ¼ �ð� ¼ 2�Þ, the integral will vanish. Hence a transparent regular object
is able to locally modify the phase profile of the beam but not to change its orbital
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angular momentum, which is a global property of the front. A transparent object can
change the total orbital angular momentum only if it is described by a discontinuous
function �. An example is the spiral phase-plate [13], which ‘adds a phase’ increasing
with the angular position over all the profile of the beam (�ðr,�Þ / �).

To complete our analysis we derive the mechanical effect, that is the resulting
torque, arising by the transfer of angular momentum to an illuminated object. In the
Maxwell formalism the torque and the temporal variation of the angular momentum
are related to the angular momentum flux by a continuity equation [14], which
in vacuum reduces to equation (14) of [11]. For paraxial and monochromatic fields
the integrated continuity equation has the simple form

c

ð
dxðjz � j0zÞ ¼

ð
dx

ð�z

0

dz gzðx, zÞ: ð7Þ

Hence the nett flux, on the left-hand side, is naturally connected to the torque gz in
the propagation direction on the illuminated object.

The torque density is [8]

gz ¼ rf� þ
1

2
½ðP� E�

Þz þ c:c:�, ð8Þ

with f� being the azimuthal component of the Lorentz force f ¼ 1=2½ðP � rÞE�
þ

ð@tPÞ � B�
þ c:c:� [15], and E, P, B being the electric, polarization and magnetic

fields inside the dielectric region. These fields are obtained by propagating
our external fields into the weak dielectric and lead to the relationship between
the refractive index and the mask functions

M ¼ exp ½ikðnx � 1Þ�z�,N ¼ exp ½ikðny � 1Þ�z�: ð9Þ

Direct calculation of the torque with the fields in the dielectric region confirms
that the torque balances the angular momentum change (5) we obtained within the
AMA ansatz. The fact that equation (7) is satisfied by our solution is a confirmation
that the AMA ansatz gives a solution of the Maxwell equations, able to capture
the fundamental features of the transfer of the angular momentum process.

Given the Lorentz force and the torque we can describe the dynamics of a small
isotropic absorber (with mask M as in figure 1). An object held off-axis, centred
in x0 6¼ 0, is trapped in a circle of maximum intensity in the doughnut beam.
The damped dynamics of the centre of mass x0 ¼ ðr0,�0Þ, after initial transients have
died away, is governed by

�r0 _��0 ¼ ðF � �̂�0Þ , ð10Þ

where � is the damping coefficient, associated with the viscosity of the medium
in which the particle is suspended and F ¼ �z

Ð
fdx is the total Lorentz force.

For a small object the azimuthal total Lorentz force in equation (10) is proportional
to f�ðx0Þ. By the relation between the force and the orbital torque gorbz ¼ rf�
(see equation (8)) we then obtain the angular velocity

_��0 / l
juðx0Þj

2

r20
: ð11Þ

Hence beams carrying orbital angular momentum induce a motion of a small object
around the beam axis with angular velocity proportional to the local intensity
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of the beam divided by the squared distance to the beam axis. This functional
dependence has been observed in the recent experiment in [5].

It remains to examine the dynamics of the object held off-axis about its centre
of mass x0. We consider a new frame of reference with origin at x0, so that the total
orbital torque vanishes while the spin torque gspinz is unchanged, with density given
by the second term in equation (8). In the new coordinates ð	, Þ we then obtain

_  /
gspinz ðx0Þ

� 0
/ �juðx0Þj

2 ð12Þ

with � 0 being the damping coefficient for spinning motion.
Therefore an elliptically polarized beam (� 6¼ 0) induces a spinning motion of a

small absorber around its own axis with an angular velocity proportional to the local
intensity, in agreement to that observed in [5].

If the object is held on the beam axis then the total Lorentz force vanishes so that
the centre of mass does not move. Now both the spin and the orbital torque
contribute to the spinning of the object around its axis

_�� ¼

Ð
dxgzðxÞ

� 0
/ ð� þ lÞ

ð
dxjuðxÞj2½1�M2ðxÞ� , ð13Þ

and we obtain the mechanical equivalence observed in [4].
We have presented a consistent description of the transfer of angular momentum

to small objects, identifying the flux of angular momentum as the relevant quantity
leading to torque effects. The peculiar functional form of the spin density does not
have any mechanical effect on small objects but we should ask the reason for its
dependence on the radial gradient of the intensity. The fact that this functional
dependence appears in the spin but not in the orbital angular momentum suggests
a possible explanation related to the vectorial character of the field. We can test this
idea by considering an absorbing object (M 2 R,M<1) and deliberately ignoring
the constraints of transversality by obtaining the output fields as E ! ME,
B ! MB. The output fields given by this EME ansatz are not solutions of the
Maxwell equations, as they are not transverse. With this ansatz the angular
momentum after the object would be

j0z ¼ M2jz: ð14Þ

This is fundamentally different to the result obtained using the AMA ansatz in that
the density does not depend on the gradient of M. Equation (14) leads to a sign
of the transferred angular momentum determined by the local sign of the density
of spin angular momentum of the incoming field. As shown in figure 2 the integral of
the difference of the thick and thin curves has a different sign at P1 and P3, leading
to rotations in opposite directions. In such a picture an object interacting with the
beam would be influenced by the local functional form of the spin density rather
than the polarization state of the beam. In particular the amount of rotation
predicted in P2 is now nearly negligible (see insert in figure 2). The key physical
principle neglected in this description is transversality. This suggests that the form
of the spin angular momentum density is strongly determined by the transversality
constraint for the fields. The correct spin transfer is predicted within the AMA
ansatz, in which the electromagnetic field is a (transverse) solution of the Maxwell
equations.
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We have shown within the Maxwell formalism that, in spite of the gradient
form of the spin angular momentum density, the transfer of both spin and
orbital angular momenta depends on the local light intensity and thereby resolved
a long-standing controversy. This has been possible through the identification
of the angular momentum flux as the proper quantity in the description of
mechanical effects of the optical angular momentum. The flux before and after
the object have been related to the effective torque in the medium showing the
consistency of our treatment. Given the torque we have found that our
calculations of the object dynamics are in full agreement with experimental observa-
tions. Finally we have demonstrated the relevance of the transversality constraint
for the electromagnetic field in the peculiar functional form of the spin angular
momentum density.
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