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Analytic stochastic treatment of a nonlinear quantum model with negative diffusion
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We apply a proposal of Yuen and Tombesi for treating stochastic problems with negative diffusion to the
analytically soluble problem of the single-mode anharmonic oscillator. We find that the associated stochastic
realizations include divergent trajectories. It is possible, however, to solve the stochastic problem exactly, but
the averaging must be performed with great care.
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I. INTRODUCTION

The treatment of even quite simple quantum optical s
tems can present a significant technical challenge. The
scription of any isolated system can be given using a den
operator, with time evolution governed by the Liouvil
equation@1#. When the system of interest is not isolated, b
can exchange both energy and fluctuations with the
rounding environment, the evolution of the system dens
operator is governed by a master equation@2#. In particular,
master equations provide a practical method to treat s
systems, but direct solution of these is not usually possibl
is often possible, particularly for problems involving optic
field modes, to map the operator master equation onto a
tial differential equation for a quasiprobability distribution.
may be possible to solve this equation or to map it onto
equivalent stochastic process that can be simulated num
cally.

Mapping the quantum problem onto a stochastic sys
relies on a formal similarity between the partial different
equation, obtained from the master equation, and the Fok
Planck equation associated with Brownian motion. T
Fokker-Planck equation for the dynamics of a single fi
mode or harmonic oscillator is typically of the form
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Da* a* W1

]2

]a]a*
Daa* W, ~1!

where W is the quasiprobability distribution for the phas
space associated with the mode and parametrized by
complex variablesa anda* @2,3#. The requirement thatW
be a real-valued function imposes the conditions thatAa*

*

5Aa , Da* a* 5Daa* , andDaa* is real. This equation can b
mapped onto a pair of stochastic differential equatio
~SDEs! for the phase-space coordinates~also written asa
anda* ) in the form

*http://www.imedea.uib.es/PhysDept/
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ȧ5va1j~ t !, ~2!

ȧ* 5va* 1j* ~ t !, ~3!

where va and va* are functions of the drift and diffusion
coefficients (Ai andDi j ) appearing in Eq.~1! and the over-
dot denotes a derivative with respect to time. The termsj(t)
and j* (t) are stochastic fluctuating terms with correlatio
functions related to the diffusion coefficients. There is
unique stochastic representation of a given Fokker-Pla
equation. In this paper we work with the Stratonovich for
of the stochastic integral@4#. A brief discussion of this is
given in the Appendix.

Unfortunately, not all problems of interest can be co
verted into the Fokker-Planck form~1!. Systems of interes
in quantum nonlinear optics often produce equations for
evolution of quasiprobabilities that have derivatives
higher than second order and it is not known how to tr
these within the stochastic formalism. The usual approac
to simply drop these terms to produce ‘‘stochastic electro
namics.’’ It has been shown, however, that this frequen
used approximation does not correctly reproduce high
order correlations such as those predicted to occur in p
metric oscillators@5,6#. A second, more subtle, problem
that even when we do obtain an equation of the form~1!, it
might still not be possible to map this onto SDEs of the fo
~2! and ~3!. The difficulty arises when we have negativ
diffusion, that is, whenDaa* ,uDaau. With negative diffu-
sion, we are led to SDEs in whichj* cannot be the complex
conjugate ofj and hencea* will not be the complex conju-
gate ofa. It was to resolve problems of this kind that th
positiveP representation was introduced@3,7–9#.

In this paper we consider a proposal by Yuen and Tomb
to convert the evolution equation for theQ quasiprobability
into a pair of SDEs@10,11#. Their idea is that the correc
averages should be obtained byformal application of the
Langevin method by simply ignoring the presence of ne
tive diffusion. These authors applied their method to a s
glemode evolving under the influence of a quadratic Ham
tonian in the presence of damping and showed that this g
the known evolution for this problem. In this paper we app
the Yuen-Tombesi approach to the more demanding but
analytically soluble problem of the undamped anharmo
©2002 The American Physical Society10-1
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ROBERTA ZAMBRINI AND STEPHEN M. BARNETT PHYSICAL REVIEW A65 053810
oscillator@12–14#. This model is known to cause difficultie
with stochastic simulations derived from the positiveP rep-
resentation@3,9,15#. We find that the Yuen-Tombesi metho
gives the correct results but that it cannot reliably be app
to numerical simulations of the problem. We trace the ori
of this difficulty to the order in which stochastic averag
and averages over the initial phase-space distribution hav
be performed.

II. METHOD OF YUEN AND TOMBESI

The method of Yuen and Tombesi was designed to d
with problems in which the evolution equation for theQ
function displays negative diffusion. TheQ function for a
single field mode or oscillator can be written in a number
forms, the simplest of which is@2,3,16#

Q~a,a* !5
1

p
^aur̂ua&, ~4!

wherer̂ is the density operator for the mode. This distrib
tion can be used to obtain antinormal ordered moments
the annihilation and creation operators by integration o
the complexa plane:

^ânâ†m&5E d2a Qana* m. ~5!

We consider systems~such as the anharmonic oscillato!
in which the evolution equation for theQ function is of the
form given in Eq.~1!, with negativediffusion. This leads to
associated SDEs in which the stochastic variablea* (t) is
not the complex conjugate ofa(t). As an example, conside
an equation in whichDaa* 50. This necessarily implies
negative diffusion associated withDaa andDa* a* . We can
follow the method outlined in the Appendix to obtain a pa
of SDEs that are equivalent to our evolution equation forQ
@17#:

ȧ5Aa2
1

4

]

]a
Daa1ADaa f a , ~6!

ȧ* 5Aa* 2
1

4

]

]a*
Da* a* 1ADa* a* f a* . ~7!

It might appear that these equations are mutual complex
jugates but this is not the case as the two Gaussian n
terms areindependentand hence do not take complex co
jugate values. It follows that we cannot interpreta anda* as
mutual complex conjugates. The situation is reminiscen
that found with the positiveP representation and we emplo
the same notation by writing our stochastic variables asa(t)
and a1(t) @7#. Anti-normal-ordered expectation value
should then correspond to stochastic averages of the c
sponding functions ofa anda1, with â(t) replaced bya(t)
and â†(t) replaced bya1(t).

We can introduce the variablesa anda1 more formally
by means of the complex function
05381
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Q̃~a,a1!5
1

p
^0uea1âr̂eaâ†

u0&e2a1a, ~8!

which is a function ofa and a1 but not of their complex
conjugates. This reduces to the familiarQ function ~4! when
a15a* . We can convert our master equation forr̂ into an
evolution equation forQ̃ by making the substitutions

r̂â†→S a11
]

]a D Q̃,

â†r̂→a1Q̃,

âr̂→S a1
]

]a1D Q̃,

r̂â→aQ̃. ~9!

The resulting equation forQ̃ will be of the same form as tha
for our Q function with a* replaced bya1.

III. ANHARMONIC OSCILLATOR

The anharmonic oscillator is one of the simplest analy
cally solvable models in quantum optics. The Hamiltoni
for this model can be written in the form

Ĥ5vS â†â1
1

2D1m~ â†â!2, ~10!

wherev is the natural angular frequency for the mode a
we work with units in which\51. The term proportional to
m is sometimes written in normal order asmâ†â†ââ. This is
the same model but with thev changed tov1m. It is con-
venient to remove the free evolution of the mode and this
be achieved by working in an interaction picture rotating
angular frequencyv. The interaction picture form of the
Hamiltonian~10! is

ĤI5m~ â†â!2. ~11!

This Hamiltonian has been used in quantum optics a
model for the Kerr nonlinear refractive index. Despite
simplicity, it produces a number of nonclassical effects
cluding squeezing@14# and Schro¨dinger cat states@13#, that
is, superpositions of coherent states. The accurate repro
tion of these features, especially the cat states, presents a
challenge to a stochastic simulation method such as that
posed by Yuen and Tombesi@10,11#. The fact that the mode
is analytically soluble means that we can compare the res
of such simulations with exact analytical expressions.
will give an example of this comparison in the followin
section. In this section we present a brief review of some
the known features of the model.

It is clear from the form of the Hamiltonian that it com
mutes with the number operatorâ†â. It follows that the num-
ber of excitations~or photons! in the mode will be conserved
0-2
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ANALYTIC STOCHASTIC TREATMENT OF A . . . PHYSICAL REVIEW A65 053810
and that the photon number statesun& will be the eigenstates
of our interaction Hamiltonian

ĤI un&5n2mun&. ~12!

The corresponding time-evolution operator is

Û~ t !5exp~2 iĤ I t !5 (
n50

`

un&^nue2 in2mt, ~13!

and it follows that the evolution of our oscillator will b
periodic with period 2p/m. If we can expand our initial state
in terms of the number states, then we can use this resu
solve for the time-evolved state in the Schro¨dinger picture.
For example, an initial coherent stateua0& will evolve to the
state

Û~ t !ua0&5e2ua0u2(
n50

` a0
n

An!
e2 in2mtun&. ~14!

This state has a rich structure that can be seen in picture
the associated quasiprobability distributions@12,14#. The
state has a simple form at the quarter periods, when it ca
written as@13#

Û@p/~2m!#ua0&5
12 i

2
ua0&1

11 i

2
u2a0&,

Û@p/m#ua0&5u2a0&,

Û@3p/~2m!#ua0&5
11 i

2
ua0&1

12 i

2
u2a0&. ~15!

The state at one quarter and three quarters of a period
superposition of the coherent statesua0& and u2a0&. Such
superposition states have interesting nonclassical prope
and have been called Schro¨dinger cat states.

Our stochastic treatment is designed to produce expe
tion values of operators for the oscillator. These can also
calculated analytically, but this is most easily performed
the Heisenberg interaction picture. The time-evolved ann
lation and creation operators are

â~ t !5Û†~ t !âÛ~ t !5e2 imte2 i2mtâ†ââ, ~16!

â†~ t !5Û†~ t !â†Û~ t !5eimtâ†ei2mtâ†â, ~17!

where we have written the initial operators asâ andâ†. It is
straightforward to use these expressions to calculate ex
tation values for functions ofâ(t) and â†(t). For example,
the expectation value of the annihilation operator for the
herent stateua0& is

^â~ t !&5e2 imt^a0ue2 i2mtâ†ââua0&

5e2 imta0exp@ ua0u2~e2 i2mt21!#. ~18!

In this expression we have omitted the free evolution in
form of a factore2 ivt. This corresponds to working in
05381
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frame rotating at frequencyv, associated with our choice o
interaction picture. All expressions in this paper will b
given in this frame. The expectation value ofâ†(t) is the
complex conjugate of Eq.~18! and higher-order moment
can also be calculated without difficulty.

The evolution equation for theQ function can be written
in the form @12#

]

]t
Q52 imF ]

]a*
~2uau223!a* Q2

]

]a
~2uau223!aQ

1
]2

]a* 2
a* 2Q2

]2

]a2
a2QG . ~19!

Comparison with Eq.~1! reveals that this equation has neg
tive diffusion (Daa* 50,uDaau52uma2u) and hence is a
good candidate with which to test the ideas of Yuen a
Tombesi. We should emphasize that the partial differen
Eq. ~19! itself does not present any difficulties in spite of th
negative diffusion@18#. Indeed, we can solve this equatio
directly to give the correctQ function @12#.

IV. ANALYTIC STOCHASTIC TREATMENT
OF THE ANHARMONIC OSCILLATOR

We can reexpress the evolution of ourQ function, given
by Eq. ~19! as an equivalent stochastic process using
method outlined in the Appendix. A simple and natur
choice is to setCaa* 505Ca* a so thatCaa5Ai2ma and
Ca* a* 5A2 i2ma* . The evolution equation for ourQ func-
tion clearly displays negative diffusion and so we write o
SDEs in terms of the variablesa and a1. For the choices
described above, our SDEs become

ȧ52 im2~a1a21!a1ja, ~20!

ȧ15 im2~a1a21!a11j1a1, ~21!

wherej andj1 are complex, white Gaussian noises with t
stochastic averages

^j~ t !j~ t8!&S52imd~ t2t8!,

^j1~ t !j1~ t8!&S522imd~ t2t8!,

^j1~ t !j~ t8!&S50. ~22!

We will require averages both over the stochastic noise r
izations and also over the initial quasiprobability distrib
tion. The subscriptS identifies the fact that we have carrie
out the stochastic average. The stochastic averages~22! do
not fully determine the forms of the noise terms. It is cle
however, thatj1(t) cannot be the complex conjugate
j(t). It has been suggested that the considerable freedo
choosing the forms ofj(t) and j1(t) can be used to sup
press, although not completely remove, stochastic samp
errors in the analogous problem in the positiveP representa-
tion. The analysis presented in this section is independen
0-3
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ROBERTA ZAMBRINI AND STEPHEN M. BARNETT PHYSICAL REVIEW A65 053810
this choice of Gaussian noise and hence the freedom to s
the forms ofj(t) and j1(t) will not address the problem
uncovered.

We require the solution of Eqs.~20! and ~21! with the
initial conditions a(0)5b and a1(0)5b* . These mean
that a1(0)5a* (0) and allow us to use the initialQ0 func-
tion to perform the average over the initial state. As alrea
noted in Sec. II, the form of the stochastic noise means
a1(t) will not take the valuea* (t) in any given realization.
The full quantum average will only be obtained by perfor
ing an average over theQ0 function for the initial state. For
the coherent stateua0& this is

Q0~b!5
1

p
e2ub2a0u2. ~23!

We denote the average obtained by integrating overb by the
subscriptQ0:

^F„a~ t !,a1~ t !…&Q0
5E

2`

`

d2bQ~b!F„a~ t !,a1~ t !….

Quantum expectation values should be obtained on perfo
ing both the stochastic average and the average over thiQ0

function. In particular, the mean value ofâ at time t will be

^â~ t !&5Š^a~ t !&S‹Q0
. ~24!

We have not yet given a prescription for the order, if any,
which these averages must be performed. We will see
this question is of some importance for the solution of
SDEs.

In this section we will calculate the expectation value
the annihilation operator at timet by solving the SDEs~20!
and ~21!. We start by noticing that the combinationa1a
satisfies the equation

d

dt
a1a5~j1j1!a1a. ~25!

The formal solution to this equation is

a1~ t !a~ t !5b* be*0
t [ j(t8)1j1(t8)]dt8. ~26!

This already suggests that the stochastic simulation of
problem may run into difficulties. We expect the avera
obtained froma1(t)a(t) will be ^â(t)â†(t)&, which should
take the constant valueua0u211. The solution~26!, however,
clearly shows that the stochastic noise will causea1(t)a(t)
to fluctuate away from its initial value in a single realizatio
of the stochastic process. The average is constant bu
corresponding variance increases in time. The presence
complex driving forcej1j1 means thata1(t)a(t) can ac-
quire any complex value. Nevertheless, we can proceed
inserting our solution~26! into our SDEs~20! and ~21!. We
find that the resulting equations are linear. In particular,
equation fora(t) becomes

ȧ~ t !5[ 2 i2m(ubu2e*0
t [ j(t8)1j1(t8)]dt821)1j~ t !]a~ t !,
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the solution of which is

a~ t !5b expH E
0

t

[ 2 i2m(ubu2e*0
t8[ j(t9)1j1(t9)]dt921)

1j~ t8!]dt8J . ~27!

Similar expressions have been given for the same mo
treated in the positiveP representation@15#. The average of
this quantity should be the expectation value ofâ(t). Let us
start by performing the stochastic average. This can
achieved most readily by expanding the outer exponentia
powers ofubu2:

^a~ t !&S5bei2mt^e*0
t j(t8)dt8@12 i2mubu2

3E
0

t

e*0
t8[ j(t9)1j1(t9)]dt9dt8

22m2ubu4E
0

t

dt8E
0

t

dt9e*0
t8[ j(s)1j1(s)]ds

3e*0
t9[ j(s8)1j1(s8)]ds81•••] &S . ~28!

Here we have made explicit use of the Gaussian natur
our stochastic noise in evaluating the averages of expone
functions of the noise. We can evaluate the average of e
term in turn. The order zero and order 1 terms are

^e*0
t j(t8)dt8&S5eimt, ~29!

2 i2mubu2K E
0

t

dt8e*0
t8[2j(s)1j1(s)]dse*

t8
t

j(s8)ds8L
S

52 i2mubu2E
0

t

dt8e4imt8e2 imt8eim(t2t8)

52ubu2eimt~e2imt21!. ~30!

It is straightforward to show that the stochastic average
the term of orderubu2n is (21)nubu2neimt(e2imt21)n/n! It is
tempting to resum the series in Eq.~28! to give

^a~ t !&S5bei3mtexp@ ubu2~12ei2mt!#. ~31!

Let us see the consequences of this resumming by com
ing our calculation of the expectation value ofâ(t) with the
average overb. This procedure leads to the expression

^^a~ t !&S&Q0
5

1

pE d2be2ub2a0u2bei3mtexp@ ubu2~12ei2mt!#.

Inspection of the integrand reveals a problem. It is clear t
the integrand isunbounded~and the integralundefined! for
timest such that cos(2mt)<0. It is interesting to note that this
includes the timesp/(2m) and 3p/(2m) at which the anhar-
monic oscillator evolves into the Schro¨dinger cat states given
in Eqs.~15!. The problem is that we have assumed that it
0-4
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ANALYTIC STOCHASTIC TREATMENT OF A . . . PHYSICAL REVIEW A65 053810
acceptable to perform the stochastic average before perf
ing the average over initial conditions. In fact, this is not t
case and we should perform theQ0 average first. We can se
this by evaluating the average over theQ0 function before
resumming the series in our stochastic average given in
~28!. This gives the final average value

Š^a~ t !&Q0
‹S5ei3mt (

n50

`
~12ei2mt!n

n!

3E d2b

p
bn11b* ne2ub2a0u2

5ei3mt (
n50

`

~12ei2mt!n(
l 50

n
~n11!!

l ! ~ l 11!! ~n2 l !!

3a0
l 11a0*

l

5ei3mt(
l 50

` ua0u2l

~ l 11!! (
n5 l

`

~12ei2mt!n
~n11!!

~n2 l !! l !

5e2 imta0exp~ ua0u2~e2 i2mt21!!, ~32!

which we recognize as the correct answer given in Eq.~18!.
Other moments can be obtained in the same manner.

We can see the origin of the incorrect stochastic aver
given in Eq.~31! by considering the form of the annihilatio
operator in the Heisenberg picture, Eq.~16!, which we can
also write in the form

â~ t !5e3imtâe2 i2mtâ†â5e3imtâAe(12ei2mt)ââ†
A ~33!

whereAA denotes antinormal ordering and we have used
antinormal ordering theorem for the exponential ofâ†â @2#.
We note that this becomes the expression~31! obtained by
performing the stochastic average, if we identifyâ and â†

with b and b* , respectively. We have written Eq.~33! in
antinormal order because theQ function gives antinormally
ordered moments. If we use this expression to calculate
expectation value ofâ(t), for our initial coherent state, the
we find

^â~ t !&5e3imt^a0uâAexp@~12ei2mt!ââ†#Aua0&. ~34!

We can, of course, evaluate this expectation value by put
the operator into normal ordered form and using the fact
the coherent states are right eigenstates of the annihila
operator. Our aim, however, is to investigate the proble
with the stochastic average associated with simulations
signed to reproduce antinormal ordered averages. We
work with the antinormal ordered form in Eq.~34! by ex-
panding the exponential as a Taylor series and inserting
identity in the form of an integral over the coherent sta
ub& @2#:
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^â~ t !&5e3imt^a0u (
n50

`
~12ei2mt!n

n!
ân11E d2b

p
ub&

3^buâ†nua0&

5e3imt (
n50

`
~12ei2mt!n

n! E d2b

p
bubu2ne2ub2a0u2.

~35!

Clearly, it would be wrong to evaluate the summation befo
carrying out the integral. Evaluating the integral first corr
sponds, in our stochastic treatment, to averaging over in
conditions before performing the stochastic average,
gives the correct result.

It is interesting to note that there is a strong similar
between the SDEs discussed here and those found for
anharmonic oscillator in the positiveP representation. In-
deed, if we write equations forae2 imt anda1eimt, then we
recover the equations discussed by Plimaket al. @15#. An
important difference, however, is that the diffusion for t
positiveP representation occurs with the opposite sign fro
that for theQ function. This means that the stochastic av
ages~22! have opposite signs when applied to the positiveP
representation. We can use the methods described in this
tion to obtain the expectation value ofâ(t) in the positiveP
representation. The stochastic average gives^a(t)&S
5be2 imtexp@ubu2(e2i2mt21)#. Performing the average of thi
over ad-function positiveP distribution, peaked atb5a0
5b1* , gives the correct result~18!. The positiveP repre-
sentation is associated with operator moments in normal
der and this seems to be the reason for the well-beha
form of the stochastic averages for initial coherent states

V. STOCHASTIC SIMULATION OF THE ANHARMONIC
OSCILLATOR

In this section we present results of numerical simulatio
@19# of the stochastic processa(t) given in Eq. ~27!. Our
simulations were performed using two discrete Gaussian
cessesh l ,h l

1 of the form

h l5E
Dt

dt8j~ t8!, h l
15E

Dt
dt8j1~ t8!, ~36!

where t5 lDt. In this way ^h lh l 8&52imDtd l l 8 and
^h l

1h l 8
1&522imDtd l l 8 . We note that the relations~22! do

not completely specify the two independentcomplexwhite
noises. As recently shown in@15# the degree of freedom in
the choice of the noise could be used to improve the res
of the numerical simulation by choosing the stochastic p
cessesj andj1 so as to inhibit~but not completely suppress!
the fast growth ofa(t). In this paper, however, we hav
considered only the formsj5A2imf and j15A22imf1

with f andf1 being real white noises.
Each stochastic realization must start from a single po

in phase space. For this reason, the analysis of the prece
section leads us to conclude that diverging trajectories,
ploring large values ofuau, are inevitable. These divergence
0-5
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ROBERTA ZAMBRINI AND STEPHEN M. BARNETT PHYSICAL REVIEW A65 053810
are responsible for the unbounded average obtained by
forming the stochastic average before the average over
initial Q distribution. Each of our simulations starts at a po
a(0)5a1* (0)5b. Naturally, the average over the initialQ
distribution requires stochastic realizations for a range of v
ues ofb, weighted by the distribution~23!. Consideration of
a single value ofb, however, suffices to illustrate the dive
gences associated with individual trajectories. We observe
each case, a divergence after some time. We can see
origin of these divergences in the SDEs~20! and ~21!; the
complex variablesa anda1 are not constrained to be com
plex conjugate quantities and so, in any given realization,
combinationa1a can acquire an imaginary part. This lea
to exponential growth ofa or a1. The time at which this
divergence appears varies between realizations and also
pends on the initial conditions. In particular, the divergen
appears earlier for larger values ofubu2. This is because o
the exponential dependence ofa(t) on ubu2 as seen in Eq.
~27!.

If we select a sufficiently small value ofb and perform an
average over a large number of trajectories then we fin
result that is, for short times, in good agreement with
analytical average Eq.~31!. In Fig. 1 we have plotted the
time evolution of Rêa(t)&S , obtained by considering
50 000 trajectories, starting from the initial conditionb
50.0011 i0.1 ~diamonds!. For comparison the analytical ex
pression for the stochastic average is represented by a
tinuous line. At very short times, we observe a near per
agreement between the numerical results and the analy
expression. At longer times, this agreement is lost becaus
the divergence induced by the independent stochastic no

The trajectories start from a single point in phase spa
This corresponds to selecting, in each simulation, ad- func-
tion phase-space probability distribution. Such a narrow d
tribution for theQ0 distribution does not correspond to an
physically allowed state@3#. Indeed, the evolution obtaine
from the Fokker-Planck equation for such an initial conditi
is highly singular. It is this behavior that is reflected in t
divergent numerical simulations. Figure 2 depicts the
merically obtained value of̂a(t)&S . We see that this aver

FIG. 1. Time evolution of the stochastic average Re^a(t)&S ,
using 50 000 trajectories and starting fromb50.0011 i0.1. The
diamonds represent numerical values. The continuous line re
sents the analytical result for^a(t)&S . The dashed line represen
Š^a(t)&Q0

‹S for the initial coherent stateua0& with a050.001
1 i0.1.
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age explores an extended region of the complex plane.
analytical average Eq.~31!, is represented by the sma
circle.

The relationship between the time at which trajector
diverge and the initial condition (b) means that an ensemb
of trajectories starting from a range of different initial co
ditions will rapidly produce divergences. For this reason
analytical result~18! cannot be reproduced numerically
any straightforward manner.

VI. CONCLUSION

In conclusion, we have considered a proposal of Yuen
Tombesi@10# to give a stochastic representation of a Fokk
Planck equation with negative diffusion for theQ represen-
tation. We have shown that the correct analytical mome
for an anharmonic oscillator~associated with anonlinear
x (3) process! can be obtained from the SDEs. These resu
however, are highly sensitive to the order in which avera
over the stochastic realizations and over the distribution
the initial conditions are performed. It is clear that mo
sophisticated techniques are required for stochastic sim
tion of the problem. Recent work suggests that the effect
divergences can be significantly suppressed but not yet el
nated@15,20#.

The system studied in this paper is highly idealized. W
could include the effects of loss and expect that these
improve the stability of the numerical results. Such an i
provement has been noted in studies of positiveP @9#. It is
possible, however, that there are other interesting syst
that are less sensitive to the noise and for these, stoch
simulations using the Yuen-Tombesi method may prove to
a useful technique. Possible systems for study in quan
optics include the optical parametric oscillator and seco
harmonic generation, which could be successfully stud
with this approach. Our preliminary studies suggest t
there are regimes of operation, including the threshold
which the probability for a divergent trajectory to occur
very small. In this case, numerical simulation does g
stable results. We will return to this topic elsewhere.

e-

FIG. 2. Phase-space plot of the numerical average^a(t)&S , the
real part of which is shown in Fig. 1. The points represent num
cal values at different times. The circle represents the analyt
result for ^a(t)&S .
0-6
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APPENDIX

In this appendix we present a brief discussion of the l
between a given Fokker-Planck equation and an equiva
stochastic system~a more complete account can be found
@4,21#!. As we have already noted, the Fokker-Planck eq
tion does not correspond to a unique stochastic system
so it is natural to start with a stochastic system. Consider
pair of ~Langevin! SDEs

]a

]t
5Ba1Caa f a~ t !1Caa* f a* ~ t !, ~A1!

]a*

]t
5Ba* 1Ca* a* f a* ~ t !1Ca* a f a~ t !, ~A2!

with white Gaussian noise termsf i defined to have zero av
erage and second moments of the form

^ f i~ t ! f j~ t8!&5d i j d~ t2t8!, ~A3!

and the subscriptsi , j denotinga anda* .
The formal solution of Eqs.~A1! and ~A2! is

a~ t !5a~0!1E
0

t

dt8Ba~ t8!1E
0

t

CaadW~ t8!

1E
0

t

Caa* dW* ~ t8!, ~A4!

a* ~ t !5a* ~0!1E
0

t

dt8Ba* ~ t8!1E
0

t

Ca* adW~ t8!

1E
0

t

Ca* a* dW* ~ t8!, ~A5!

where we have introduced the Wiener processesdW(t)
5 f a(t)dt anddW* (t)5 f a* (t)dt.

In order to use these stochastic processes, we need to
a prescription for carrying out the stochastic integrals o
the Wiener processes. In this paper, we choose the Strato
ich interpretation of the stochastic integral in which
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g~a,a* !dW~ t8!

5(
i

@W~ t i !2W~ t i 21!#

3gS a~ t i !1a~ t i 21!

2
,
a* ~ t i !1a* ~ t i 21!

2 D .

The reason for this choice, instead of the Itoˆ interpretation, is
that we will be constructing analytical averages over the s
chastic process and the Stratonovich formalism allows u
use the familiar rules of calculus.

From the Langevin equations it is possible to obtain
uniqueFokker-Planck equation for the probability distribu
tion W„a(t),a* (t),t…. If we consider the trajectory obtaine
in a single realization of the stochastic processfW

5( f a , f a* ) and start from the initial value aW (0)
5„a(0),a* (0)…, then the solution at timet is completely
determined and the probability distribution for it
the d function d(a2a„t;aW (0);@ fW(t)#…)d(a*
2a* „t;aW (0);@ fW(t)#…). Considering a set of initial condition
a0
W , distributed according some initial distributionp0

5p„aW (0);0…, we can obtain the shape of the distribution
time t:

p„aW ,t;@ fW~ t !#…5^d~a2a„t;aW ~0!;@ fW~ t !#…!

3d~a* 2a* „t;aW ~0!;@ fW~ t !#…!&p0
,

~A6!

where the subscriptp0 denotes an average over the initi
probability distribution. The quantityp satisfies the conser
vation equation

]

]t
p1

]

]a
~ȧp!1

]

]a*
~ ȧ* p!50. ~A7!

The complete probability distribution is obtained by al
averaging over the stochastic trajectories obtained with
ferent noise realizations, denoted by the subscript@ fW(t)#:

W~a,a* ,t !5^p„a,a* ,t;@ fW~ t !#…& [ fW(t)] . ~A8!

The time evolution for the distributionW can be obtained
using the continuity equation and gives@4,22#

]

]t
W52

]

]a
BaW2

]

]a*
Ba* W1

1

2 (
i j l

@] iCi j ] lCl j #W,

where the subscriptsi , j ,k again denotea and a* . If we
compare this form of the Fokker-Planck equation with E
~1!, then we obtain the correspondences

Daa5Caa
2 1Caa*

2 , ~A9!

Da* a* 5Ca* a*
2

1Ca* a
2 , ~A10!

Daa* 5CaaCa* a1Ca* a* Caa* , ~A11!
0-7
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Aa5Ba1
1

2 F S ]

]a
CaaDCaa1S ]

]a*
CaaD Ca* a

1S ]

]a
Caa* DCaa* 1S ]

]a*
Caa* D Ca* a* G , ~A12!

Aa* 5Ba* 1
1

2 F S ]

]a
Ca* aDCaa1S ]

]a*
Ca* aD Ca* a

1S ]

]a
Ca* a* DCaa* 1S ]

]a*
Ca* a* D Ca* a* G . ~A13!
-

.

. A

. A

05381
Note that these equations do not give unique forms for thB
and C functions. This is a consequence of the lack of
unique stochastic representation for a given Fokker-Pla
equation.

If our stochastic variablesa and a* are to be complex
conjugate quantities, then it follows from Eqs.~A1! and~A2!
that Ba*

* 5Ba , Caa* 5Ca* a , andCaa*
* 5Ca* a* . These con-

ditions necessarily imply positive diffusion as, from~A9!–
~A11!, Daa* .uDaau. It follows that the stochastic variable
cannot be complex conjugate quantities when we have n
tive diffusion. In order to avoid possible confusion, we r
place the stochastic variablea* (t) by a1(t) whenever there
is negative diffusion.
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