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Analytic stochastic treatment of a nonlinear quantum model with negative diffusion
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We apply a proposal of Yuen and Tombesi for treating stochastic problems with negative diffusion to the
analytically soluble problem of the single-mode anharmonic oscillator. We find that the associated stochastic
realizations include divergent trajectories. It is possible, however, to solve the stochastic problem exactly, but
the averaging must be performed with great care.
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I. INTRODUCTION a=v +£&(1), 2)

The treatment of even quite simple quantum optical sys- )
tems can present a significant technical challenge. The de- a@* =v g+ € (1), (©)
scription of any isolated system can be given using a density
operator, with time evolution governed by the Liouville wherev, andv « are functions of the drift and diffusion
equation[1]. When the system of interest is not isolated, butcoefficients A; andD;;) appearing in Eq(1) and the over-
can exchange both energy and fluctuations with the surdot denotes a derivative with respect to time. The tef(t¥
rounding environment, the evolution of the system densityand £* (t) are stochastic fluctuating terms with correlation
operator is governed by a master equafidh In particular,  functions related to the diffusion coefficients. There is no
master equations provide a practical method to treat suctinique stochastic representation of a given Fokker-Planck
systems, but direct solution of these is not usually possible. lgquation. In this paper we work with the Stratonovich form
is often possible, particularly for problems involving optical of the stochastic integrd¥]. A brief discussion of this is
field modes, to map the operator master equation onto a pagiven in the Appendix.
tial differential equation for a quasiprobability distribution. It Unfortunately, not all problems of interest can be con-
may be possible to solve this equation or to map it onto averted into the Fokker-Planck forifi). Systems of interest
equivalent stochastic process that can be simulated numeiih quantum nonlinear optics often produce equations for the
cally. evolution of quasiprobabilities that have derivatives of

Mapping the quantum problem onto a stochastic systennigher than second order and it is not known how to treat
relies on a formal similarity between the partial differential these within the stochastic formalism. The usual approach is
equation, obtained from the master equation, and the Fokkete simply drop these terms to produce “stochastic electrody-
Planck equation associated with Brownian motion. Thenamics.” It has been shown, however, that this frequently
Fokker-Planck equation for the dynamics of a single fieldused approximation does not correctly reproduce higher-

mode or harmonic oscillator is typically of the form order correlations such as those predicted to occur in para-
metric oscillators[5,6]. A second, more subtle, problem is
2 that even when we do obtain an equation of the fotm it
J d J 19 . : - :
—W=— —AW— —A W+ = —D, W might still not be possible to map this onto SDEs of the form
at da da* 2 ja? (2) and (3). The difficulty arises when we have negative
5 ) diffusion, that is, wherD .« <|D,,|. With negative diffu-
19 J sion, we are led to SDEs in whicftf cannot be the complex
+ = ——=Dx s W+ D oW, (1) . .o .
2 ga*? dada* conjugate of¢ and hencax* will not be the complex conju-

gate ofa. It was to resolve problems of this kind that the
positive P representation was introducg8,7—-9.

where W is the quasiprobability distribution for the phase In this paper we consider a proposal by Yuen and Tombesi

space assoqated with ”}F mode and pgrametnzed by ”18 convert the evolution equation for tii@ quasiprobability
complex variablesr anda* [2,3]. The requirement thaty i1 5 pair of SDE§10,11). Their idea is that the correct
be a real-valued function imposes the conditions th?,t averages should be obtained fymal application of the
=A,, Dyx»=D3},, andD .« is real. This equation can be Langevin method by simply ignoring the presence of nega-
mapped onto a pair of stochastic differential equationsive diffusion. These authors applied their method to a sin-
(SDEs for the phase-space coordinat@gso written ase  glemode evolving under the influence of a quadratic Hamil-
and a*) in the form tonian in the presence of damping and showed that this gave
the known evolution for this problem. In this paper we apply
the Yuen-Tombesi approach to the more demanding but still
* http://www.imedea.uib.es/PhysDept/ analytically soluble problem of the undamped anharmonic
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oscillator[12—14. This model is known to cause difficulties ~ 1 ea ot .

with stochastic simulations derived from the positReep- Qla,a™)= ;<0|e“ dpe®|0)e ¢, (8
resentatior]3,9,15. We find that the Yuen-Tombesi method

gives the correct results but that it cannot reliably be appliedynich is a function ofe and a* but not of their complex

to nu_mer_ic_al simulations of tht_a prob_lem. We trace the Originconjugates. This reduces to the famil@ifunction (4) when
of this difficulty to the order in which stochastic averages +— a*. We can convert our master equation fointo an
and averages over the initial phase-space distribution have {6 ' q

be performed. evolution equation fo by making the substitutions
A
Il. METHOD OF YUEN AND TOMBESI pa'—|a’+ ™ Q,

The method of Yuen and Tombesi was designed to deal
with problems in which the evolution equation for tig@ a'fp—a™0Q,
function displays negative diffusion. Th@ function for a

single field mode or oscillator can be written in a number of P
forms, the simplest of which ig2,3,16 ap—| a+ +) 0,
Jda
R
Qla,a )=;<a|p|a>, 4 pa— a0. (9)

wherep is the density operator for the mode. This distribu- The resulting equation fa@ will be of the same form as that
tion can be used to obtain antinormal ordered moments oPr our Q function with o* replaced bya .

the annihilation and creation operators by integration over

the complexa plane: I11. ANHARMONIC OSCILLATOR

o The anharmonic oscillator is one of the simplest analyti-
(a”aTm>=f d’a Qa"a*™. (5)  cally solvable models in quantum optics. The Hamiltonian
for this model can be written in the form

We consider system&uch as the anharmonic oscillator
in which the evolution equation for th@ function is of the A=w
form given in Eq.(1), with negativediffusion. This leads to
associated SDEs in which the stochastic variabfdt) is
not the Comp|ex Conjugate @f(t) As an examp|e, consider where w is the natural angular frequency for the mode and
an equation in whichD,,«=0. This necessarily implies We work with units in which,=1. The terrrj QroApAortionaI to
negative diffusion associated wifh,, andD ,« «. We can  u is sometimes written in normal order ag'a'aa. This is
follow the method outlined in the Appendix to obtain a pair the same model but with the changed taw+ . It is con-
of SDEs that are equivalent to our evolution equation@or venient to remove the free evolution of the mode and this can

+u(a'a)?, (10

apn 1
a4+ =
aa+2

[17]: be achieved by working in an interaction picture rotating at
angular frequencyw. The interaction picture form of the
. 19 Hamiltonian(10) is
a=A,— = —D_ .t VDoufu, (6)
4 Ja ~ L
H =u(a'a)?. (12)
: 1 9
a* =A% — — ——D xgx T VD g ox F o (7)  This Hamiltonian has been used in quantum optics as a
4 da* model for the Kerr nonlinear refractive index. Despite its

) ) simplicity, it produces a number of nonclassical effects in-
It might appear that these equations are mutual complex coRyding squeezingi14] and Schidinger cat statefl3], that

jugates but this is not the case as the two Gaussian noigg, superpositions of coherent states. The accurate reproduc-
terms areindependenand hence do not take complex con- tion of these features, especially the cat states, presents a stiff
jugate values. It follows that we cannot interpseanda™ as  challenge to a stochastic simulation method such as that pro-
mutual complex conjugates. The situation is reminiscent Of:)osed by Yuen and Tombegio,11]. The fact that the model
that found with the positiv® representation and we employ s analytically soluble means that we can compare the results
the same notation by writing our stochastic variablea@3  of such simulations with exact analytical expressions. We
and a”(t) [7]. Anti-normal-ordered expectation values wil| give an example of this comparison in the following
should then correspond to stochastic averages of the corrgection. In this section we present a brief review of some of
sponding functions ofr anda*, with a(t) replaced bya(t) the known features of the model.

anda'(t) replaced bya* (t). It is clear from the form of the Hamiltonian that it com-
We can introduce the variables and @™ more formally ~ mutes with the number operatfa’fé. It follows that the num-
by means of the complex function ber of excitationgor photon$ in the mode will be conserved
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and that the photon number stata$ will be the eigenstates frame rotating at frequency, associated with our choice of

of our interaction Hamiltonian interaction picture. All expressions in this paper will be
. ) given in this frame. The expectation value ®f(t) is the
H[n)=n“u|n). (12 complex conjugate of Eq(18) and higher-order moments

can also be calculated without difficulty.
The evolution equation for th@ function can be written
in the form[12]

The corresponding time-evolution operator is

O(t)=exp(—iﬂ.t):20|n><n|e—i"2m, (13

 o=—i 07223* (9223
5Q= k| (2lal?~3)a* Q= S (2lal’~3)aQ

and it follows that the evolution of our oscillator will be
periodic with period 2/ . If we can expand our initial state

in terms of the number states, then we can use this result to " 2 @*2Q— _ZazQ (19
solve for the time-evolved state in the Sodlirger picture. Ja*? Ja? '

For example, an initial coherent statey) will evolve to the

state Comparison with Eq(1) reveals that this equation has nega-

tive diffusion (D 4+ =0<|D,.|=2|ua?) and hence is a
good candidate with which to test the ideas of Yuen and
Tombesi. We should emphasize that the partial differential
Eqg. (19) itself does not present any difficulties in spite of the
This state has a rich structure that can be seen in pictures 8ggative diffusion18]. Indeed, we can solve this equation
the associated quasiprobability distributiofs2,14. The  directly to give the correcQ function[12].
state has a simple form at the quarter periods, when it can be
written as[13] IV. ANALYTIC STOCHASTIC TREATMENT

OF THE ANHARMONIC OSCILLATOR

U(t)Iao>=e“a°'2§O %e‘”‘zﬂn). (14)

N =i 1+i
UL/ (2p)]| a0y = —~[ao) + —5—|~ o), We can reexpress the evolution of aQrfunction, given
by Eg. (19 as an equivalent stochastic process using the
O/ Teo) =| - ag) method outlined in the Appendix. A simple and natural
Tkl @o/» choice is to seC,,«=0=C_«, so thatC,,=i2ua and
1-i Ca+ox =V —i2ua*. The evolution equation for ou® func-

- 1+i ; ) . e .
O[37/(2u)]| o) = _'|a0>+ —|—ag). (15 tion clearly displays negative diffusion and so we write our
2 2 SDEs in terms of the variables and a*. For the choices

The state at one quarter and three quarters of a period isd:fsc”b(ad above, our SDEs become

superposition of the coherent stafes,) and|— ap). Such
superposition states have interesting nonclassical properties
and have been called Schlinger cat states. .

Our stochastic treatment is designed to produce expecta- a"=ip2(ata-1)a"+&a”, (21
tion values of operators for the oscillator. These can also be
calculated analytically, but this is most easily performed inwhere¢ andé™ are complex, white Gaussian noises with the
the Heisenberg interaction picture. The time-evolved annihiStochastic averages
lation and creation operators are )

(§(D&(t"))s=2ipo(t—t"),

(ET(DET(L))s=—2ipd(t—t"),

(£7(1)E(1"))s=0. (22)
where we have written the initial operatorsasanda’. It is

straightforward to use these expressions to calculate expe¥Ve Will require averages both over the stochastic noise real-
tation values for functions o&(t) and éT(t). For example |;at|ons and alsp over th_e initial quasiprobability dIStrI.bu-
the expectation value of the annihilation operator for the’co-tlon' The subscr[pS identifies the fact that_we have carried
herent statéaq) is out the stochas'tlc average. The stochgstlc aver@sdo
0 not fully determine the forms of the noise terms. It is clear,
~ o iat _ioutatan however, thaté*(t) cannot be the complex conjugate of
(a(t))=e™*Y aole™ " “a| ag) &(t). It has been suggested that the considerable freedom in
=e Magexd|agl?(e7 2 —1)]. (18) choosing the forms of(t) and £*(t) can be used to sup-
press, although not completely remove, stochastic sampling
In this expression we have omitted the free evolution in theerrors in the analogous problem in the positReepresenta-

form of a factore '“!. This corresponds to working in a tion. The analysis presented in this section is independent of

a=—ip2(ata—1)a+éa, (20)

at)=0t(t)al(t) =e inte-i2uta’ag (16)

+

3 (17)

af(t)=0T1)at0(t) =e#atei2eta
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this choice of Gaussian noise and hence the freedom to seleitte solution of which is
the forms of£(t) and & (t) will not address the problem t
uncovered. _ : 2 Vet + £ ()] dt”
We require the solution of Eq$20) and (21) with the a(t)_BeXp[ J’o[_lz’“('ﬁ' elol e (A0 -1)
initial conditions «(0)=8 and «*(0)=8*. These mean
thata™(0)=a*(0) and allow us to use the initi&@, func- +§(t’)]dt’] 27)
tion to perform the average over the initial state. As already '
noted in Sec. IlI, the form of the stochastic noise means that
a™ (1) will not take the valuex*® (t) in any given realization. Similar expressions have been given for the same model
The full quantum average will only be obtained by perform-treated in the positiv® representatiofl5]. The average of

ing an average over th@, function for the initial state. For this quantity should be the expectation valuea¢f). Let us

the coherent statir) this is start by performing the stochastic average. This can be
1 achieved most readily by expanding the outer exponential in
Qo(B)= —e 1A’ (23  Powers of| B|%:
a

— pai2uty ofSE)d g 2
We denote the average obtained by integrating @vby the (a(D))s= e et [1-i2u|p]

subscriptQg: y Jtefglf(‘")*§+(t")]‘“"dt’
0

(F(a(t).a™(1))q,= f d*BQIBIF(a(t),a(1)). o
o —2M2|ﬁ|4j dt’J dt"elolé®)+¢7(9)]ds

Quantum expectation values should be obtained on perform- 0 0

ing both the stochastic average and the average oveQthis

t” ’ +ral ’
. . ~ ) ) w elol&s+E7(sNds |, _ 2
function. In particular, the mean value afat timet will be € Ds (28)

A Here we have made explicit use of the Gaussian nature of
(a(t))= (<a(t)>S>Qo' (24 our stochastic noise in evaluating the averages of exponential

. . . __functions of the noise. We can evaluate the average of each
We_ have not yet given a prescription for the order,_ if any, iNtarm in turn. The order zero and order 1 terms are
which these averages must be performed. We will see that

this question is of some importance for the solution of the

SDESs. (eJe ) o=l @9
In this section we will calculate the expectation value of ‘ ) .

the annihilation operator at timteby solving the SDE$20) —i2M|/3|2<f dt/ef8[2§(8)+é*(S)]dseftnf(S’)dS’>

and (21). We start by noticing that the combinatian' « 0 s

satisfies the equation t
q =_|2M|ﬂ|2f dtle4ip,t'e*i,ut’eip,(t*t')
&a+a=(§+§+)a+a. (25 _ 0.

=—|pl*e* (e’ - 1). (30)
The formal solution to this equation is ) ) )
It is straightforward to show that the stochastic average of
the term of orde}B|?" is (—1)"|B|?"e'#!(e?#'— 1)"/n! Itis
tempting to resum the series in E&8) to give

This already suggests that the stochastic simulation of this _ paidut 201 _ ai2ut
problem may run into difficulties. We expect the average (a(V)s=pe ™ exd | B|7(1-e™D)]. @

obtained froma™ (t) a(t) will be (é(t)é*(t)}, which should Let us see the consequences of this resumming by complet-

2 ) . . . ~ .
take the constant valye,|“+ 1. The solution(26), however,  ing our calculation of the expectation valueat) with the

clearly shows that the stochastic noise will causgt) a(t) average oveg. This procedure leads to the expression
to fluctuate away from its initial value in a single realization

of the stochastic process. The average is constant but the 1 P ‘
corresponding variance increases in time. The presence of(4a(t))s)q,= ;j d?ge 1P~ " gelrtex | B2(1—e'24)].
complex driving forceé+ ¢* means thatr ™ (t) a(t) can ac-

quire any complex value. Nevertheless, we can proceed byspection of the integrand reveals a problem. It is clear that
inserting our solutior(26) into our SDEs(20) and(21). We  the integrand isinboundedand the integralindefined for

find that the resulting equations are linear. In particular, th@imest such that cos(@t)<O0. It is interesting to note that this

a* (D a(t)=p* gedEN+E (N, (26)

equation fora(t) becomes includes the timesr/(2u) and 3mw/(2u) at which the anhar-
. o monic oscillator evolves into the Scliinger cat states given
a(t)=[—i2u(|BPefdE) TN 1)+ £(t)] a(t), in Egs.(15). The problem is that we have assumed that it is
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acceptable to perform the stochastic average before perform- (1— eIZ,ut)n d2B
ing the average over initial conditions. In fact, this is not the  (a(t))=e%*Y(aq |E —_— ”+1f —|B)
case and we should perform tRg average first. We can see ™
this by evaluating the average over tQg function before n

. . . . . . X <ﬁ| a |a’o>
resumming the series in our stochastic average given in Eq.

(28). This gives the final average value i2utyn 2
_e3l,u.t2 (1 e ) J'd ﬁB|B|2n -1B8- ao‘

(39

1 |2,ut)n
«a(t))QO)S e'3“t20 T E—
Clearly, it would be wrong to evaluate the summation before
carrying out the integral. Evaluating the integral first corre-
sponds, in our stochastic treatment, to averaging over initial
conditions before performing the stochastic average, and
n+1)! gives the correct result.
_9'3’“2 1—e'2hn 2 m It is interesting to note that there is a strong similarity
between the SDEs discussed here and those found for the
Xa{)*lag' anharmonic oscillator in the positive representation. In-
deed, if we write equations faxre ' anda™e'#!, then we
it laol? (n+1)! recover the equations discussed by Plinslal. [15]. An
w E (1—e'2utyn — . . . o
= (I+1)! & (n—D!! important difference, however, is that the diffusion for the
positive P representation occurs with the opposite sign from
=e "Magexp|ag?(e” 1?1 —1)), (32)  that for theQ function. This means that the stochastic aver-
ages(22) have opposite signs when applied to the posikve
representation. We can use the methods described in this sec-

Other moments can be obtained in the same manner. tion to obtain the expectation value aft) in the positiveP

We can see the origin of the incorrect stochastic averag([—:(:“pre_s',(i?t"’mOln|2 -[lhzit sltochw’ach ave[ﬁge g'm(t)f>t3h
given in Eq.(31) by considering the form of the annihilation = pe"exd|f (e )]. Performing the average of this

operator in the Heisenberg picture, E@6), which we can over a6funcuon positiveP distribution, peakgd 3= ag
alpso write in the form gp Hae) =pB"*, gives the correct resultl8). The positiveP repre-

sentation is associated with operator moments in normal or-
_ der and this seems to be the reason for the well-behaved
a(t)=edimae-i2utala_ gdiuty: g(i-e?haa’. (33 form of the stochastic averages for initial coherent states.

d’g 2
n+1pxna—|B8—ag
Xf - BB e 0

which we recognize as the correct answer given in (E6).

V. STOCHASTIC SIMULATION OF THE ANHARMONIC
where: : denotes antinormal ordering and we have used the OSCILLATOR
antinormal ordering theorem for the exponentialadé [2].
We note that this becomes the expresdi8h obtained by
performing the stochastic average, if we identi#fyand a'
with 8 and B*, respectively. We have written E¢33) in
antinormal order because tlgfunction gives antinormally
ordered moments. If we use this expression to calculate the .

~ _ ! ! — rEttr

expectation value oh(t), for our initial coherent state, then m= fmdt &), m= fmdt & (1), (36)
we find

In this section we present results of numerical simulations
[19] of the stochastic process(t) given in Eq.(27). Our
simulations were performed using two discrete Gaussian pro-
cessesy , 7 of the form

where t=IAt. In this way (n7/,)=2ipAts, and

(m 7,)=—2iuAts,; . We note that the relation@2) do

not completely specify the two independestmplexwhite
noises. As recently shown ii5] the degree of freedom in
We can, of course, evaluate this expectation value by puttinghe choice of the noise could be used to improve the results
the operator into normal ordered form and using the fact tha®f the numerical simulation by choosing the stochastic pro-
the coherent states are right eigenstates of the annihilatiotesses andé™ so as to inhibi(but not completely suppress
operator. Our aim, however, is to investigate the problemghe fast growth ofa(t). In this paper, however, we have
with the stochastic average associated with simulations desonsidered only the formg= Vipg and et =J-2iugp"
signed to reproduce antinormal ordered averages. We cawith ¢ and¢™ beingreal white noises.

work with the antinormal ordered form in E¢34) by ex- Each stochastic realization must start from a single point
panding the exponential as a Taylor series and inserting thia phase space. For this reason, the analysis of the preceding
identity in the form of an integral over the coherent statessection leads us to conclude that diverging trajectories, ex-
|B) [2]: ploring large values of«|, are inevitable. These divergences

(a(t))=e*(agla:exg (1—e'?*Yaa’l:|ap). (34
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FIG. 1. Time evolution of the stochastic average(&g))s, -1.0 - . :
using 50000 trajectories and starting frof+0.001+i0.1. The -7.0 =05 00 0.5 1.0

diamonds represent numerical values. The continuous line repre- Re<a(t)>s

sents the analytical result f@w(t))s. The dashed line represents
{(a(t))q,)s for the initial coherent statéao) with ay=0.001
+i0.1.

FIG. 2. Phase-space plot of the numerical avekage))s, the
real part of which is shown in Fig. 1. The points represent numeri-
cal values at different times. The circle represents the analytical
result for{a(t))s.
are responsible for the unbounded average obtained by per-
forming the stochastic average before the average over thege explores an extended region of the complex plane. The
initial Q distribution. Each of our simulations starts at a pointanalytical average Eq(31), is represented by the small
a(0)=a**(0)=pB. Naturally, the average over the init@  circle.
distribution requires stochastic realizations for a range of val- The relationship between the time at which trajectories
ues of 3, weighted by the distributiof23). Consideration of ~diverge and the initial conditiond) means that an ensemble
a single value of8, however, suffices to illustrate the diver- Of trajectories starting from a range of different initial con-
gences associated with individual trajectories. We observe, iflitions will rapidly produce divergences. For this reason the
each case, a divergence after some time. We can see tﬁgalytlcgl result(18) cannot be reproduced numerically in
origin of these divergences in the SDEZ0) and (21); the ~ any straightforward manner.
complex variablesr anda™ are not constrained to be com-
plex conjugate quantities and so, in any given realization, the VI. CONCLUSION
combinationa* o can acquire an imaginary part. This leads
to exponential growth ofr or a*. The time at which this
divergence appears varies between realizations and also
pends on the initial conditions. In particular, the divergencet
appears earlier for larger values |g#|2. This is because of
the exponential dependence @ft) on |8|? as seen in Eq.

In conclusion, we have considered a proposal of Yuen and
ombesi[10] to give a stochastic representation of a Fokker-
lanck equation with negative diffusion for tii@represen-

ation. We have shown that the correct analytical moments
for an anharmonic oscillato(associated with anonlinear
x® process can be obtained from the SDEs. These results,
(27). . however, are highly sensitive to the order in which averages
If we select a sufficiently small value ¢@f and perform an  oer the stochastic realizations and over the distribution of
average over a large number of trajectories then we find e initial conditions are performed. It is clear that more
result that is, for short times, in good agreement with thesophisticated techniques are required for stochastic simula-
analytical average Eq31). In Fig. 1 we have plotted the tjon of the problem. Recent work suggests that the effects of
time evolution of Rea(t))s, obtained by considering divergences can be significantly suppressed but not yet elimi-
50000 trajectories, starting from the initial conditig  nated[15,20.
=0.001+i0.1 (diamond$. For comparison the analytical ex- The system studied in this paper is highly idealized. We
pression for the stochastic average is represented by a coceuld include the effects of loss and expect that these will
tinuous line. At very short times, we observe a near perfecimprove the stability of the numerical results. Such an im-
agreement between the numerical results and the analyticptovement has been noted in studies of posiBvi@]. It is
expression. At longer times, this agreement is lost because gbssible, however, that there are other interesting systems
the divergence induced by the independent stochastic noisebat are less sensitive to the noise and for these, stochastic
The trajectories start from a single point in phase spacesimulations using the Yuen-Tombesi method may prove to be
This corresponds to selecting, in each simulatiod; &unc-  a useful technique. Possible systems for study in quantum
tion phase-space probability distribution. Such a narrow diseptics include the optical parametric oscillator and second
tribution for theQq distribution does not correspond to any harmonic generation, which could be successfully studied
physically allowed stat¢3]. Indeed, the evolution obtained with this approach. Our preliminary studies suggest that
from the Fokker-Planck equation for such an initial conditionthere are regimes of operation, including the threshold, in
is highly singular. It is this behavior that is reflected in the which the probability for a divergent trajectory to occur is
divergent numerical simulations. Figure 2 depicts the nuvery small. In this case, numerical simulation does give
merically obtained value ofa(t))s. We see that this aver- stable results. We will return to this topic elsewhere.
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The reason for this choice, instead of theititerpretation, is
that we will be constructing analytical averages over the sto-
APPENDIX chastic process and the Stratonovich formalism allows us to
use the familiar rules of calculus.
In this appendix we present a brief discussion of the link  From the Langevin equations it is possible to obtain a
between a given Fokker-Planck equation and an equivalentnique Fokker-Planck equation for the probability distribu-

stochastic systerfa more complete account can be found intion W(a(t),a* (t),t). If we consider the trajectory obtained
[4,21]). As we have already noted, the Fokker-Planck equa;,

. . . 8 a single realization of the stochastic process
tion does not correspond to a unique stochastic system an

1 C ; ; : =(f,.f,«) and start from the initial value (0)
| h h . he (farfa . Nitial.
Egilrtcﬁ (rgg;aevti%%ggg't a stochastic system. Consider t e=(a(0),a*(0)), then the solution at timeé is completely

determined and the probability distribution for it is
the 5 function Sa—a(t;a(0);[f()])S(a*

s P (1) +Cefn (1), A1) o (t;«(0);[f(t)])). Considering a set of initial conditions
gt e o ay, distributed according some initial distributiop,
=p(a(0);0), we can obtain the shape of the distribution at
da* time t:
ot :Ba*+Ca*a*fa*(t)+ca*afa(t)a (AZ) R R N N
pa,t;[F(H) ] =(8(a— a(t;a(0);[f(1)]))
with white Gaussian noise ternis defined to have zero av- X 8(a* —a* (ta(0);[F(HD))py
erage and second moments of the form (A6)

) , where the subscripp, denotes an average over the initial
(fiOfj(t")=s;o(t—t"), (A3)  probability distribution. The quantitp satisfies the conser-
vation equation

and the subscriptsj denotinga and o* . J J J
The formal solution of Eqs(Al) and (A2) is —p+ —(ap)+ —(a*p)=0. (A7)
ot da Jda*

t , t , The complete probability distribution is obtained by also
a(t)=a(0)+ Odt Ba(t')+ OCMdW(t ) averaging over the stochastic trajectories obtained with dif-
ferent noise realizations, denoted by the subs@ﬁpt)]:

t
* focm*dw*“')’ (A4) Wia,a* 1) =(p(e,a® GIFO D)y - (AB)

The time evolution for the distributioV can be obtained
¢ ‘ using the continuity equation and gives22]
a*(t)za*(O)-i-f dt’BZ(t’)Jrf Cax o dW(t")
’ ’ Sw=—LB,w aBW+1EaCaCW
t V=T ga BV Bar 2ij|[iij||j]a
+f Cor oxdW, (1), (A5)
0 where the subscripts,j,k again denotex and o*. If we

compare this form of the Fokker-Planck equation with Eq.

where we have introduced the Wiener procesd&¥(t) (1), then we obtain the correspondences

=f (t)ydt anddW, (t) =f .« (t)dt. Daa:Cia+C2 . (A9)
In order to use these stochastic processes, we need to give o

a prescription for carrying out the stochastic integrals over D a*=C2* L+C2%, (A10)

the Wiener processes. In this paper, we choose the Stratonov- co e

ich interpretation of the stochastic integral in which Daa* =CraCuat ot Cux o Crar, (Al11)
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A =

a

Byt
“ 2

d
_Ca*a) Ca*a
*

a

aC C,.+
% a*a aa

+

Fy P . (A13)

J 1%
—Ca*a*)CM* +(—*Ca*a*>Ca*a*

PHYSICAL REVIEW AG5 053810

Note that these equations do not give unique forms foBthe
and C functions. This is a consequence of the lack of a
unigue stochastic representation for a given Fokker-Planck
equation.

If our stochastic variables and o* are to be complex
conjugate quantities, then it follows from Eq4.1) and(A2)
thatB*,=B,, C%,=Cux,, andC’_,=C . ,«. These con-
ditions necessarily imply positive diffusion as, frofA9)—
(A11), D,,+>|D,,l. It follows that the stochastic variables
cannot be complex conjugate quantities when we have nega-
tive diffusion. In order to avoid possible confusion, we re-
place the stochastic variabde® (t) by o™ (t) whenever there
is negative diffusion.
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