
General framework: spatio-temporal dynamics in systems with broken symmetry 
ô nucleation of spatio-temporal patterns

Resonant couplings between the forcing and oscillatory modes may lead to quasi-
periodicity, frequency lockings, devil’s staircases, chaos and intermittency.

Fig.: Periodically perturbed ruthenium-catalized Belousov-Zhabotinsky reaction-diffusion
system [A.L. Lin et. al., Proceedings of IMA Workshop on Pattern Formation and Nonlocal 
Effects, U Minn (1998)]
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gn = 0: Phase spirals around zeroes of A

gn > gc : n equivalent states with different fixed phase (frequency locked solutions)

AIMS (n=3): Study of 

(1) Analogies with the dynamics of systems with competing fields

(2) Transition between phase spirals and amplitude spirals

Temporal modulation of Hopf bifurcation in extended systems î CGLE with 
broken phase symmetry
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OSCILLATORY REGIME (g < gc): 
asymptotic solutions correspond to 
temporal oscillations of limit cycle type
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EXCITABLE REGIME (g > gc): asymptotic solutions are fixed points
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OSCILLATORY REGIME (g < gc)
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Phase dynamics
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turbulence regimes may be expected
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System presents the same complexity and the same spatio-temporal behavior 
than self-oscillating systems



EXCITABLE REGIME (g >gc)
If g, b á m,  b á 1ï R2 @ m, :µβγ ≅c
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a = b = 0: relaxational dynamics. Isolated 1D front at rest

a = b ∫ 0: relaxational dynamics but 1D front moves

a ∫ b: nonpotential front motion

F small î damped Kuramoto-Sivashinsky phase equation.
Frequency locked solutions stable regardless of the sign of 1+a b
î no pattern forming instabilities.



1D
Isolated kink moves at a constant 
velocity due to non-potential dynamics
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2D
Formation of vertex points

Rotation of interfaces around 
vertices î no coarsening

Analogies with systems with 
competing fields

3w Forced CGLE Busse-Heikes Model
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PHASE APPROXIMATION VALID

PHASE APPROXIMATION INVALID

m a b gc 1+a b REGIME (g = 0)
1 2.0 -1.00 0.910 <0 Defect Turbulence I
1 0.0 -1.80 1.450 >0 Defect Turbulence II
1 2.0 -0.76 0.720 <0 Phase Turbulence

m a b gc 1+a b REGIME (g = 0)
1 2 -0.2 0.199 >0 Frozen States I
1 5.5 -0.2 0.199 <0 Frozen States II



Frozen States I: m = 1, a = 2, b = -0.2, gc=0.199
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g = 0 g < gc g @ gc g > gc



Frozen States II: m = 1, a = 5.5, b = -0.2, gc=0.199
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g = 0 g < gc g @ gc g > gc



Defect Turbulence I: m = 1, a = 2, b = -1.0, gc=0.910
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Defect Turbulence II: m = 1, a = 0, b = -1.8, gc=1.447
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Phase Turbulence : m = 1, a =2, b = -0.76, gc=0.72
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Oscillatory instability at k = 0: m = 1, a =0, b = -3.0, gc=2.080
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g > gc:
♦ Transition observed when phase approximation holds

♦ Other kind of structures may appear (targets, ...)

g < gc: Amplitude spirals may form. Complex patterns may appear

g á gc: Excitable regime is attained regardless of the phase approximation


