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Abstract

Recent physiological evidence signals the presence of synchronous oscillatory behavior over distances of some millimeters
in several parts of the brain of mammals. These oscillations are customary explained in terms of the synchronization of coupled
limit cycle, relaxation or pulsed oscillators. Following the suggestion by Freeman that perceptive processes might be shaped
by the intrinsically chaotic activity of the brain, it is shown that the synchronous oscillatory activity of assemblies of neurons
can also be retrieved from model neurons exhibiting chaotic behavior. This is achieved by the coexistence of appropriate
synchronizing connections and the effect of external stimuli. The effect of the latter is to suppress chaos in the corresponding

sensory neuron, yielding a particular periodic behavior.

1. Introduction

In the recent years evidence from physiological
studies has accumulated indicating the existence of
synchronous rhythmic activity in different areas of
the brain of some mammals, like cats and monkeys.
These studies include the olfactory bulb [1], thalamo-
cortical spindle rhythms [2], the visual cortex [3], the
olivocerebellar system [4], hyppocampal rhythms, and
somatomotor cortices, among others [5]. Moreover,
it has been suggested [6~8] that this synchronous
activity may have a role in solving the so-called bind-
ing problem. This problem is related to the fact that
processing of information is scattered among differ-
ent areas of the brain, while it is not clear how this
information is linked, as it appears that there is not
any privileged part of it in which all the information
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is centralized. The processing through synchronous
oscillations would be related to the use of a tempo-
ral code: those neurons firing synchronously at one
level of the cortex would be processing parts of the
same percept. Thus, a given neuren could be engaged
in processing information corresponding to different
percepts, and the brain could achieve a high degree of
parallelism. The existence of synchronous oscillations
tends to favor the view that the processing of informa-
tion in the brain is carried by populations of neurons,
and not by individual cells [8]. On top of it, it appears
that there is some kind of hierarchical processing of
information, in which the different levels of the cortex
successively bind several aspects of a given percept in
cascade. For instance, in the case of the visual system
one would first group low-level details of the scene,
while in a higher level features like the distinction
between figures and ground would be processed.
Regarding the properties of individual neurons,
classical studies of the squid giant axon [9], then
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followed by studies of mammalian spinal motoneurons
[10], have lead to the widespread view that neurons
fire in the form of action potentials in response to some
external stimulus, being these potentials produced by a
transient inward Na™t current followed by an outward
K™ current. These motor neurons exhibit a simple
threshold dynamics, firing when the stimulus exceeds
some value. Thus, it has been considered that complex-
ity in the mammalian brain arises exclusively from the
different connectivities of these ideal neurons, that are
connected in such a way that all the incoming pulses
add in a simple linear fashion. In the case of such ex-
citable models the appearance of overall oscillations
can be traced back to the entrainment of excitatory
and inhibitory connections. One could even obtain
aperiodic oscillations in this fashion, as shown by
Freeman [11], who obtained results in agreement with
his experimental observations for the olfactory bulb.
This simple view of neurons in the central nervous
system has been recently challenged, starting from
studies on invertebrate neurons [12], that are more
amenable to a detailed study, and later confirmed on
other systems (see Ref. [13] for a review). From these
studies it emerges that these neurons can exhibit a
richer behavior, while the idea that the dendritic tree
is electrically passive, allowing to add in a more or
less linear way the synaptic potentials, needs to be
altered [13]. One of the consequences of the dendritic
excitability is the so-called low-threshold Ca®* con-
ductance [14], that is essentially inactivated at the
membrane resting potential and deinactivated by
membrane hyperpolarization, breaking this one of the
dogmas of neurophysiology, namely that membrane
depolarization from the resting potential increases
excitability, whereas membrane hyperpolarization
decreases it. Thus, in certain cases an otherwise sub-
threshold depolarization can produce action potentials
if superimposed on either a depolarizing or a hy-
perpolarizing membrane potential change, allowing
central neurons to exhibit sustained oscillations (limit
cycle behavior). In this context it is to be understood
that these oscillations are associated to self-sustained
rhythmic firing in the absence of any synaptic input.
Some theoretical studies [15] have focused on the
analysis of the conditions under which some kinds

of models with biological relevance, including limit-
cycle, relaxation, and puised oscillators, may yield
synchronized behavior, like the role of excitatory
and inhibitory couplings, time delays, etc. Classi-
cal neural networks [16] customary involve all-to-all
coupling and integrate-and-fire schemes, ultimately
involving a minimum location procedure. Neural net-
works that are more realistic from the physiological
viewpoint, and that make use of synchronous oscil-
latory behavior have been already introduced in the
context of visual processing [17,18]. A problem with
this approach is how do these neurons desynchronize
in preparation for a new percept. So far the prob-
lem has been solved in some ad hoc way, e.g. by
considering some spatially correlated form of noise
[18].

The aim of the present contribution is to look at this
problem from a different perspective, namely by us-
ing Freeman’s remark [19] that brain activity might be
shaped by deterministic chaos. In fact, deterministic
chaos has also been found in some measurements of
the EEG [20]. The possible usefulness of using model
neurons that are in the chaotic regime has been al-
ready discussed [21] in the context of processing vi-
sual information by considering a different model to
that employed in this work. Deterministic chaos may
offer a mechanism for desynchronization through the
use of the broadband properties of the chaotic signals
instead of resorting to some structured form of noise.
In the present study we shall combine the evidence
in Ref. [13] together with Freeman’s hypothesis [19]
to assume that isolated neurons in the central system
may exhibit chaotic behavior.

In the framework of Freeman’s suggestion the rest
state of the brain is chaotic, and the response to a cer-
tain external stimulus would be a given periodic pat-
tern. In his view this would happen through a transition
from the chaotic attractor to a limit cycle that would
coexist with it. The process of incorporation of new
percepts would occur through the deformation of the
system such as to incorporate these as new alternative
dynamical behaviors. These ideas are very interesting
from the qualitative point of view, but recent findings
in the field of nonlinear dynamical systems may be
able to couch them in more precise terms. The key
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idea is the possibility of controlling chaos, as proved
by Ott, Grebogi, and Yorke (OGY) [22,23].

The idea is to look at the strange attractor as the
supperposition of a very large number of unstable pe-
riodic orbits (or cycles) [24], consisting chaos control
in the stabilization with small time-dependent pertur-
bations of one of these orbits. This is a very attractive
hypothesis for the coding and retrieving of informa-
tion in the brain, although a practical difficulty is that
the implementation of the OGY method in the case
that the dynamical equations are known is quite in-
volved (one needs to define a suitable Poincaré plane
and solve an eigenvalue problem at each crossing with
it). A number of applications to the control of chaos
in experimental systems has appeared in the literature
[25], including mechanical, electrical, and chemical
systems, a laser, heart tissue, including a more re-
cent studied that has focused on chaotic neurons [26].
While these methods work by applying suitable per-
turbations to some system parameter, in this work we
shall use an alternative simpler method [27], in which
suitable perturbations are applied to the dynamical
variables of the system. This method has been recently
applied to chaos suppression in a neural network [28].

Another point is that if one considers the activity
of individual neurons to be chaotic, it is hard to see
how could one obtain synchronized behavior, due to
the sensitive dependence on the initial conditions that
characterizes deterministic chaos. However, some the-
oretical predictions [29], later proved in a practical set-
ting by Pecora and Carroll (PC) [30,31], have shown
the possibility of synchronizing chaotic systems by
connecting them in a special way (see also [32]). The
kind of dynamical behavior that one obtains is still
chaotic, but the linked systems become synchronized
after some transient behavior.

In the present work, we shall consider a discrete
(difference-equation) two-variable model suggested in
Ref. [33], and that has been shown to agree with the
experimental results of Ref. [34]. This model exhibits
deterministic chaos for certain values of the parame-
ters. The plausibility of this behavior is also supported
by the fact that more sophisticated mathematical mod-
els of bursting neurons [35] also exhibit determinis-
tic chaos in certain regimes of parameters [36]. The

variables of the model are an activation (transmem-
brane potential) and a recovery variable, while the in-
dividual neurons are connected through one-way se-
lective coupling, in such a way that synchronized be-
havior may arise. In particular, neurons will be linked
by using a recently introduced [32] variant of the PC
method. This is to be considered as a toy model with
no direct physiological counterpart, as membrane po-
tentials do not generally link neurons, except in the
sparse occurrences of gap junctions within the mam-
malian nervous system. Thus, this kind of model can
be seen as an electrical network representation of real
neuron assemblies.

The present paper is organized as follows. In
Section 2 the model and the chaos suppression and
synchronization methods used in this work are briefly
discussed. The results obtained in this work are pre-
sented in Section 3, while Section 4 contains the main
conclusions stemming from the present paper.

2. Model and method

Individual neurons have been represented through a
two-variable finite difference-equation model (or map)
introduced in Ref. [33], and found to agree, at least
qualitatively, with the experimental return map re-
ported in Ref. [34]. This map is written in the form

Xni1 = x2 exp(yn — xn) + 4,
Yntl = a¥n — bxy +c, H

where x is related to an instantaneous transmembrane
membrane potential, while y corresponds to a gener-
alized recovery variable. For the parameters given in
Ref. [33] the model exhibits either fixed-point (quies-
cent) or limit-cycle (periodic) behavior. However, in
the present work the parameters have been chosen [37]
in such a way that the system exhibits deterministic
chaos.

Chaos suppression is achieved by applying propor-
tional pulses to the system, and in the case of two-
dimensional maps x,41 = F(x;, Ya); yar1 = G(x,,
v,) like (1), the method is applied in the form [38]

ol = F(xn, yo)(1+ Axam.p)v
Y1 = G(xn, yo)( + )\y(sm,p)» (2)
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where 8, p is Kronecker’s delta and m = n (mod p),
reflecting the fact that the perturbations are applied
every p iterations, while A, and A, are the intensity
of the proportional perturbations applied to the system
variables x and y, respectively.

It was mentioned before that the connections be-
tween the neuron models used in the present work are
one-way, although they are not strictly of the PC [30]
type. Within the PC method one splits the response
system to be synchronized with the drive in two sub-
systems, and one of these subsystems is shared be-
tween the two connected systems. In particular, in the
case of Eq. (1) (x) is the only stable subsystem in the
PC sense. This fact implies that by using the PC con-
nection scheme it is impossible to construct a network
of interconnected neuron units, because if one injects,
say, y(¢) from the first unit into the second, and then
again y(¢) from the second into the third one, and
so forth, the result would be a series of neuron units
driven by the same signal, coming from the drive, and
not a cascade [31] of them. Any other possibility con-
sisting in the introduction of x(¢) at some point would
not lead to synchronized behavior.

Thus, in the present work we shall resort to the
connection method introduced in Ref. [32], being the
idea to inject the driving signal at a particular place
of the evolution equations of the response, such that it
yields synchronized behavior. This synchronized be-
havior can be rigorously analyzed in the framework
of the so-called transverse Lyapunov exponents, that
measure the time evolution of differences between the
two systems. One of the advantages of this method is
the possibility of building a nontrivial network com-
prising many low-dimensional chaotic units, some-
thing that can be specially significative in the case that
these units represent neurons, and even more if one
recalls that the neurons are two-dimensional. In the
case of (1) the following connection can be shown to
exhibit synchronized behavior (see below)

Xptl = x,% exp(yn — xp) + £,
Yn+1 = ayn — bxn +c,
Xyt =X, eXpOy — Xn) + K,

Ypg1 = @Yy — bxy +c, 3)

where the place at which the driving signal enters
has been underlined. Two different connections to be
called upon later are the following ones

gy = (e)? exply, —x,) +k,
Yng1 = ayy —bx, +¢ 4)
and

Xngr = O exply, —x,) + k.

Vo1 =aya —bx, +c, 5)

where it is to be noticed that in (4) and (5) only the
response system is reported.

3. Results

First of all, we shall test the versatility of method
(2) in suppressing deterministic chaos in the case of a
single neuron (1). Thus, in Fig. 1 three different peri-
odic orbits have been stabilized, corresponding these
to periods 4, and two different period-12 behaviors,
although other periodic orbits could be also stabilized
with parameter values in the same range.

The first connection to be presented consists of four
model neurons linked through (3) in a cascade, such
that the first neuron drives the second one, and anal-
ogously between the second and third, and third and
fourth ones (see Fig. 2). In all the results reported in
this work, all the neurons start always from randomly
chosen initial conditions, and a transient in which they
evolve independently is shown. Thus, the neurons are
linked after the first vertical dotted line, and it can
be seen that they exhibit synchronized chaotic behav-
ior after a certain transient. After the second vertical
dotted line pulses in x and y are applied to the first
neuron, and after another transient the ensemble os-
cillates synchronously, while exhibiting periodic be-
havior. This result just proves the main thesis of the
present contribution: that one may conciliate the find-
ing of oscillatory synchronous activity corresponding
to groups of neurons and the hypothesis by Freeman
that the activity of the brain at rest is chaotic. One
may understand the propagation of regular behav-
ior from the first to the rest of neurons in the light
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Fig. 1. Application of the chaos suppression algorithm (2) to
model (1) (with the parameters given in Ref. [37]): (a) pe-
riod-4 with Ay = Ay, = ~0.017 and A, = 4; (b) period-12
with Ay = Xy = —0.028 and A, = 6; (c) period-12 with
Ax = Ay = —0.035 and A, = 12. The method (2) is applied
after the vertical dotted line.

of recent results [39] showing that one can achieve
synchronization between two systems with different
parameters, even when one of them is in the chaotic re-
gion, while the other behaves regularly. However, the
regular behavior that is induced in the response units
is not necessarily indentical to that of the drive (see
Fig. 2), being this qualitatively explanined in terms
of the parameter mismatch of the systems [39] (after
chaos is suppressed the drive effectively corresponds
to the unperturbed system in a different parameter re-
gion yielding periodic behavior [38]).

Another connection that yields synchronized behav-
ior between two neuron models (1) and (4). However,
in this case it appears for some of the networks in
which the units are connected exclusively through (4)
one does not obtain a stable overall behavior, at vari-
ance of the case of connection (3) presented above.
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Fig. 2. Four identical model neurons (1) connected in cascade
accordingly to scheme (3), acting the second neuron as drive
for the third one, and analogously between the third and fourth
neurons (the parameters are those of Ref. [37]). The two con-
nections are active after the first vertical dotted line, while after
the second vertical dotted line the chaos suppression algorithm
(2) is applied to the first unit (Ay —iy = —0.035 and A, = 12).

However, this connection will be discussed later in the
context of several connections coexisting in the same
system. A qualitatively different behavior is the one
obtained if one considers (5). When one connects two
neuron models in this form, the behavior that one has
is not synchronized. However, if one drives with the
same signal a series of model neurons with different
initial conditions, it is possible to see that these driven
neurons exhibit after some transient identical behavior
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comparing one to each other, although this behavior
is different to the one of the drive unit (see Fig. 3).
If chaos is suppressed in the drive unit, this induces
chaos suppression in the response neurons. It is to
be remarked that this kind of synchronized behavior
among the responses, that has in common with syn-
chronization that it also suppresses the effects of the
sensitivity to initial conditions present in chaotic sys-
tems, is not present in any of the other nonsynchro-
nizing connections.

It may happen that in some circumstances neurons
exhibit organized patterns of activity in the absence
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Fig. 3. Four identical model neurons (1) connected such that
the first one drives the other three accordingly to scheme (5),
(see Ref. [37] for the parameters). The connection is active
after the vertical dotted line.

of external stimuli, and indeed we have considered a
set of neurons connected in a circular way, such that
there is a feedback and the last neuron influences back
the first one. In particular, the case of three neurons in
which one has a cascade with (3) in the order 1 — 3,
while a cascade with (5) coexists in the order 3 — 1,
or in more precise terms,

Xn+1 = x}% exp(yn — xn) + &,

!
yn+1 = ayn - bxﬂ + c,
Xy = x2 exp(y, — xp) + k,
Yns1 = ay, —bxy +c,
X = () exply, — x) +k,
Y1 = ay, —bx; +c.

(6)

Fig. 4 shows the outcome of a simulation in which
three neurons connected in the form (6) have achieved
self-organization, in the sense that they yield periodic
behavior in the absence of any external perturbation.
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Fig. 4. Three identical model neurons (1) with a feedback
connection accordingly to scheme (6), that implies connection
(3) in the sense 1 — 3 and connection (5) in the sense 3 — 1.
The connections are active after the vertical dotted line (see
Ret. [37] for the parameters).



340 J. Giiémez, M.A. Matias/Physica D 96 (1996) 334-343

If one considers an ensemble composed out of many
neurons, it is well known that each of them can be
connected to a large number of its neighbors. We have
considered the possibility that a neuron is connected
simultaneously to other neurons. This can be illus-
trated with four neurons in which two of them receive
signals from the other two in the form:

Xnt1 = X, expn — Xn) + k,
Vi1 = a¥n — bxn +c,
Xl = x7 exp(y, — %a) + £,
Yni1 = ay,’{' —bx, +e,
,’,'+1 = x; exp(y, — xa) +k,
Vil = ay;,” — bx)) +c,
///

152 " "
Xpig = (0, )7 exply, —x,) +k,
Yo =ay, —bx; +c,

(N

where, in particular, the first unit drives the second and
third neurons through connection (3), while the fourth
unit drives the same neurons through connection (4).
The result, illustrated in Fig. 5, is that the second and
third neurons become synchronized one to each other,
but not necessarily with any of the driving systems.
The outcome appears to come from the combined ef-
fect of both driving systems, although in other exam-
ples some connections appear to be more active than
other ones, something that could be somehow related
to the existence of activatory and inhibitory connec-
tions in classical networks.

Neurons studied in physiological experiments are
never completely identical, and, on the other hand, the
presence of some noise is unavoidable. Thus, from the
point of view of any theoretical study it is interesting
to study the situation in which one links model neu-
rons whose parameters differ. In particular, Fig. 6 con-
tains the results obtained when one connects several
neurons with a certain degree of parameter mismatch.
The result is that they are still able to synchronize, not
being specially sensitive to the parameter difference
(although in agreement with the results of Ref. [39] the
height of the peaks will not be identical). An interest-
ing situation can be the case in which the correspond-
ing response neuron exhibits quiescent (fixed point)
behavior. The result, shown in Fig. 7, is that the drive
neuron first imposes its chaotic behavior after they are
connected, while both of them become periodic when
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Fig. 5. Four identical model neurons (1) with a competitive
connection accordingly to scheme (7). The connections are ac-
tive after the vertical dotted line, while after the second vertical
dotted line the chaos suppression algorithm (2) is applied to
the first and fourth units with identical parameters (see Fig. 2
for the parameters).

an external stimulus is applied. This may be an alter-
native mechanism for preserving chaos [40], as chaos
appears to be healthier than an excess of order in this
context. Notice also the different scales for the heights
of the peaks in Fig. 7, that should be also interpreted in
terms of the parameter mismatch between the systems
[39]. Analogous results have been obtained regarding
the issue of noise, namely if some additive noise that
alters the system variables in the form

x/=x+yal0,1] 8)
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Fig. 6. Two model neurons (1) with different parameters con-
nected accordingly to scheme (3). The connections are active
after the vertical dotted line, while after the second vertical dot-
ted line the chaos suppression algorithm (2) is applied to the
first unit. The parameters of the first neuron, including those of
the chaos suppression algorithm, are the same of Fig. 2, while
those of the second neuron are ¢ = 1.045, b = 0.15,¢ = 0.5,
and k = 0.17.

is applied a pair of systems still become synchronized,
being o[0, 1] a temporally uncorrelated (white noise)
stochastic variable with gaussian distribution with zero
mean and standard deviation equal to one. Thus, in
Fig. 8 four identical model neurons have been consid-
ered in the presence of this kind of noise, acting the
first as drive of the other three. The behavior of the
four neurons is not identical although one could think
that they are synchronized in a generalized sense [41],
although in this case one has an stochastic contribu-
tion to the dynamics.

4. Conclusions

In the present contribution we have discussed the
possibility that the observed physiological evidence of
synchronized oscillations in different parts (olfactory
bulb, visual cortex, etc.) of the brain of some mammals
arise from the linking of neurons that exhibit determin-
istic chaos in isolated conditions. It is customary con-
sidered that these units are periodic, but in this work
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Fig. 7. Two model neurons (1) with different parameters con-
nected accordingly to scheme (3): the second one has quiescent
behavior, and it becomes chaetic under the influence of the
drive neuron, until both become periodic under the influence of
an external stimulus (introduced after the second vertical dot-
ted line and modeled through (2)). The parameters of the first
neuron and of (2) are the same of Fig. 2, while those of the
second neuron are a = 0.89, b = 0.6, ¢ = 0.28, and k = 0.01.

we have followed Freeman’s suggestion regarding the
possible role of deterministic chaos in perceptive pro-
cesses. The hypothesis is very attractive, because of
the role that chaos may play in the generation of in-
formation [42]. Moreover, the hypothesis can be cast
in a sound way from the viewpoint of dynamical sys-
tems theory by recalling that a strange attractor can be
considered a reservoir of periodic behaviors, none of
which dominates, rather than some kind of noisy be-
havior. The key in the process of information retrieval
can be the idea of chaos control, namely the possibil-
ity of stabilizing one of the unstable periodic orbits
that form a strange attractor. A second key idea is the
possibility of synchronizing chaotic systems, appar-
ently defying their sensitive dependence on the initial
conditions.

These ideas are illustrated in the neural arena
with a toy model, written in terms of a two-variable
difference-equation, and that exhibits deterministic
chaos in certain parameter ranges. The combined
application of the ideas of chaos control and synchro-
nization is able to yield a behavior that is completely
analogous to the synchronized oscillations found by
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Fig. 8. Four identical model neurons (1) in the presence of ex-
ternal additive noise are represented. The first one drives the
other three, that independent from each other. The connections
are active after the vertical dotted line, while after the second
vertical dotted line the chaos suppression algorithm (2) is ap-
plied to the first unit. The parameters of the neurons and of (2)
are the same of Fig. 2, while for the external noise (8) one has
o =0.002.

the physiologists. In addition, a number of differ-
ent possibilities are explored, including the behavior
observed when neurons receive several concurrent
stimuli and possibility of synchronous oscillations in
a network that does not receive any external stimulus.
The robustness of this phenomenon against parameter
mismatch and the presence of external noise has been
also shown.

In this sense, the appearance of order in the net-
work spontaneously, i.e., in the absence of any input,
exhibits some similarities with the behavior observed
in Globally Coupled Maps (GCM) [43], typically lo-
gistic maps in the chaotic regime with all-to-all cou-
pling. Within this model one may find phenomena like
synchronized chaos, synchronized oscillations, trav-
eling waves, etc. GCMs were introduced as a mean-
field-type extension of Coupled Map Lattices (CML)
(see [44] for a review), for which the chaotic units are
coupled locally in a diffussive fashion, and that are
interesting models for many complex spatio-temporal
phenomena. Thus, future work along the lines dis-
cussed in the present work could include either the
study of coupled map lattices in which the local units
represent neurons, such as is the case of the map em-
ployed in the present study, or the use of more realistic
models of neurons in terms of differential equations
in the study [45].
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