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The world-wide waste web
Johann H. Martínez1,2, Sergi Romero1, José J. Ramasco 1 & Ernesto Estrada 1,3,4✉

Countries globally trade with tons of waste materials every year, some of which are highly

hazardous. This trade admits a network representation of the world-wide waste web, with

countries as vertices and flows as directed weighted edges. Here we investigate the main

properties of this network by tracking 108 categories of wastes interchanged in the period

2001–2019. Although, most of the hazardous waste was traded between developed nations, a

disproportionate asymmetry existed in the flow from developed to developing countries.

Using a dynamical model, we simulate how waste stress propagates through the network and

affects the countries. We identify 28 countries with low Environmental Performance Index

that are at high risk of waste congestion. Therefore, they are at threat of improper handling

and disposal of hazardous waste. We find evidence of pollution by heavy metals, by volatile

organic compounds and/or by persistent organic pollutants, which are used as chemical

fingerprints, due to the improper handling of waste in several of these countries.
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G lobally, 7–10 billion tonnes of waste are produced
annually1,2, including 300–500 million tonnes of hazar-
dous waste (HW)–explosive, flammable, toxic, corrosive,

and of biological risk3,4. About 10%5 of this HW is traded through
the world-wide waste web (W4). The W4 is a network formed by
the legal trading of waste, where countries are represented as
nodes and the flow of materials are encoded as weighted-directed
links (edges). The forces that impulse international trade of HW
are complex and multifactorial, and generally involve economic,
geographic, socio-political, and environmental aspects difficult to
disentangle. As a consequence, the volume of HW traded through
the W4 in the last 30 years has grown by 500%6 and will continue
to grow7, creating serious legal8, economic6, environmental9, and
health10 problems at global scale.

It is frequently claimed that the global trade of HW is mainly a
waste flow from developed to developing countries5,11. Although
other studies point out a more complex picture with important
contributions of the South–South trade12 as well as of
South–North exports13.

From an economic perspective waste trade may offer benefits
to both types of countries9. Developed countries would benefit
from cheaper disposal costs in developing nations and avoiding
increasing resistance to HW disposal facilities in their territories.
Developing countries would gain access to cheap raw materials by
recycling wastes, rocketing production, and employment. This
would be a win-win situation if it were not because many of the
importer nations are highly indebted countries with very poor
track records of waste management and environmental
performance8. In addition, as revealed by several high-profile
cases14, the situation is aggravated by illegal HW trafficking to,
and dumping in, developing countries15.

To address the problems of HW, the United Nations created in
1989 the Basel Convention (BaC) on the Control of Trans-
boundary Movement of Hazardous Wastes and their Disposal16.
The Convention has as mandate the monitoring of global waste
trading. Countries self-report the amount of imported and
exported waste, and its origin/destination. Some type of waste as
radioactive materials are excluded from the reports. In its more
than 30 years, BaC has revealed the difficulties to obtain accurate
information regarding the magnitude and direction of global HW
flows5,17. The information recorded by the BaC on waste trade
does not contain information on illegal trade. However, it con-
stitutes the most reliable information for building a map of the W4,
which is vital to understand how the flows of HW are organized at
global and local scales. This analysis is necessary for efficiently
managing the transboundary HW trade and implementing more
effective measures for its better management and control.

Here we rely on data reported by countries and territories on
their trade of 108 categories of HW during the years 2001–2019,
except for 2010, for which data is not available. This data is the
most complete information about transboundary waste trade at
the BaC database. By merging these categories into seven classes
of waste, we study the trade networks that account for the legal
flow of HW in the world. First, we analyze the global char-
acteristics of these networks. By considering the relation between
the simulated risk of waste congestion and countries’ environ-
mental performance, we analyze the potential risks of improper
handling and disposal of HW by individual nations. Finally, we
identify “chemical fingerprints” that reveal the impact of
improper handling and disposal of HW on the environment and
human health in 28 countries identified at high risk.

Results
Theoretical modeling approach. We consider that the change of
the amount of waste wi in a country i over time obeys a logistic

model:

dwi tð Þ
dt
¼ _wi tð Þ ¼ β 1� wi tð Þ

� �
∑
n

j¼1
Aijwj tð Þ; ð1Þ

where β quantifies how quickly waste grows per amount of waste
already in the country and Aij is the normalized amount of waste
exported by country i to country j. In a period of time, let say
from January to December of a given year, the amount of waste
accumulated at a given country growth exponentially at earlier
times if there is little waste at the beginning and enough pro-
cessing resources in that country (including its exports of waste).
But when the amount of waste gets large enough, processing
resources start to get congested, slowing down the growth rate.
Eventually, it will level off, completing a characteristic S-shaped
curve. The amount of waste at which it levels off, represents the
maximum amount of waste that this particular country can
support, and it is called its carrying capacity. We say that a
country which has reached its carrying capacity is congested or
saturated. We consider here that a country i in the year t has a
carrying capacity equal to the total amount of waste traded by it,
i.e., imported and exported, that year. We normalize this carrying
capacity for every country such that it is equal to one. In this way,
all the countries will congest when limt!1wi tð Þ ¼ 1. Let us call
congestion time ts ið Þ to the time at which wi ts ið Þ

� � ¼ 1. Some
countries will reach this congestion time earlier than others.
Suppose that a country reaches its carrying capacity in a simu-
lation time equivalent to February in the real-time. Then, because
this situation is physically implausible we consider that such
country is at risk of getting over-congested of waste during the
rest of the year. In other words, we consider the congestion time
as a proxy of the risk at which a country is exposed by the
international trade of waste.

The first time derivative _wi tð Þ in the logistic model accounts
only for properties of this change in an infinitely small
neighborhood of the considered time t. However, the change of
the amount of waste in a given country at t depends on the
changes of input of wastes on finite (or infinite) time interval of
the past. This is known as nonlocality by time or dynamic
memory18,19. That is, the saturation of waste by a given country
in a year depends not only on what it trades this year, but also on
the waste “accumulated” by trading in the past by this country. In
order to account for this temporal nonlocality or memory of the
process, we will replace here the first time derivative by a
fractional one. We use the Caputo time-fractional derivative,
which when applied to a given function f tð Þ is defined as20

Dα
t f tð Þ :¼ 1

Γ κ� αð Þ
Z t

0

f κð Þ τð Þdτ
t � τð Þαþ1�κ ;

ð2Þ

where κ= ⌈α⌉ is the ceiling function applied to α. Here, we
consider 0 < α ≤ 1 and κ= 1.

In order to understand how the Caputo fractional derivative
captures the past history of the system21, let us write it as

CDα
t ¼

1
Γð1� αÞ

Z t

0

1
ðt � sÞα

� �
df ðsÞ
ds

: ð3Þ

The term in the squared parenthesis inside the integral
represents a weight given to the standard derivative. Then, we
can consider the initial time of the integration as the remote past,
while t is the present. Therefore, when we consider a time k far
apart from the present t, the term t− s is relatively large, thus if
α= 1 the term (t− s)−α vanishes, which indicates no contribu-
tion from this remote past time. However, if α≪ 1 such term is
different from zero and the derivative df ðsÞ

ds receives a weight
different from zero for the contribution of this remote past time.
In closing, the smaller the value of α the larger the contribution
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from the remote past21. That is, the system remembers its past
history. If α= 1, only the present time is considered by the
derivative, which indicates no memory from the past history of
the system.

The waste congestion of a given country can be produced
either (i) because it imports large amounts of waste from other
countries, or (ii) because it produces large amounts of waste
which it cannot process with its infrastructures. The first could be
for instance the case of China before 2017, where an estimate of
70% of the world’s e-waste ends up in Guiyu, in Guangdong
Province where no more than 25% is recycled in formal recycling
centers. The second can be exemplified by the case of household
waste in Senegal, where the lack of infrastructures and collection
system makes the problem insurmountable by local authorities.
Senegal exported more than 15,000 tonnes of household waste to
Italy in 2009. To differentiate both situations we will designate
them as (i) congestion at arrival, for the case where congestion
can be produced by importing large amounts of a given type of
waste; and (ii) congestion at departure, for the case where
congestion can be produced due to the existence of large amounts
of waste in a country, which are then exported to another. Also,
we should notice here that the amount of waste of a given type
reported by a country A as exported to a country B is not always
equal to the amount of the same waste reported by B as imported
from A. This difference could be due to several causes which
escape the analysis of the current work, but the split of congestion
at arrival and at departure avoids any problem arising from this
data asymmetry.

We then follow Lee et al.22 and make a change of variable in
the model: si tð Þ :¼ � log 1� wi tð Þ

� �
, such that si tð Þ represents the

“information content” that country i is not congested at time t.
Using this approach and considering wi 0ð Þ ¼ w0 as an initial
condition, we define here the following models of waste
congestion in the W4 with dynamic memory:

(i) Congestion at arrival

Dα
t sAðtÞ ¼ βαA Aw tð Þ; ð4Þ

(ii) Congestion at departure

Dα
t sDðtÞ ¼ βαD A

T w tð Þ; ð5Þ

where AT is the transpose of the weighted adjacency matrix A of
the network, and sA, sD, and w are vectors formed by an element
of s and w per node. Due to the uncertainties in the parameters
involved in these equations we consider here a “worst-case-
scenario” approach in solving them. That is, instead of obtaining
the solution of these equations we will solve a linearized version
of them, whose solution is an upper bound to the exact solution23:

Dα
t ŝ‘ðtÞ ¼ βα‘ B̂ ŝ‘ðtÞ þ βα‘ B b w0

� �
; ð6Þ

where b w0

� �
:¼ w0 þ 1� w0

� �
log 1� w0

� �
with the logarithm

taken entrywise, ℓ= {A,D}, B̂ ¼ BΩ, Ω ¼ diag 1� w0

� �
(1 is an

all-ones vector), and B ¼ A;AT
� �

. The solutions of these
equations (expressed as normalized amounts of waste, ŵ‘ tð Þ)
are nondivergent upper bounds to the exact solutions of the Eqs.
(4) and (5), respectively. That is, ŵ‘ tð Þkw‘ tð Þ where ≽ indicates
that the inequality is obeyed for every entry of the vectors.
Therefore, ŵ‘ tð Þ represent the worse-case-scenario of congestion
at arrival and at departure for every country in the W4. Let the
initial condition be γ= w0= 1− c/n with c is a small number, i.e.,
c≪ 1 (we took c= 0.005), and n is the number of nodes in the

network. Then the solution of (6) is given by (see SI for details)23:

ŝ‘ðtÞ ¼
1� γ

γ

� 	
Eα;1 tα βα‘ γ B

� �
1

� 1� γ

γ
þ log γ

� 	
1;

ð7Þ

where Eα;1 tα βα‘ γB
� �

is the Mittag-Leffler matrix function of B24.
The fact that the solution of (4) is given by means of Mittag-

Leffler matrix functions implies that congestion parameters, e.g.,
congestion time, depends on the global interactions of countries
in the network and cannot be derived from simple static
(centrality) measures (see SI for explanation). This model
estimates the time at which a country saturates of a given type
of waste. From this value alone we cannot infer whether that
country is at risk of improper handling and disposal of wastes. To
illustrate this situation let us consider two countries which
saturate of type I waste at the same time: Japan and Afghanistan.
They reach their 50% of congestion at t= 28654.54 (risk of waste
congestion is 0.606). However, while Japan is one of the richest
countries in the world with GDP ranging 4.002–4.591 trillion
USD, Afghanistan is among the poorest ones with GDP of
7.521–21.972 billions USD for the period of time considered here.
This obviously gives these countries very different capacities for
managing a waste congestion, a situation which is well reflected in
the environmental track record of each of these countries. We will
account for these differences in the section “Potential environ-
mental impact”.

Structural analysis of W4. During 2001–2019, the total amount
of wastes reported by the BaC around the world was
1,470,096,618 metric tonnes (which is more than 4000 times the
weight of the Empire State building). Time-aggregated weighted-
directed networks of seven types of waste grouping together 108
BaC categories were created as described in “Methods”. The
distribution of wastes by the different types considered here (see
“Methods”) is very unequal with a large concentration on the
wastes of types I–III. These three types of wastes account for
95.41% of the total weight of wastes traded in the period of study.
We then focus here on these three types and the rest are con-
sidered in the SI. Waste of type I accounts for 40.4% of the total
volume of wastes traded world-wide in the period of study, fol-
lowed by type II (28.9%) and type III (26.1%).

For the period 2001–2019, most of the international trade of
type I–III wastes took place between developed nations. They
accounted for 90.67% (8.29 × 107 tons of type I), 70.19%
(4.58 × 107 tons of type II), and 99.07% (5.86 × 107 tons of type
III) of the total volume of waste traded in that period.

A closer inspection of the W4 (see Fig. 1) reveals a large
imbalance in the directionality of the HW trades between
developed, developing, and least-developed countries. In the case
of wastes of type I—which include clinical, medical, and
pharmaceutical wastes as well as residues from industrial waste
disposal operations—developed nations exported more to the
developing and least-developed world than what they import
from them, i.e., 4,340,000 and 25,500 tons, respectively. Even for
the case of household wastes (type III) developed nations
exported 52,000 and 15,300 tons more than what they imported
from developing and least-developed nations, respectively. Only
in the case of wastes of type II, which contains many valuable
metals, the developed nations imported more than what they
exported to developing nations, i.e., 9,870,000 tons. The exports
and imports of types I–III display fat-tailed distributions,
indicating the existence of a relatively small number of
exporters/importers which concentrate most of the volume and
number of connections in the W4.
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Potential environmental impact. As we have mentioned before,
two countries with the same congestion time of a given type of
waste may have very different capacities for processing it. These
differences can be reflected in the environmental impacts that
such waste has in the countries. In order to capture these dif-
ferences, we use here the “Environmental Performance Index
(EPI)” measured by a set of parameters as described in ref. 25.
Returning to the example of Japan and Afghanistan, which
saturate of waste type I at the same time, it should be noticed that
the EPI of Japan of 75.6 contrasts with that of Afghanistan of
29.5. In our framework, we build networks by considering HW
type and the processing capacities of the countries in each waste
type. Then we calculate the corresponding risk that each waste
poses before aggregating to a global score. Thus, we introduce the
potential environmental impact of waste congestion (PEIWC)
(see “Methods”). In Fig. 2a, we illustrate a typical PEIWC. Ideally,
those countries with poor EPI should manage low volumes of
HW. They should appear at the top-left corner of the PEIWC.
Those countries with good EPI and low levels of HW congestion
should appear in the low-right corner of the PEIWC. The central
zone represents a “tolerance” zone, where countries manage
wastes according to their capacities and their environmental
responsibilities. However, there are countries with poor EPI that
may congest very quickly. They are located over the tolerance
zone and represent countries with high risk of improper handling
and disposal of wastes (HRIHDW).

In Fig. 2b–d, we illustrate the PEIWC for wastes of types I–III.
We identified 57 countries at HRIHDW: 29 from Africa, 16 from
Asia, 5 from the Americas, 4 from Europe, and 3 from Oceania.
The color codes in Fig. 2 clearly reveal the geographical
distribution of countries at different levels of risk of improper
handling and disposal of wastes.

At the left-bottom side of the PEIWC there are a variety of
countries/territories of different sizes and levels of development,
which are characterized by processing efficiently the waste they
receive, independently of its amount. That is, these countries have
developed capacities for processing the amounts of waste they
receive without compromising the environment. This situation
could be metastable and redirecting more waste to these countries
without increasing their processing capacities could trigger waste-
driven ecological problems. However, due to the environmental

good track record of these countries they may represent
opportunities for responsible investment in waste treatment
technologies.

It is difficult to find non-anecdotal evidence on the impact of
waste trade on different countries in the W4. That is, if we want
to move away from factual claims relying only on personal
observations, collected in a casual or non-systematic manner
about the impact of waste trade we should find some “markers”
that can be traced quantitatively from waste to ecological impact.
We propose here the use of Chemical Fingerprints (CF) as such
markers for the analysis of the impact of waste trade on
HRIHDW. A CF is a chemical or group of chemicals that are
generated by wastes and leave a quantifiable trace on the
environment. In the case of wastes of types I–III we have found
that they may leave environmental and/or human health CF in
the form of (i) heavy metals (HM)26, (ii) volatile organic
compounds (VOC)27,28, and persistent organic pollutants
(POP)29. In Fig. 3, we illustrate the connections between the
different kinds of wastes, the chemical fingerprints present in
them and some of the countries found here at HRIHDW (see
further discussion for a detailed analysis).

We also study waste-aggregated W4 networks for every year in
the 2001–2019 period. Temporal trends of the waste congestion
and environmental underperformance risks were built for 57
countries at HRIHDW (Fig. 4). What we plot here is the Pearson
correlation coefficient of the waste congestion risk vs. time (x-
axis) as well as of the EU vs. time (y-axis). Therefore, a negative
value on the x-axis indicates that the corresponding country has
dropped its waste congestion risk. Similarly, a negative value on
the y-axis indicates that the country improved its environmental
performance. Very few countries display a tendency to improve
both risk indices (bottom-left quarter), while the majority showed
simultaneous detriment of both (top-right quarter) from 2001 to
2019. The values plotted here should not be confused with those
in Fig. 2, where we plotted the absolute risks of waste congestion
and of environmental underperformance for countries. For
instance, Lesotho and Bangladesh are both at HRIHDW for
waste of types I and II, i.e., they are at the top-right corner of
Fig. 2b and c. However, Lesotho is one of the countries which
have worsened both, its waste congestion risk and its environ-
mental performance in the period 2001–2019 (top-right corner of

Fig. 1 The world-wide waste web. Superposition of the W4 networks of types I (red edges), type II (blue edges), and type III (yellow edges) of waste,
where the nodes represent the countries which traded the corresponding waste in the years 2001–2019. The direction of the edges indicates the flow from
exporter to importer as reported in the BaC database. A view of the global network in (a), with zooms for the local networks of Europe in (b), the Americas
(c), Africa (d), Asia (e), and Oceania (f). Map tiles by Bjorn Sandvik, under CC BY-SA 3.0 available at http://thematicmapping.org/downloads/
world_borders.php.
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Fig. 4), while Bangladesh has significantly improved its environ-
mental performance and slightly improved its risk of waste
congestion (bottom-left corner of Fig. 4).

For a better characterization of the global structures of these 18
networks (one per year of the period analyzed), we calculated
several of their topological features. The edge density of these
networks displays a significant decreasing tendency along the
period of time analyzed, i.e., the Pearson correlation coefficient
with time is r=−0.69. The trade networks have become
“smaller-worlds” from 2001 to 2019 with a positive trend of the
average clustering coefficient (r= 0.59) and a negative one of the
average path length (r=−0.36). The average reciprocity of edges
between pairs of connected countries was relatively stable across
the period (r=−0.05). We should notice that this index does not
account for the weights of the edges. However, the average
number of weighted triangles displayed a very strong negative
tendency from 2001 to 2019 (r=−0.83), followed by a similar
trend of the weighted subgraph centrality of the countries
(r=−0.78). The implications of these findings for the interna-
tional waste trade are analyzed in the next section.

Discussion
Here we focus the discussion of the results found in the previous
section on the analysis of CF in HRIHDW. For that purpose, we

performed an intensive literature search that allowed to trace
back some CF generated by the types of wastes that produce the
high risk in those countries to their environmental and/or ani-
mal/human health effect. As mentioned before, in Fig. 3 we
illustrate the connections between the BaC wastes Y1-Y47, their
CFs and the top 28 countries at HRIHDW (see “Methods”).

Heavy metals. Waste is one of the main anthropogenic sources of
HM in the environment26,30, with electrical and electronic waste
(e-waste) alone containing 56 metals31. We focus here on 8 HM
ubiquitous in wastes of different kinds. Lead (Pb), cadmium (Cd),
nickel (Ni), mercury (Hg), chromium (Cr), zinc (Zn), copper
(Cu), and arsenic (As), appear in waste from pesticides, medi-
cines, paints, dyes, catalysts, batteries, electronic devices, indus-
trial sludge, printing products, incineration of household wastes,
among others26,30 (see SI).

In total, from the 28 countries at HRIHDW there are 24 ones
in which waste traded through the W4 can leave CF in the form
of HM (see Fig. 5). We have found that the major sources of
waste-generated HM are the open (unregulated) dumpsites
existing in many developing countries as well as the (informal)
recycling of wastes, principally of e-waste. To have a clearer
picture of the situation we refer to the data of the period
1990–2015 quantifying the amount of hazardous waste landfilled

Fig. 2 Potential environmental impact of waste congestion (PEIWC). Plot of the risk of waste congestion versus the environmental performance
(a) indicating the central region of “tolerance” where countries process waste with relatively low environmental and human health impacts. The tolerance
zone is defined here by the upper and lower 50% prediction bounds for response values associated with the linear regression trend between the two risk
indices. Countries over the tolerance zone are at high risk of improper handling and disposal of wastes (HRIHDW). b–d Illustration of the PEIWC for wastes
of types I–III, respectively. Nodes are colored by the continent to which the country belongs to: blue (Americas), purple (Europe), orange (Africa), green
(Asia), yellow (Australia/Oceania). Icons of panel a were obtained from https://www.pdclipart.org/ under CC Public Domain.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28810-x ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1615 | https://doi.org/10.1038/s41467-022-28810-x | www.nature.com/naturecommunications 5

https://www.pdclipart.org/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


and incinerated in some of the countries found here at
HRIHDW3. In Niger, Morocco, and Madagascar, 1,057,000,
58,810, and 33,812 tons, respectively, were landfilled, while
12,145, and 1698 tons, were incinerated in Madagascar and in
Benin, respectively. Unregulated waste dumping sites have been
identified as the source of Pb, Hg, Ni, Cu, Cr, Cd, and Zn in the
main source of groundwater abstraction in southwestern Burkina
Faso, where informal settlements and peri-urban agriculture place
the population at risk32. Waste disposal and its incineration have
been identified in Kinshasa, Democratic Republic Congo, among
the main sources of Cd, Pb, and Ni in ambient air33. Both illegal
and legal waste dumping sites, among other sources, have caused
that HM such as Zn, As, and Pb are significantly present in
sediment of Maqalika Reservoir, Lesotho. In particular, As and Pb
were found in common carp fish at concentrations higher than
the World Health Organization (WHO) permissible limits
recommended for fish consumption, placing the residents at
significant health risks from the intake of individual metals
through fish consumption34.

Human and environmental damages produced by waste
recycling are even more dramatic. In the case of e-waste, in
most developing countries it is disposed of in domestic landfill
sites and recycled in an informal way. This typically involves
burning materials for recovering copper, and acid extraction to
recover precious metals. Such practices are common in China,
India, Pakistan, and Nigeria35, which are all identified here as
countries at HRIHDW. As a consequence, in China36, levels of Pb
in mother-infant pairs were found to be five times higher in

VOC

POP

HM

Y4

China
Y18

Mozambique

Senegal
Y45

Afghanistan
Y9

Barbados
Y34

Lesotho

Y12

Mauritania

Papua New Guinea

Ethiopia

India

Morocco

Y11

Pakistan

Y31

Djibouti

Y8

Mexico

Y6
Y42
Y22
Y13
Y35
Y41
Y16
Y37
Y14

Sierra LeoneY29
Y10
Y3
Y46

D.R. Congo
Madagascar

Marshall Islands
NigeriaY26

Y17 Eritrea
North Korea

Mali
Benin

Y23
Y1
Y2
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Y19

LiberiaY15
Bangladesh
Uzbekistan

Y21
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Y39
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Burkina Faso
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Chemical fingerprints

Waste type
Country

Fig. 3 Chemical fingerprints of waste. The three classes of chemical fingerprints: Volatile Organic Compounds (VOC) (green), Persistent Organic
Pollutants (POP) (orange), and HM (blue) left by the three BaC waste types Y1-Y18 (red), Y19-Y45 (purple), Y46-Y47 (yellow) in the top 28 countries at
high risk of improper handling and disposal of wastes (HRIHDW).

Fig. 4 Temporal trend (period 2001–2019) of the waste congestion risk
and of the environmental underperformance risk for some countries at
HRIHDW. The trend is measured by the Pearson correlation coefficient
between the corresponding variable and the years in the period. Bottom-left
quarter identifies the countries with a trend to improve both indices. Top-
right quarter identified those countries with a trend to deterioration of both
indices. EU Risk stands for Environmental Underperformance Risk.
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regions known for the high concentration of e-waste disposal/
processing than in control. It was associated to the higher rates of
adverse birth outcomes observed in Guiyu—where 70% of global
e-waste ends up37—related to control. In the same region
children are reported to have significantly higher levels of Pb,
Cr, and Ni, which have been linked to low mean intelligence
coefficient (IQ), and decreased forced vital capacity36. Cd, Pb, Zn,
Cu, Ni, As, and Cr were also found at higher levels in hairs of
residents and dismantling workers in Longtang and Taizhou
relative to control locations36. In India, it has been reported that
the levels of dermal exposure of HM in workers of Indian e-waste
recycling sites is 192.6 (Cr), 78.1 (Cu), 30.9 (Pb), and 37.3 (Zn)
times higher than those for people not exposed to e-waste38.

In Nigeria, on average, 400,000 second-hand or scrap
computers enter into the country annually, which represents
about 60,000 metric tonnes per annum39. It is estimated that the
country generates 1,100,000 tons of e-waste3. Several reports have
quantified high levels of HM contamination of soils in e-waste
dumpsites and of informal e-waste recycling in Nigeria40–42.
Another waste-source of HM is the dismantling of used electric
batteries, mainly from cars. Madagascar, which is one of the
countries identified here at HRIHDW, is considered as a regular
destination for traffic of batteries, where Pb is extracted by local
scavengers and then send to China, Pakistan, or Dubai43. In
Senegal, another country at HRIHDW, the death of 18 children44

has been linked to high levels of Pb in children living in
surrounding areas used for recycling of used lead-acid batteries.
In some cases, it is difficult to trace the HM to a particular
country due to the transborder nature of the region contami-
nated. This is the case of the countries in the Gulf of Guinea—
Benin, Cameroon, Ivory Cost, Ghana, Nigeria—where contam-
ination by toxic waste dumping is known, which include high
levels of heavy metals proceeding from e-waste45,46.

In Mexico, which is at HRIHDW, it has been reported 8
abandoned or illegal hazardous waste sites in Baja California and
15 ones in Coahuila, mainly containing HM. An estimated 6000
tons of Pb wastes, as well as other HM including Sb, As, Cd, and
Cu resulting from the battery recycling operation have been
reported in Tijuana, Baja California, Mexico47. In Djibouti,
contamination of soils by As and Cr at concentrations 10 times
higher than the US maximum contaminant levels where

produced by a shipment of containers with up to 20 metric tons
of chromate copper arsenate intended for treating electric poles,
which were found leaking in the port of Djibouti48. In other
countries found here at HRIHDW such as Papua New Guinea,
Uzbekistan and Bangladesh there are reports of HM pollution
affecting the environment and public health. However, it is
difficult to trace these polluting HM to hazardous wastes due to
the high impact of mining49,50 as well as industrial pollution51,52

in these countries.

Volatile organic compounds. VOC are ubiquitous organic pol-
lutants affecting atmospheric chemistry and human health27.
VOC can be released from wastes containing solvents, paints,
cleaners, degreasers, refrigerants, dyes, varnishes, and household
wastes, from processing of e-wastes, plastics, and waste
incineration27,28. We identify benzene (B), toluene (T), ethyl-
benzene (E), and o-, m-, and p-xylenes (X) as potential CF of Y1-
Y47 waste27,28,53,54. Toluene is the only BTEX which has sig-
nificant non-traffic sources, with important contributions from
previously mentioned sources. Indeed, when the T/B ratio is over
two it indicates the existence of waste sources beyond vehicular
traffic55.

It is difficult to disentangle the possible sources for T/B ratios
in the countries at HRIHDW to retain only the information
concerning waste-generated VOC. For instance, in many
developing countries T/B values can be affected by unofficial
gasoline selling places, or by combustion processes for cooking in
indoor kitchens. We have then searched for some potential
sources of large T/B ratios that can be more likely be assigned to
waste accumulation or processing. For instance, several VOC
have been identified in an e-waste dismantling town in
Guangdong province of China, including alkanes, BTEX, and
organohalogen53. The T/B ratio found here was 3.15, which
clearly correlates with emissions of VOC occurring during
pyrolisis of e-waste53. T/B ratio of 9.36 is reported for
Guangzhou56, which is the capital city of Guangdong. In the
city of Dakar, Senegal, both at the urban district and at a
semirural district, T/B ratios were 4.51 and 5.3257. Senegal is a
country at HRIHDW for types I, II, and III. In Senegal, there have
been continuous problems with the collection of household

Fig. 5 High risk of improper handling and disposal of wastes. Illustration of countries at HRIHDW of types I–III wastes and the chemical fingerprints left
by these HW in their environment and/or human health. Countries with impact of heavy metals (HM) and persistent organic pollutants (POP) (green),
volatile organic compounds (VOC) and HM (purple), VOC, HM and POP (red), VOC and POP (yellow) are illustrated. Map tiles by Bjorn Sandvik, under
CC BY-SA 3.0 available at http://thematicmapping.org/downloads/world_borders.php.
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waste58, which have been responsible for public health problems
(dermatosis, diarrhea, conjunctivitis, and malaria)59. Other
HRIHDW countries with high values of T/B ratio reported at
different locations are the following: Bangladesh (6.85), Benin
(7.75), Burkina Faso (2.32), Ethiopia (2.3, 4.25), India (3.58, 3.67,
6.66, 8.97), Mexico (2.19, 5.70, 6.59) (see SI for references).

Persistent organic pollutants. POP are chemicals with high
resistance to degradation in the environment, high accumulation
in human/animal tissues and transmission through food chains29.
As POP indicators we consider here polychlorinated biphenyls
(PCB)60 and polychlorinated dibenzo-p-dioxins and poly-
chlorinated dibenzofurans (PCDD/Fs)61.

PCB are intentionally produced due to their many industrial
applications. They are related to neurodevelopment effects in
infants, cancer, and immunotoxic effects in humans60. Vast
amounts of PCB are stored in some of the countries at HRIHDW
(Fig. 6a)62. For instance, in Mozambique 240,571 tonnes of oil
suspected to have PCB are reported. Pollution by particulate and
vapor samples containing PCB was detected in three sites in
KwaZulu-Natal Province, South Africa63, which is close to the
Mozambique border. PCBs are also found in four fish species
from Lake Koka, Ethiopia64, where 2505 PCB-containing
transformers with 1182 tons of PCB oil and 40 PCB-containing
capacitors with 1.255 tons of PCB oil are reported. In China, high
PCB concentrations have been reported in sediments from Pearl
River and its estuary65,66. In Dalian Bay and Songhua River the
pollution by PCB is directly related to PCB equipment storage
locations65. In the Bengal coast of Bangladesh PCB contamina-
tion is linked to the past and on-going use of PCB-containing
equipment67. Indeed, all 209 congeners of PCBs were found in
48 seafood samples collected from the coastal area of Bangladesh,
with severe health risk for coastal residents68. In Bangladesh, it is
known to exist 55.8 tons of PCB in use, 403 tons of contaminated
oil contained in waste equipment, 519 tons of contaminated waste
transformer oils and 22.5 tons of PCB contained in materials of
old ships. Other three countries found here at HRIHDW—
Lesotho, Liberia, and Morocco—have large amounts of equip-
ments (transformers and condensers) containing PCB. In
Morocco, for instance, 3500 tons of oil with more than 50 mg/
kg of PCB are stored. There are 20 identured sites storing PCB
wastes, from which 50% have been found to present floor
pollution. Some African countries identified here at HRIHDW
have also large storages of PCB waste. Nigeria has 341
transformers containing PCB. D. R. Congo has 188 PCB electrical
transformers with 457 tons of PCB oils, 130,000 liters of pure
PCB and 340,000 liters of PCB-containing oil and in Sierra Leone
there are 103,372 tonnes of oil having PCB. The effects of PCB
pollution in these countries have been documented. For instance,
high levels of PCB has been found about 400 km off parts of the
West African coast69. The total amount of PCB in the serum of
recent immigrants who came from Sub-Saharan countries to the
Canary Islands (Spain) identified levels of 78, 124, 141, 181, 181,
255 ng/g lipid for immigrants from Senegal, Guinea, Mali, Sierra
Leone, D. R. Congo, and Nigeria, respectively70. Importantly, the
authors of that report found that the immigrants’ PCB levels were
strongly associated with the imports of second-hand e-waste by
their country of origin, supporting our hypothesis connecting
waste to CF and these to environmental/human damage.

On the other hand, PCDD/Fs are known to be extremely toxic
in animals/humans61. Consequently, their release to the environ-
ment is presented as toxic equivalent (TEQ) (see Fig. 6b)71. In D.
R. Congo alone PCDD/Fs amount to 300,412 g/TEQ/a (grams per
toxic equivalent per year)72. It is followed by China (10,232),
India (8658), Nigeria (5340), Lesotho (1708), and Sierra Leone

(1242). The mean TEQ of PCDD/Fs in 75 countries, excluding
those found here at HRIHDW, is 586.84, while that at HRIHDW
is 2161.9671.

Evolution of the W4 in the period 2001–2019. As we have seen
the W4 has become slightly less densely connected from 2001 to
2019. The most dramatic change, however, has been registered by
the drop of the average number of weighted triangles in the
networks. This index has dropped an order of magnitude from
2002 to 2019. Here we are talking about directed triangles, that is,
those in which a directed path A→ B→ C→ A exists. Therefore,
the number of directed triangles can decrease due to (i) the
deletion of some of the edges forming the triangle, or (ii) due to
the inversion of the direction of any of the three arrows of the
triangle. The fact that we observe a positive trend in the clustering
coefficient and a drop in edge density along the period, incline us
to think more about the second possibility. In this scenario, there
are three equivalent possibilities: (a) A ← B→ C→ A, (b) A→
B→ C ← A, and (c) A→ B ← C→ A. In the original triangle every
country A, B, and C, has one input and one output, which make
the system “balanced”, but in (a), (b), and (c), such balance is
broken. In (a), the country A is becoming a net importer, while B
is a net exporter. The same scenario is repeated for other nodes in
(b) and (c). Although we focus here only on triangles the situation
is repeated for other cycles as revealed by the fact that the
weighted subgraph centrality of the countries also decay with
time in this period.

The countries which displayed the most negative trend in the
number of weighted triangles in the period 2001–2019 were
Belgium, Germany, Netherlands, Spain, and France, closely
followed by Ukraine, Canada, Ireland, and U.S. In order to
investigate whether these countries have evolved to net importers
or to net exporters, we use the difference △S= Sin− Sout of the
in- Sin and out-strengths Sout of every node in the networks. The
in-strength accounts for the weighted amounts of waste imported
by a country, and the out-strength for those exported. We found
that Germany, France, U.S., and Ukraine evolved from more
balanced situations to become mainly net exporters in this period,
with Pearson correlation coefficients r of △S vs. time of −0.78,
−0.72, −0.66, and −0.44, respectively. Countries like Netherlands
(r ≈ 0.88), Belgium (r ≈ 0.57), Spain (r ≈ 0.42), and Canada
(r ≈ 0.34) evolved into net importers in the period.

In the general framework of the W4 evolution in the period
2011–2019, the countries displaying a more significant transfor-
mation to net exporters are Slovenia, U.K., New Zealand, and
Germany, followed by France, and U.S. at different places among
the top 15. On the other side, those transforming into net
importers, the list is headed by Netherlands, Poland, Sweden, and
R. Korea. Among the countries at HRIHDW the main
transformation towards net exporter is observed in China
(r ≈−0.70) and those becoming major importers (in terms of
the volume of waste) are Mexico (r ≈ 0.66), India (r ≈ 0.62), and
Uzbekistan (r ≈ 0.47). In 15 of the countries at HRIHDW we
found that Sin= 0 for every year reported. That is, these countries
did not reported to have imported any waste during 2001–2019
but they export significant amounts of waste as to place them at
HRIHDW. This situation in some of these countries could be a
red alert of illegal waste imports which of course are not reported
at the Basel documents (see Fig. 4 in ref. 3).

We also considered the betweenness centrality BC of the
countries in the W4. The largest BC is observed in developed
countries like U.K., France, Germany, Austria, Netherlands, and
Belgium, while 116 countries, mainly developing ones, have BC
equal to zero. We identified that 82.8% of the countries at
HRIHDW have zero betweenness. That is, they are endpoints (net
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exporters or net importers) in the W4, while the developed
countries have a more balanced situation in which imports and
exports occur simultaneously.

We have introduced here a mathematical framework that
allows to model the flows of waste through the international
network of waste trade. This model allows to identify the time at
which a given country reaches its carrying capacity and

consequently it is considered to be congested or saturated of a
given type of waste. Although we have merged several classes of
waste into groups to facilitate the modeling and interpretation of
results, the model can be adapted to individual waste categories
according to BaC. Using this strategy we have identified countries
which are at HRIHDW due to their relatively fast congestion of
waste and their poor track record on environmental performance.

Fig. 6 Geographical distribution of PCB and Dioxins. a Amounts of PCB stored in some of the countries at HRIHDW identified in this work. The amounts
are given in logarithmic scale. b Total amounts of PCDD/Fs released to the environment by some of the countries at HRIHDW identified in this work. The
amounts are given in logarithmic scale. The average amount of PCDD/Fs released in the 64 countries not in the list of countries at HRIHDW is 398.8 g/
TEQ/y, which in log scale is 5.99. Map tiles by Bjorn Sandvik, under CC BY-SA 3.0 available at http://thematicmapping.org/downloads/
world_borders.php.
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The causes producing such potential waste saturation can be
multiple and are not explored in this work. However, the current
results trigger some red alert about the critical situation of some
countries and the necessity of substantial investment in waste
management at a global level.

The theoretical model presented here as well as the main
results of this work can be applied to study the impact of different
emerging scenarios, such as: (i) “Import bans” policies in major
importers, like the one imposed in 2017 by China73. Consider a
country i that exports HW to the set of countries η. If j∈ η
imposes a ban on HW, then the model can be used to
redistributing the amount of wastes exported by i to a country j
among the rest of countries in η. We can analyze how this
redirectioning impacts on the congestion time of the countries in
η and on the rest of the World;

(ii) Understanding the potential waste congestion problems
arising from the COVID-19 pandemic and from emerging
sources of e-waste74,75. Consider the set of countries that
export/import a given type of waste, e.g., biomedical waste or
e-waste. Increase those amounts in the model according to
reported data or estimations, and calculate the congestion time
for these countries as well as for the rest of the World;

(iii) Analyzing the impact of a global scenario of increasing
amounts of all wastes. Use the model to proportionally increase
the amounts of waste of every country/territory and run the
simulation for determining the congestion time of every country,
which can be compared with the results previous to the increase
of waste amounts.

Methods
Data collection. We extract the data used to build W4 networks from BaC Online
Reporting Database76,77. It contains summarized compendiums where individual
national reports are altogether condensed into single Excel files per year, with the
explicit and quantitative information of associated parties: destination, import, origin,
and transit. We extract from these files the information about countries/territories of
exports and imports, transaction amounts in metric tons, waste classification codes,
characteristics, and type of waste streams. Code names of countries, and special
territories like those that have no total political sovereignty, are considered by using
the standard ISO 3166-1 alpha-278. We do not include the countries of transit due to
its scarcity in the reports, and because of the lack of information about the temporary
order of the landings. We also excluded the existing self-export (a country that
exports to itself). We manually curated the database for errors in the country/terri-
tories names, e.g., due to typos or possible transcription errors, as well as for the use
of nonofficial country codes such as EIRE instead of IE for Ireland. The BaC reports
may also combine formal ISO alpha-2 codes with others codes that have become
obsolete and sometimes with codes of another standards like transitory codes or
international postal union codes. Reports may pointing out to a state party that
currently is dissolved or split into two new ones, e.g., Serbia and Montenegro. In the
case of waste categories, we also exclude those for which their codes do not coincide
with the ones defined by the BaC, such as 11b, AN8, Y48.

Waste types. We consider 108 categories of wastes according to BaC classification,
which are then grouped into seven types of waste designated by Type I–VII. The
classification of wastes used in this work is based on the Annexes I, II, and VII of
the BaC76. No wastes in category B of the BaC are included in this work as they are
not reported by countries in the database of the Convention77.

Type I considers, for instance, Y1: Clinical wastes from medical care in
hospitals, medical centers of clinics, Y2: Wastes from the production and
preparation of pharmaceutical products, up to Y18: Residues arising from
industrial waste disposal operations (see pp. 46 of ref. 76). The Type II of wastes
used in this work associates the second subdivision of the Annex I, Y-codes Y19-
Y45. In general, wastes containing 27 chemical constituents, i.e., Y19: Metal
carbonyls, Y20: Beryllium compounds, up to Y45: Organohalogen compounds. The
type III of wastes discussed here accounts for the Annex II of the BaC classification.
Y46: Wastes collected from households, and Y47: Residues arising from the
incineration of household wastes. A complete list is provided in the SI.

The remaining four types of wastes recover the four subclassifications of the
Annex VIII76. Specifically, Type IV links with the Metal and Metal-Bearing Wastes.
It accounts for A-list items grouped from A1010 to A1090 and A1100 to A1190,
e.g., A1010: Metal wastes and waste consisting of alloys of Antimony, Arsenic,
Cadmium, Selenium, among others; up to A1190: Waste metal cables coated or
insulated with plastics containing or contaminated with coal tar, PCB11, lead,

cadmium, other organohalogen compounds (see pp. 66 of ref. 76). Type V relates
Inorganic constituents containing metal and organic material (cathode-ray glasses,
liquid inorganic fluorines, catalysts, gypsum, dust-fibers of asbestos, coal-fired
power plant fly-ash). Its A-items ranges from A2010 to A2060. Type VI associates
Organic constituents containing metal and inorganic material. (Petroleum coke
and bitumen, mineral oils, leaded anti-knock sludge, thermal fluids, resin, latex,
plasticizers, glues, adhesives, nitrocellulose, phenols, ethers, leather wastes, (un)
halogenated residues, aliphatic halogenated hydrocarbons, vinyl chlorides),
accounting for A-items: A3010–A3090, A3100–A3190, and A3200. Finally, Type
VII are Wastes which may contain either inorganic or organic constituents (Some
pharmaceutical products, clinical-medical-nursing-dental-veterinary wastes from
patients and researches, biocides-phytopharmaceutical, pesticides, herbicides
outdated, wood chemicals, (in)organic cyanides, oils-hydrocarbons-water mixtures,
inks, dyes, pigments, paints, lacquers, varnish, of explosive nature, industrial
pollution control devices, for cleaning of industrial off-gases, peroxides, outdated
chemicals, from research or teaching activities, spent activated carbon, to name a
few). It accounts for the groups A4010–A4090 and A4100–A4160.

W4 construction. We construct a weighted-directed network for each of the types
of waste analyzed. In every network, the nodes correspond to the countries/terri-
tories reporting the given type of waste in the period 2001–2019. It is frequent in
the BaC database that a country i reports the export (import) of an amount qij to
(from) j, which includes several BaC waste categories. If all the BaC categories
belong to the same waste type, then we simply use that amount as the weight of the
link (i, j). However, it happens sometimes these BaC categories belong to several
waste types. Let us consider two BaC categories C1 and C2, e.g., Y1 and Y19. Then,
C1 belongs to one waste type, e.g., type I, and C2 to another, e.g., type II. In this
case, we have to split the quantity qij in the weights of the links between i and j for
the two types of wastes. We then proceed as follows. We obtain the weight of the
link (i, j) for the waste of type k as

wk
ij ¼

qij � ϕk
Φ

; ð8Þ

where ϕk is the average of the amounts of waste of type k traded between every pair
of countries during the corresponding year, and Φ=∑k ϕk where the summation
is carried out for all types of waste involved in the quantity qij.

In any case, we can obtain two different weights for a pair of countries based on
the data reported at BaC from “Export” and “Import” reports. Then we can have
the following two different cases: (a) that the amount E i; j

� �
reported by country i

as exported to country j coincides with the amount I j; i
� �

reported by j as imported
from i; (b) that E i; j

� �
≠I j; i
� �

. In the case (a), we simply add a directed arc from i to
j with the weight E i; j

� � ¼ I j; i
� �

: In the case (b), we assume that i exports
max E i; j

� �
; I j; i
� �
 �

to j. We designate by ~A ¼ ~A Gð Þ the adjacency matrix of the
network G. Notice that ~A is not necessarily symmetric because ~Aij ¼
max E i; j

� �
; I j; i
� �
 �

is not necessarily the same as ~Aji ¼ max E j; i
� �

; I i; j
� �
 �

. Here

we normalize the adjacency matrices by A ¼ ~A=∑i;j
~Aij .

Network parameters of the W4 networks. Because the W4 networks are
weighted and directed we consider here the distributions of their in- and out-
strengths, Sin and Sout, respectively. The in-strengths of the node i is the sum of the
weights of all links pointing to i. The out-strength of that node is the sum of the
weights of all links leaving that node. For each kind of strength, we tested 17 types
of distributions79,80: beta, Birnbaum-Saunders, exponential, extreme value, gamma,
generalized extreme value, generalized Pareto, inverse Gaussian, logistic, log-
logistic, lognormal, Nakagami, normal, Rayleigh, Rician, t-location-scale, and
Weibull. To test the goodness of fit we used81: negative of the log-likelihood,
Bayesian information criterion, Akaike information criterion (AIC), and AIC with
a correction for finite sample sizes. The results are given in the Supplementary
Information.

For the global characterization of the W4 networks we used the following
structural parameters (see ref. 82):

(i) Edge density, δ Gð Þ
δ Gð Þ :¼ m

n n� 1ð Þ ; ð9Þ

where n is the number of nodes and m is the number of directed edges;
(ii) Reciprocity, ρ Gð Þ

ρ Gð Þ :¼ r � �a
1� �a

; ð10Þ

where the network is binarized before the calculation, �a measures the ratio
of observed to possible directed links and

r ¼ L$

m
; ð11Þ

with L↔ being the number of reciprocal edges and m the total number of
directed edges (see ref. 83 for details);
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(iii) Average number of weighted-directed triangles, �t

�t :¼ tr A3
� �
3n

; ð12Þ

where tr :ð Þ is the trace of the matrix A, and A is the adjacency matrix of the
network;

(iv) Average clustering coefficient, �C

�C :¼ 1
n
∑
n

i¼1
2ti

ktoti ktoti � 1
� �� 2k$i

; ð13Þ

where ti is the number of directed triangles through node i, ktoti is the sum of
in- and out-degree of the node i, and k$i is the reciprocal degree of i (see
ref. 84 for details);

(v) Average path length, �l

�l :¼ 1
n n� 1ð Þ∑i;j lij; ð14Þ

where lij is the length of the shortest path distance between the nodes i and j,
where in case that there is not a path between two nodes the value of zero is
assigned to its length;

(vi) Average subgraph centrality, �SC

�SC :¼ 1
n
tr eA
� �

; ð15Þ

where exp Að Þ is the matrix exponential of the adjacency matrix.

For the analysis of the individual countries of the network, apart from the in-
and out-strengths, we also analyze the following local measures of W479. We refer
the indices to a node labeled as i:

(i) Number of weighted-directed triangles

ti :¼ A3
� �

ii; ð16Þ
(ii) Subgraph centrality

SCi :¼ eA
� �

ii; ð17Þ
(iii) Betweenness centrality

BCi :¼ ∑
p≠i≠q

ϱpiq
ϱpq

; ð18Þ

where ϱpiq is the number of weighted-directed shortest paths from p to q
that goes through the node i and ϱpq is the total number of weighted-
directed shortest paths from p to q.

Congestion dynamics. We consider the same rate for both, congestion at arrival
and congestion at departure, processes, i.e., βA= βD. In the simulations we use
α= 0.75, β= 0.01, and c= 0.005. As a way of quantifying how easily a country gets
congested by a given waste we use the time at which 50% of the total congestion is
reached, which is more accurate to determine that the time at which 100% of
saturation is reached. Let us designate by t̂i this time. Then, t̂i is the time t at which
s‘ tð Þ ¼ 0:5.

We will illustrate the intuition behind the use of separated equations for
congestion at arrival and at departure with an example. Let us consider a trade
network of three countries where A exports 100 tonnes of waste to B and 120
tonnes to C; B exports 200 tonnes to C, and C exports 50 tonnes to A. Let the times
t̂C < t̂A < t̂B for the congestion at arrival model (see SI Fig. [8] for graphic
illustration).

This indicates that C is at the highest risk of congestion due to its large imports
of waste. However, if we consider the process at departure, t̂A < t̂B < t̂C , which
indicates the highest risk at node A due to the existence of large amounts of this
waste at the node.

Potential environmental impact of waste congestion. We first define here the
risk of waste congestion for a given country as

Ri :¼ 1� t̂i=max
j

t̂j; ð19Þ

where i represents a given country, t̂i is the congestion time for the country i either by
importing or by exporting wastes of a given type. That is, if t1=2 i ð Þ and t1=2 i!ð Þ
are the times at which country i reaches 50% of congestion by importing and
exporting a given type of waste, respectively, then t̂i ¼ min½t1=2 i ð Þ; t1=2 i!ð Þ�.
The index Ri is normalized between zero (no risk) and one (maximum risk) of
congestion of wastes of a given type.

Due to the socio-economic differences between the countries in the world,
the use of Ri along could be of little practical value. For instance, for wastes of
type I the Netherlands and Burkina Faso have about the same value of Ri, which
is near 0.99. For the same type of wastes Ireland and Ivory Cost also have
Ri ≈ 0.89. The situation is similar for waste of type II, where the first pair of
countries have Ri= 1 and the second pair have Ri ≈ 0.94. However, while
Netherlands and Ireland are among the richest countries in the world with GDP

ranging 578–868 billions USD (Netherlands) and 164–236 billions USD
(Ireland), the other two countries are among the poorest with GDPs of 4.7–9.4
billions USD (Burkina Faso) and 15–24 billions USD (Ivory Cost) for the period
of time considered here. This obviously gives these countries very different
capacities for managing a waste congestion, a situation which is well reflected in
the environmental track record of each of these countries. The Environmental
Performance Index (EPI), published by the Universities of Yale and Columbia25,
quantifies the performance of every country using sixteen indicators reflecting
United Nations’ Millennium Development Goals. They are accounted for by six
well-established policy categories (see Policymakers’ Summary at ref. 25):
Environmental Health, Air Quality, Water Resources, Productive Natural
Resources, Biodiversity and Habitat, and Sustainable Energy, such that it covers
the following two global goals: (1) reducing environmental stresses on human
health, and (2) promoting ecosystem vitality and sound natural resource
management. Then, while Netherlands and Ireland are among the top
environmental performers in the 2001–2019 period with average EPIs larger
than 70 out of 100, Burkina Faso and Ivory Cost are the bottom of the list with
average EPIs of 45.2 and 55.9, respectively. We can account the risk of
environmental underperformance by an index bounded between zero and one
as: Ui ¼ 1� EPI ið Þ=100. PEIWC are defined by plotting the waste congestion
risk Ri for a given type of waste versus Ui. For the demarcation of the tolerance
zone we use here the following. We obtain the linear regression model that best
fit Ui as a linear function of Ri. Then, the tolerance zone is defined by the upper
and lower 50% prediction bounds for response values associated with this linear
regression trend between the two risk indices. The value of 50% is used here as a
very conservative definition of the tolerance zone. Widening this zone too much
will make that almost no country is at HRIHDW, which does not reflect the
reality. On the contrary, narrowing it too much will simply split countries into
two classes, which will make it difficult to identify those at the highest risk of
environmental underperformance due to waste congestion. Although we have
identified 58 countries over this tolerance zone, i.e., the countries at HRIHDW,
we performed our studies on a subset of them formed by 28 countries. These
countries, referred in the text as “top 28”, were selected by picking in every
PEIWC those countries in the top 25% of deviation over the tolerance zone. We
then merged the sets of countries found at every PEIWC conforming this list of
top 28 at HRIHDW.

Data availability
Extracted set of Export and Import networks generated in this study is available in
https://github.com/JohannHM/Fractional-congestion-Dynamics. J.H. Martínez, S.
Romero, J.J. Ramasco, E. Estrada, The world-wide waste web. JohannHM/Fractional-
congestion-Dynamics: The World-wide waste web. Data and code (v1.0.0). Zenodo.
https://doi.org/10.5281/zenodo.5786874 (2021). All raw data of the manuscript and its
Supplementary Information was obtained directly from the Basel Convention web page:
http://www.basel.int/Countries/NationalReporting/ElectronicReportingSystem/tabid/
3356/Default.aspx.

Code availability
Custom MATLAB code is available on GitHub (https://github.com/JohannHM/
Fractional-congestion-Dynamics). J.H. Martínez, S. Romero, J.J. Ramasco, E. Estrada,
The world-wide waste web. JohannHM/Fractional-congestion-Dynamics: The World-
wide waste web. Data and code (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.5786874
(2021).
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