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Abstract Social network contacts have significant influence on individual travel be-

havior. However, transport models rarely consider social interaction. One of the reasons is

the difficulty to properly model social influence based on the limited data available. Non-

conventional, passively collected data sources, such as Twitter, Facebook or mobile

phones, provide large amounts of data containing both social interaction and spatiotem-

poral information. The analysis of such data opens an opportunity to better understand the

influence of social networks on travel behavior. The main objective of this paper is to

examine the relationship between travel behavior and social networks using mobile phone

data. A huge dataset containing billions of registers has been used for this study. The paper

analyzes the nature of co-location events and frequent locations shared by social network

contacts, aiming not only to provide understanding on why users share certain locations,

but also to quantify the degree in which the different types of locations are shared. Lo-

cations have been classified as frequent (home, work and other) and non-frequent. A novel

approach to identify co-location events based on the intersection of users’ mobility models

has been proposed. Results show that other locations different from home and work are

frequently associated to social interaction. Additionally, the importance of non-frequent

locations in co-location events is shown. Finally, the potential application of the data

analysis results to improve activity-based transport models and assess transport policies is

discussed.
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Introduction

Travel behavior is nearly always modelled as a set of independent decisions across trav-

elers. This approach provides satisfactory results for regularly-scheduled or very inelastic

activities, like work trips, but ignores the fact that intra- and extra-household interactions

play a key role in many other trips and activities (e.g., leisure trips) that are planned jointly

and/or depend on the trips and activities of the social contacts. The concept of a ‘full

individual daily pattern’, which constitutes the core of the original activity-based approach,

needs to be expanded to account for the influence of the social network. A key issue is

incorporating realistic geographic social networks into agent-based models, which makes it

necessary to characterize the form and statistical properties of the underlying social

structures and the strengths of their influences. The analysis of new data sources, such as

online social networks or mobile phone data, can help improve the understanding of the

interdependencies and co-evolution of the social networks and the activity-travel patterns.

In recent years, there has been an increasing interest in studies related to human mobility

patterns (e.g., Brockmann et al. 2006; Gonzalez et al. 2008; Song et al. 2010a; Gould 2013)

and social networks (e.g. Onnela et al. 2007; Lazer et al. 2009; Carrasco et al. 2008a;

Clifton 2013), some of them using different spatiotemporal information from non-con-

ventional, passively collected data sources (e.g., GPS, mobile phones, Twitter, etc.).

However, only a few studies have analyzed both aspects at the same time using mobile

phone data records (Calabrese et al. 2011a; Cho et al. 2011; Phithakkitnukoon et al. 2012;

Chen and Mei 2014). The main objective of this paper is to examine the relationship

between travel behavior and social networks using mobile phone data. The paper focuses

on the analysis of the characteristics of the locations shared by social contacts, aiming to

understand and quantify why and in which degree those locations are shared.

The structure of the paper is as follows: first, a review of previous work related to the

interaction between social network, travel behavior and the use of mobile phones is pre-

sented. Secondly, the scope and contributions of the paper are shown. In the third place, the

characteristics of the dataset used in this study are described. Fourthly, the methodology

followed to obtain users’ social network and travel behavior from mobile phone data and to

analyze the relationship between them is explained. Then, the results and main findings are

presented, and their application to inform activity-based models and assess mobility

policies such as carpooling is explained. Finally, the main conclusions of the paper and

further research avenues are discussed.

Literature review

Social networks and travel behavior

It has been recognized that the characteristics of people’s social network influence social

activities and related travels (Axhausen 2005; Arentze and Timmermans 2006; Carrasco

and Miller 2006). There is an increasing number of transport studies that are including
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social networks as an important factor to improve travel demand models. Earlier appli-

cations of social networks in transport planning and travel behavior studies date from the

beginning of the present millennium. Dugundji and Walker (2005) derived a mode choice

model using various static associative social networks that group individuals by several

statistics. Paez and Scott (2007) presented a similar approach to estimate the share of

telecommuting at a firm in consideration of peer pressure to appear at one’s desk. Carrasco

and Miller (2006) explicitly included social networks in a conceptual model of social

activity-travel behavior. Marchal and Nagel (2006) allowed cooperative agents in a mi-

crosimulation to share information with each other about activity locations and about other

agents, in order to optimize trip chains. Arentze and Timmermans (2006) presented a

framework for a multi-agent microsimulation that produces a dynamic social network

which evolves together with activity-travel patterns. Hackney et al. (2006) also studied

interdependencies between social networks and travel behavior. Silvis et al. (2006) found

relations between number of trips and locations visited, and the social network size and

number of repeated contacts. Molin et al. (2007) analyzed the influence of the size and

composition of the social network on travel demand. Arentze and Timmermans (2008)

focused on direct effects of social networks on activity-travel interactions. Carrasco et al.

(2008a) studied the spatial distribution of social activities, focusing on the home distance

of individuals. Carrasco et al. (2008b) explored the relationships between travel behavior,

ICT use and social networks. Carrasco and Miller (2009) studied the effects of charac-

teristics of individuals’ personal networks and interactions on activity frequency. Hackney

and Marchal (2009) developed a microsimulation model which incorporated a social

network on top of a daily activity scheduler. More recently, Hackney and Marchal (2011)

and Ronald et al. (2012a, 2012b) have taken into consideration the role of social networks

in travel behavior using an agent-based approach. Habib and Carrasco (2011) analyze the

effects of social networks on the timing and duration of activities. Van den Berg et al.

(2013) studied the effects of social networks and telecommunications on activity-travel

patterns. Moore et al. (2013) studied links between personal networks, time use and

geographical location of people. Sharmeen et al. (2013, 2014) analyzed face-to-face social

interaction and geographic accessibility.

Although significant theoretical advances have been made in understanding how the

social network influences travel behavior, data availability is still a significant limitation

for this kind of studies. As remarked by Van den Berg et al. (2013), only a few data

collection efforts have been made so far in order to incorporate social networks in models

of travel demand. Furthermore, data is usually collected through personal surveys which

are limited in sample size (hundreds of users) and period of time (few days). For instance,

Carrasco et al. (2008c) carried out a survey of 350 people and in-depth interviews of a

subsample of 84, and Van den Berg et al. (2013) performed a survey combining a ques-

tionnaire and a 2-days social interaction diary, obtaining 747 responses (response rate

20 %). On the other hand, non-conventional passively collected data from Twitter,

Facebook or mobile phones, which provide relevant information on social relations and

user’s location data, can open an opportunity to deal with data limitation problems. In

contrast to surveys, these new data sources provide location information as well as social

interaction of millions of users during long periods of time. In terms of mobility, mobile

phone data is one of the best sources to obtain spatiotemporal information for a long period

of time covering a big percentage of the entire population (Lane et al. 2010). Additionally,

when analyzing social networks, mobile phone data have the advantage of providing more

relevant face-to-face personal relationship information compared to other data sources

such as Twitter or Facebook (Phithakkitnukoon et al. 2012). Therefore, mobile phones
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seem to be one of the most appropriate data sources to simultaneously analyze social

network and travel behavior. At this point, it is worth mentioning that, as well as data from

surveys, mobile phone data have their own limitations and drawbacks (e.g. limited socio-

demographic information available due to privacy issues), which will be discussed at the

end of this paper.

Travel behavior and mobile phone data

Recent studies from the human and social research area have demonstrated the usefulness

of mobile phone data to study travel behavior. González et al. (2008), Song et al. (2010a,

b), and Bagrow and Lin (2012) have demonstrated that human mobility is highly structured

and governed by certain patterns. Slim and Ahas (2010) used mobile phone positioning

data to identify individuals’ residential locations in Estonia. Ahas et al. (2010) also

monitored the movements of suburban commuters in the city of Tallinn, Estonia. Mobile

phone positioning data has been used to study how people move during social events

(Calabrese et al. 2010). Song et al. (2010a) studied the predictability of human mobility

from location data of GSM tower IDs. Becker et al. (2011) identified residential location of

daily workers and the late-night revelers in the city of Morristown, New Jersey, USA, in

order to understand daily flows of people in and out of city. Isaacman et al. (2011) used call

detail records (CDRs) to identify locations where people spend most of their time. They

validated the algorithms used, derived via logistic regressions, by comparing their results

to ground truth data provided by a group of volunteers. The algorithms identified home and

work sites with median errors under one mile. Do and Gatica-Pérez (2012) developed

algorithms to predict user mobility using various types of data collected from mobile

phones of 153 volunteers during 17 months (GPS, WiFi APs, calling logs, etc.). In the

transport field, research interest in relation to mobile phone-based data has been concen-

trated on using mobile phones as probes for estimation of aggregate level traffic pa-

rameters, such as travel time and travel speed (Bar-Gera 2007), mode share (Wang et al.

2010; Doyle et al. 2011), origin–destination matrices (White and Wells 2002; Cáceres et al.

2007; Sohn and Kim 2008; Calabrese et al. 2011b) and traffic flows (Cáceres et al. 2012).

Reviews of current practices using mobile phone as traffic probes can be found in Yim

(2003), Rose (2006), Cáceres et al. (2008) and Steenbruggen et al. (2011).

Social networks, travel behavior and mobile phone call data

Communication information from mobile phone data can be used to infer social network

structures. For example, Eagle et al. (2009) used call logs, Bluetooth devices in proximity,

cell tower IDs, application usage and phone status collected from mobile phones of 94

volunteers to study friendship behaviors. Mobile phones were equipped with software

applications that recorded and sent the data to a central server. The analysis of the mobile

phone data was compared with self-reported data. They found that friendship is related to

in-role communication and proximity (those interactions likely to be associated with work,

e.g. proximity at work), as well as with extra-role communication and proximity (those

interactions that are unlikely to be associated with work, such as Saturday night proximity).

Using just the extra-role communication factor from that analysis, it was possible to

accurately predict 96 % of symmetric non-friends (subjects who work together but neither

considers the other a friend) and 95 % of symmetric friends; in-role communication

produced a similar accuracy. Thus they could accurately predict self-reported friendships

based only on objective measurements of behavior. Landline and mobile phone data were
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used by Sobolevsky et al. (2013) as a proxy for interactions to identify community regions.

They detected coherent areas, and most of their boundaries closely follow existing political

or socio-economic borders.

A considerable number of studies have used mobile phone data to either analyze social

network or travel behavior. However, studies using mobile phone data to jointly analyze

social networks and travel behavior are scarce. Phithakkitnukoon et al. (2011) identified

residential locations of individuals with mobile phone positioning data and quantified the

strength of social ties based on call duration. They found that residential migration can

affect the strength of social ties over time: strong ties persist through a migration, while

weak ties tend to disappear. In a subsequent study (Phithakkitnukoon et al. 2012), the

authors found that 80 % of individuals’ mobile phone traces were within the 20 km

proximity of their nearest social ties’ residential locations. Calabrese et al. (2011a, b) used

a subset of mobile phone data from 1 million users in Portugal to study the relationship

between their telecommunications patterns and physical locations. They found that there

was a strong positive correlation between the call frequency between two individuals and

the frequency of co-location occurrences. Cho et al. (2011) studied social travel using cell

phone location data (estimated from the nearest cell phone tower of both the persons

making and receiving the call), and data from two online location-based social networks.

Ythier et al. (2013) used data from phone calls, sms logs and GPS of 111 people to

investigate the influence of communication and social contacts on travel behavior. They

found that people tend to travel in a similar manner as those they are socially connected to

(consistently with the social network and travel literature) and that communication use is a

complement to physical travel (consistently with the telecommunication and travel lit-

erature). Chen and Mei (2014) identified social ties and characterized basic mobility

patterns using a mobile phone dataset of around 425,000 users with both location and

calling information for a large urbanized city in China.

Scope and paper contribution

The use of mobile phone data to analyze social network and travel behavior interaction is

gaining interest due to its potential to identify social and travel behavior patterns based on

a large sample of individuals. This source of data has the advantage of being collected

passively, with no human errors, no non-response and no fatigue/attrition. The main

purpose of this paper is to contribute to efforts in this area by focusing on two main

aspects: (1) the relationship between social network and frequent locations visited by social

network individuals, and (2) the analysis of co-location, defined as the events in which two

individuals of the same social network are in the same place at the same time. Note that

when analyzing frequent locations of the social network, co-location is not strictly

required.

With respect to frequent locations, research on social networks and travel behavior has

mainly focused on home locations, taking the spatial proximity of residential locations as a

proxy of social interaction, although some studies have also addressed the distribution of

the work location of the social network (e.g., Phithakkitnukoon et al. 2012). Also, mobile

phone data have been analyzed to infer home and work locations, defined as the most

frequent locations in a certain period of time. In this paper, in addition to home and work

locations, a methodology is proposed to identify other frequent locations. Additionally,

instead of analyzing the spatial distribution of frequent locations of the social network, the
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focus is on the analysis of the nature (i.e. home, work, other location) of the locations

shared by the individuals of the social network, aiming to understand if the reason why the

user is at that location is influenced by its social contacts.

Regarding co-location, few studies have faced this problem through the use of mobile

phone data. Calabrese et al. (2011a, b) identified a co-location event when two individuals

who are in the same area (different from users’ home and work) call each other, which is

seen as coordination between them to meet in a nearby area. Chen and Mei (2014) con-

cluded that other attributes related to mobility patterns such as co-location are equally or

even more strongly related to social interaction than the spatial distribution of residential

locations of the social network; co-location is assumed to occur when two individuals are

in the same place during a time frame, dividing every day into two time frames, daytime (8

a.m.–8 p.m.) and night-time (8:01 p.m.–7:59 p.m.). In the present paper, a novel

methodology to analyze co-location is proposed. For each individual, a mobility model

identifying locations visited along the different days of the sample is defined. By crossing

the mobility models of the individuals, a co-location event is identified if two users of the

same social network are in the same place at the same time. The methodology proposed

allows the identification of co-location events even if there is not phone communication

between the individuals and with a high temporal resolution. Similarly to frequent loca-

tions analysis, one of the main objectives is to analyze the nature of co-location events.

To the best of our knowledge, the dataset used for this study (described in detail below)

is the largest one considered so far to analyze the interaction between the social network

and travel behavior.

Dataset

The mobile phone data used for this study consists of a set of CDRs. CDRs are generated

when a mobile phone connected to the network makes or receives a phone call or uses a

service (e.g., SMS, MMS, etc.). For invoicing purposes, the information regarding the time

and the base transceiver station (BTS) tower to which the user was connected when the call

was initiated and ended is logged, providing an indication of the geographical position of

the user at certain moments. No information about the exact position of a user in the area of

coverage of a BTS is known. Also, no information about the location of the cell phone is

known or stored if no interaction is taking place. The CDRs used in this study were

collected for Spain, comprising anonymous call information for around 24 million users,

accounting for more than 50 % of the 2009 Spanish population. The CDRs cover a period

of time from September to November 2009 consisting of 53 days (including weekdays and

weekends) which provide more than 10 billion spatiotemporal registers. From the infor-

mation contained in each CDR, the following call information was extracted: caller’s

anonymous ID, callee’s anonymous ID, day of the call, time when the call starts, duration

of the call, caller’s connected tower when the call starts and caller’s connected tower when

the call ends. Users’ positions are collected from BTS towers around Spain, leading to a

location accuracy of few hundreds of meters in urban areas and several kilometers in rural

areas due to the different density of towers. In order to preserve privacy, original records

were encrypted. Additionally, all the information presented in this paper is aggregated. No

contract or demographic data were available for this study. None of the authors of this

study participated in the encryption or extraction of the CDRs.
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Methodology

In this section we explain the methodology followed to: (1) determine the social network of

the users, (2) identify the frequent locations visited by each user, (3) develop user mobility

models, (4) analyze the interactions between social network and frequent locations and (5)

analyze co-location events.

Social network

The determination of the social network of each user is based on an egocentric network

approach, leading to a network of users (alters) with whom the main user (ego) has some

relation. It has been considered, as in other similar studies (Onnela et al. 2007;

Phithakkitnukoon et al. 2012; Chen and Mei 2014), that a relationship between two dif-

ferent users only exists if the phone communication between them is reciprocal. Therefore,

the social network of the ego is defined as a set of nodes (one node per user) and undirected

connections or links between them representing reciprocal calls. In order to measure the

strength of these relations, links have been weighted by the total numbers of calls between

users.

Frequent locations

User frequent locations are defined as those places repetitively visited by the user along a

certain period of time. Previous studies identifying frequent locations based on mobile

phone data have mainly focused on home and work locations (e.g., Isaacman et al. 2011;

Phithakkitnukoon et al. 2012; Chen and Mei 2014). In this paper, other relevant locations

are additionally considered. Some frequent locations are hard to identify due to their

particular spatiotemporal characteristics: for instance, it seems that a place where a person

goes swimming all Mondays should be considered as a frequent location; however, if the

frequency is measured on a weekly or monthly basis (i.e., 7 or 30 days) this location would

probably be wrongly discarded. To give response to this problem and maximize the

identification of relevant frequent locations, different criteria have been defined. A location

is considered frequent if the user appears at that location a minimum number of days on a

single day basis; on a working day basis, considering working days from Monday to

Thursday; or on a weekend basis, considering weekend from Saturday to Sunday. Fridays

have intentionally not been classified neither as working days nor weekend due to their

particular mixed characteristics. The minimum number of days (minimum frequency) to

consider a location as a frequent location is determined by the following expression:

Minimum frequency ¼ a � total sample days

where ‘a’ is a reduction coefficient and ‘total_sample_days’ is the total number of days of

a certain type present in the sample (e.g., total number of Mondays, total number of

working days, etc.). The alpha coefficient determines the ratio between the minimum

number of appearances on days of a certain type (single day, working day, etc.) and the

total number of days of that type present in the sample. It is important to note that the

frequency of appearance of a user at a certain location is in most cases underestimated,

since the user will only appear in that position if he/she makes or receives a call. Therefore,

these considerations about the nature of the data have to be taken into account when
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selecting the value of the alpha coefficient. As a first approach, an alpha coefficient of 0.35

has been considered adequate to estimate frequent locations.

Additionally, frequent locations have been classified into three different groups: home,

work and other. Home and work locations are estimated considering only working days. A

frequent location is classified as home if it is the most frequent location between 8 p.m. and

7 a.m. Similarly, work location is considered the most frequent location between 8:00 a.m.

and 5 p.m. Finally, all other frequent locations different from home and work are classified

as other locations. Note that a single location can be classified simultaneously as home and

work location. In contrast to other frequent locations, as home and work locations present

time restrictions, it seems reasonable that lower alpha coefficients should be considered in

these cases. Moreover, as the effective hours (hours when there exists a high probability of

making or receiving a call) considered for home locations are lower than those considered

for work locations, the alpha coefficient considered for home locations should be lower.

Under these considerations, alpha coefficients of 0.2 and 0.3 have been considered ap-

propriate to estimate home and work locations respectively.

Mobility model for co-location analysis

CDRs provide, on average, spatiotemporal information of each user every several hours.

This level of detail could be useful for analyzing individual daily mobility partners such as

home and work trips; however, when analyzing co-location events between an individual

and its social network, more detailed information is needed. To respond to this limitation, a

mobility model which expands the spatiotemporal information present in the CDRs pro-

viding an estimation of the position of the user along the day has been developed (see

Fig. 1). The mobility model for each user is defined as follows:

1. CDR of the user = User’s location and time information (L0, t0)

2. Next CDR of the user = User’s location and time information (L1, t1)

3. if (t1–t0)[T_threshold 4 Location information missed from t0 to t1

Fig. 1 Comparison between the information provided by CDRs and the information provided by the
mobility model
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4. else:

• if L0 = L1 = L 4 User location between [t0, t1] is L

• else 4 t’ = f(t0, t1)/User location is L0 between [t0, t’] and L1 between [t’, t1].

T_threshold represents the maximum time distance between 2 instances (t0, t1) to

consider that no relevant intermediate locations exist between those instances; and f (ti, tj)

is a probability function that determines the time when a trip is performed.

Social network and frequent locations analysis

The main objective of this analysis is to explore the relation between the frequent locations

visited by the ego and those visited by its social network. Only users whose home and work

locations have been identified are considered for the analysis (around 2,300,000 users). For

each egocentric network, the frequent locations of the ego are compared with the frequent

locations of the alters. The common frequent locations are identified and the type of

relation between those locations is classified according to the characteristics of the loca-

tions shared. There are 9 possible types of relations derived from the combination of the

three possible types of frequent locations [home, work, other]. As mentioned before, home

and work could correspond to the same location; in these cases, the type of relation is

proportionally assigned (e.g., user ‘A’ and user ‘B’ share a common location ‘L’, for ‘A’

location ‘L’ is simultaneously home and work, and for ‘B’ it’s other location; the relation

type will be classified as 50 % home-other and 50 % work-other).

Co-location analysis

The mobility models of the different users belonging to the same social network are

compared to identify co-location events. In contrast to the previous analysis, both frequent

and non-frequent locations are considered. The different locations are classified as home,

work, other and non-frequent. For each egocentric network, the different locations of the

ego and the alters are compared along the different days of the sample. Co-location is

identified and classified according to the characteristics of the locations shared. There are

16 possible types of co-locations derived from the 4 types of locations. The co-location

analysis has been performed using a subset of the whole dataset covering the users living in

the metropolitan area of Barcelona and their social network (independently of the place of

residence), leading to a sample of around 250,000 users. Note that, as in the previous

analysis, the mentioned sample only considers users whose home and work locations have

been identified.

Results and discussion

Social network statistics

From the whole sample of CDRs, around 24 million of egocentric networks have been

identified. The average number of alters per ego is 9.31 with a standard deviation of 17.19.

The average number of phone calls between two users (considered as a proxy of the

strength of the social relation) is 21. Ninety percent of the egos have less than a phone call

per day with each alter.
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Frequent locations statistics

For each user of the sample, the frequency of appearance of his/her locations has been

calculated. The average number of frequent locations per user is 3.47 with a standard

deviation of 2.83. Considering that the minimum number of frequent locations is two

(home and work), on average every user has 1.5 other locations which could be associated

to social activities. This result shows that there are other frequent locations, apart from the

commonly considered home and work, whose importance (measured as the number of

locations) is similar to the non-social ones and in some cases even more important (based

on the standard deviation results). This result supports the idea that considering other

activities different from home and work is essential to properly capture users’ travel

behavior. Figure 2 shows the distribution of other locations according to the day of the

week. Most of the other frequent locations have been identified on Tuesdays, Thursdays

and Fridays. Moreover, there are some locations that are at the same time frequent on a

working day basis and on a weekend basis.

To validate the methodology used to estimate home locations, a correlation analysis

comparing the results and the 2009 population distribution of Spain has been performed.

The results are compared at province level (52 provinces), showing a high correlation,

with R2 = 0.93 (see Fig. 3). Similarly, to validate the relation between home and work

locations (commuting trips) a correlation analysis comparing the results obtained and

the 2011 census for the metropolitan area of Barcelona has been carried out. The results

are compared at municipal level (36 municipalities) providing an R2 = 0.99 (see

Fig. 4). According to correlation results, the alpha coefficients used to estimate home

and work locations seem to be adequate. The alpha coefficient for other locations is

more difficult to validate because of the fact that there are no relevant statistics avail-

able. However, since home and work locations coefficients seem to be adequate, a value

of 0.35 for other locations seems reasonable. It is important to highlight that the alpha

Fig. 2 Distribution of other frequent locations according to the day of the week
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coefficients proposed are appropriate for the temporal and spatial resolution of this

dataset; and that other similar alpha coefficients applied to this dataset may also lead to

good results. To determine which range of alpha values is appropriate for each type of

location, a sensitivity or robustness analysis would be needed, being this analysis out of

the scope of the present paper.

Mobility model

Mobility models have been defined for the residents of the metropolitan area of Barcelona

and their social networks (250,000 users). The probability function f(ti,tj) used to deter-

mine the time when the trip is performed has been extracted from the trip statistics

presented in the 2009 mobility survey of the metropolitan area of Barcelona (‘Enquesta de

Mobilitat en Dı́a Feiner’, EMEF 2009). A T_threshold of 4 h has been considered ap-

propriate for the analysis. User mobility models provide on average 4.6 h of location

information on weekdays and 2 h on weekends (2.5 h on Saturdays and 1.5 h on Sundays),

distributed as shown in Fig. 5.

Fig. 3 a Home distribution based on mobile phone data analysis b Correlation analysis between 2009
census population information and mobile phone results

Fig. 4 a Home and work locations of the metropolitan area of Barcelona obtained from mobile phone data
analysis b Correlation analysis between 2011 census Barcelona information and mobile phone results
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Social network and frequent locations interaction results

From the 24 million egocentric networks in the sample, only those in which the ego has

home and work location information are considered for the analysis (around 2.3 million).

Similarly, only alters with information about their frequent locations are considered (for

each egocentric network, around 17 % of the alters provide that information, with a

standard deviation of 13 %). Results show that each ego shares, on average, at least one

frequent location with 61.23 % of the alters (standard deviation of 36.88 %), suggesting a

significant relationship between the social network and the frequent locations visited by the

users. Egos share 1.36 frequent locations with each of the alters, with a standard deviation

of 0.94. Considering that users have 3.47 frequent locations, each ego shares 40 % of those

locations with each of the alters of the network. This result shows that not only the number

of alters who share common locations with the ego is significant but also the number of

common locations between the ego and each alter. Moreover, it is observed a strong

positive correlation (R2 = 0.97) between the average number of phone calls and the

number of frequent locations in common; suggesting that as the strength of the relation

increases (number of phone calls between the ego and the alters), so does the number of

common locations (see Fig. 6).

For each of the common locations between the ego and the alters, the type of interaction

between them is identified and classified according to the types of the shared locations. For

example, if an ego lives in location A, and the alter visits the ego frequently (so position A

is an other frequent location for the alter), the type of interaction between them will be

classified as home-other. A total of 9.6 million interactions ego-alter were identified and

analyzed. Table 1 shows the distribution of the types of interaction between the ego and

the alters. From the ego’s point of view, most of the interactions with the alters occur in

other frequent locations (54 %) and to a lesser extent in home and work locations (21 and

Fig. 5 Time coverage of mobility models on weekdays and weekend
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24 %, respectively). The most common type of interaction (38.28 %) between the ego and

the alters is one in which they share an other location different from their home and work.

Social interactions can be associated to those where are least one of the locations is

classified as other. Results show that at least 27 % (standard deviation 32 %) of the ego’s

other locations are shared with alters, being 14, 16 and 70 % the probabilities that the

location corresponds to the home, work and other location of the alter respectively. It is

said ‘at least’ because only a percentage of the alters provide location information and

therefore some shared frequent locations may be missing, and consequently the percentage

of other locations shared is probably underestimated.

Co-location analysis results

Co-location events have been analyzed for the metropolitan area of Barcelona during a

period of 53 days from September to October 2009. The average number of appearances

per user along the 53 days is 58.3 with a standard deviation of 51.29. Those locations are

not necessarily places where the user performs an activity, but they could also be locations

along a certain trip. From an ego’s perspective, the number of locations shared per alter is

8.75 (standard deviation of 3.94), corresponding to 15 % of the ego’s locations. From those

8.75 common locations, 1.22 locations (standard deviation 0.74) are co-located locations.

Each of those co-located locations has produced on average 4.36 co-location events along

the sample, with a standard deviation of 4.17. It is important to note that, as it happened

Table 1 Distribution of the ego-alter frequent locations interaction types

Ego/Alters Home (%) Work (%) Other (%) Total (%)

Home 7.41 6.42 7.62 21.45

Work 6.42 9.07 8.58 24.07

Other 7.62 8.58 38.28 54.48

Fig. 6 Correlation between the
average number of phone calls
between two users and the
number of frequent positions in
common
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when analyzing common frequent locations, co-location events are probably underesti-

mated since mobility models do not cover the 24 h of the day.

For each co-located location, the type of the interaction between the ego and the alter

has been classified according to the types of the location shared (home, work, other and

non-frequent location). Around 1.4 million interactions ego-alter were identified and

analyzed. Table 2 shows the distribution of the types of interaction between the ego and

the alters. From the ego’s point of view, a significant number of co-located locations are

non-frequent locations (43 %) and other frequent locations (30 %), and to a lesser extent

home (11 %) and work (16 %) locations.

Most of the places where egos co-locate are ego’s frequent locations (57 %), being 19.5,

28.5 and 52 % the probability of co-location at ego’s home, work and other locations

respectively when co-location occurs at a frequent location. These percentages are quite

similar to those obtained when analyzing the types of interaction of ego’s frequent loca-

tions (21.5, 24 and 54.5 % for home, work and other locations respectively). At first glance,

this result might seem obvious since the more the frequent location interactions of a

specific type, the higher the probability of co-locating in this type of interaction. However

since the determination of other frequent locations does not consider the variable time, it

could be the case that an ego and an alter sharing several other positions do not co-locate in

any of them. This result also supports the hypothesis that other frequent locations could be

associated to places where individuals of the same social network interact (co-locate),

which suggests that the distribution of the type of interaction ego-alter when analyzing

frequent locations could be used as a proxy of the probability of an ego to co-locate in its

different types of frequent locations when co-location occurs in a frequent location. This is

of considerable importance since the calculation of the type of interaction ego-alter con-

sidering frequent locations is simpler and less time consuming than the co-location

analysis.

On the other hand, although co-location in frequent locations is majority, non-frequent

locations are almost equally important (43 %). When an ego co-locates at a non-frequent

location, there is a probability of 8.1, 11.3, 22.8 and 57.8 % that this location corresponds

to the alter’s home, work, other and non-frequent location respectively. Non-frequent

locations can be seen as destinations rarely visited by the users. These locations will be

hardly explained by transport models which only consider generalized travel costs (time,

economic cost, etc.) and omit the influence of the social network. In almost half of the

cases (42 %), when the ego co-locates at a non-frequent location, it is because that location

corresponds to a frequent location of the alter. In the rest of the cases, both (the ego and the

alter) shared a non-frequent location. The most common type of ego-alter interaction

(24.81 %) is one in which they share a non-frequent location. This type of interaction (non-

frequent-non-frequent) can be seen as a joint decision between the ego and the alter to

decide a place to meet different from their frequent locations.

Table 2 Distribution of the ego-alter co-location interaction types

Ego/Alter Home (%) Work (%) Other (%) Non-frequent (%) Total (%)

Home 2.51 2.14 2.92 3.48 11.05

Work 2.14 5.15 4.11 4.86 16.26

Other 2.92 4.11 12.94 9.78 29.75

Non-frequent 3.48 4.86 9.78 24.81 42.94
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Mobile phone data discussion: characteristics and limitations

Although it has been shown that mobile phone call data have the potential to provide rich

information about the interaction between social networks and travel behavior, they are not

free of drawbacks and limitations.

First, it is important to remark the limitations associated to the fundamental nature of

mobile phone data. The use of mobile phone call data to identify social relationships

inevitably misses other kind of interactions conducted through other communication

channels, such as face to face or e-mail interactions. Moreover, it may misidentify certain

interactions as social, such as sporadic work relationships. These intrinsic limitations may

lead to errors in the estimation of some social network variables (e.g., number of social

contacts) and may introduce bias in some analysis (e.g., when non-social interactions are

considered in the analysis).

Apart from these intrinsic limitations, the temporal and the spatial resolution of the data

highly influence the results:

• The temporal resolution of the data can be defined as the quantity of data available per

unit of time. For this study, information is only available when the mobile phone user

makes/receives a call. Therefore, it could be the case that a frequent location is missed

or misclassified as non-frequent location if the number of calls made or received at that

location is not a good proxy of the time spent by the user at that location. Likewise,

some social interactions may be missed if information is not available when that social

interaction is occurring.

• The spatial resolution of the data determines the accuracy in the estimation of the user

position. In this study, the spatial resolution corresponds to the size of the Voronoi area

associated to each BTS, which varies from few hundreds of meters in urban areas to

kilometers in less populated areas. This research assumes that two users co-locate if

they are in the same Voronoi area, which may lead to overestimate co-location,

especially in less populated areas. Additionally, from a social perspective, it is

important to remark that co-location does not ensure social interaction. Just because

two users are in the same area at the same time, it is not possible to know with certainty

that a social interaction between them is taking place.

The improvement of the temporal and spatial resolution of the data will lead to more

accurate results. Temporal resolution can be improved by recording other type of registers

apart from calls, such as text messages or Internet connections, while spatial resolution can

be enhanced by means of signal triangulation, WiFi or GPS information.

Finally, apart from data characteristics (intrinsic and extrinsic), the representativity of

the mobile phone data sample is a key question. The sample has to be of enough size and

homogeneously distributed among the population in order to minimize bias. The mobile

phone data analyzed for this study accounts for more than 50 % of the 2009 Spanish

population and it is homogeneously distributed across the territory, as the comparison with

census information confirms. However, as socio-demographic information is missing,

some population profiles may not properly be represented in the sample. For future studies,

this problem could be mitigated if the dataset provided by the mobile phone operator

included some basic sociodemographic parameters available to the mobile phone company,

such as age, gender, etc.

In summary, mobile phone data open an opportunity to better understand the rela-

tionship between social network and travel behavior. However, the characteristics and
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limitations mentioned above have to be considered when analyzing and interpreting the

results in order to devise how to effectively use mobile phone data to complement the

insights gained from traditional surveys.

Applications to the transport sector

Activity-based models: improvement of travel behavior modelling

The results obtained from the joint analysis of users’ social network and travel behavior

provide relevant information to enrich activity-based models. Indeed, one important

challenge for operational daily mobility models is the prediction of location choice for

discretionary (as opposed to mandatory) activities: while home and work locations can

typically be obtained from reliable sources, such as census, the high flexibility of discre-

tionary types makes them much more difficult to handle, the tendency being to underes-

timate traveled distances for those purposes.

In the past, various approaches have been proposed to tackle this problem. The first one,

building on the classical random utility framework, proposes to account for unobserved

heterogeneity in location characteristics and individual tastes using random error terms for

each agent-location pair (see e.g. Horni 2013). This approach yields pretty good results, but

has two main drawbacks:

• it substitutes an explanation of why individuals travel further than expected by random

noise,

• the choice of the location being independent across agents, it is unable to represent joint

traveling to a joint activity. Not only does this represent a substantial part of travel, but

it is of prime interest for forecasting the impact of policies aiming at effecting car

occupancy.

For those reasons, a second approach to discretionary activity location choice has been

proposed, which takes into account the willingness to pass time with social contacts in the

utility an agent derives from its daily plan (Axhausen 2005). The basic idea is the fol-

lowing: the choices of an agent result from a tradeoff between the benefits it derives from

performing activities and the generalized cost (money, time, etc.) of the associated trips.

For instance, the MATSim software platform (www.matsim.org) considers utility-

maximizing agents, trying to get the most of their day given travel times (influenced by

others via congestion). The basic utility function simply separately scores activity per-

formance and travel, and sums the resulting values:

V ¼
X

i

Viperf þ
X

j

Vjleg

where Viperf is the reward (normally positive) to perform an activity, and Vjleg the penalty

(normally negative) of traveling. As long as the marginal utility of travel time is lower than

the marginal utility of performing an activity, agents have an incentive to perform shorter

trips. If the utility derived from an activity is allowed to vary depending on who par-

ticipates, however, agents may get an incentive to travel further to meet social contacts—

possibly reproducing the tendency elicited by the analysis in the previous section. This

joint location choice is a first, necessary step, to include joint travel to joint activities in a

simulation framework.
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This comes however at high cost: the universal destinations choice set is enormous, and

the multi-objective aspect of the problem requires the usage of non-traditional solution

concepts to represent joint decisions (see Dubernet and Axhausen 2014, for a comparison

of two solution concepts to simulate household mobility, or Ronald et al. Ronald et al.

2012a, 2012b and Ma et al. (2011, 2012) for rule-based simulated bargaining approaches).

The interaction patterns between the social network and travel behavior obtained from the

mobile phone data analysis may however help to make this kind of simulations tractable,

for instance using the following steps:

• Consider as possible destinations the frequent locations of an agent’s social contacts,

since results show that co-location frequently occurs in those locations.

• Look into the intersection between isotims of the social network (line of equal transport

cost), in order to find possible destinations (probably non-frequent destinations) that

maximize users utility. This proposal is based on the fact that co-location events also

take place at non-frequent locations.

• Use the kind of patterns obtained from the mobile phone data analysis to

calibrate/validate the model.

Figure 7 shows an example of how the introduction of social interaction in activity-

based models could influence the results. As results show, there is a significant probability

that individuals of the same social network share other frequent locations. If no social

interaction is considered, agents will take their own decisions and select the other location

as a function of the benefits and costs they get. However, if social interaction is considered,

there is a probability that an agent chooses the same other location as a contact of its social

network even when that decision implies more generalized travel costs.

Transport policy applications

There are several policy applications where social interaction together with travel behavior

information can be useful for policy planning and assessment purposes. A better under-

standing of the influence of the social network on travel behavior and the availability of

transport modelling tools taking into account these considerations are important for

evaluating transport policies where social interaction is relevant. Such transport policies

are usually related with services in which transport resources (vehicles) are shared. Some

Fig. 7 Diary of activities and trips of 2 agents of the same social network during a standard day: a Model
results without considering social network influence; b Model results considering social network influence
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examples of policies where the approach proposed in this paper can be useful are shown

below:

• Transport on demand: transport on demand aims to minimize the underutilization of the

transport services by dynamically adjusting supply to demand. For example, it is

possible to identify frequent locations where people go out on Saturday night and

determine their places of residence. Depending of the distribution of homes and the

time variance of return trips, the impact (congestion, safety, etc.) of a new collective

transport which maximizes the usage (number of passengers) and minimizes the cost

(minimum route) could be assessed.

• Carpooling: it is usually recognized that people belonging to the same social network

are more conducive to sharing transport resources. In the case of carpooling, social

interaction is especially important for several reasons: the driver will probably not be a

professional driver; people may feel uncomfortable sharing a car with people they don’t

know, etc. From the information of the home locations of the social network and the

possible destinations (frequent or not), it is possible to evaluate if sharing a car could be

beneficial for them.

Conclusions

It is widely recognized that social contacts have a significant influence on individual’s

travel behavior. Most decisions about where to perform an activity are related to the social

network. This paper contributes to better understand the way social network influences

travel behavior by analyzing the nature (home, work, other, non-frequent) of the locations

shared by social contacts using mobile phone data, showing the potential of this non-

conventional data source to provide relevant information on both social interaction and

travel behavior.

From the crossing analysis of social networks with frequent locations and mobility

models, relevant statistics about mobility patterns and the nature of locations shared by

social contacts have been obtained. The results support the hypothesis that other frequent

locations of individuals can be considered as potential places where users of the same

social network interact. Moreover, it has been shown that most of the co-location inter-

actions are those related to ego’s non-frequent and other frequent locations. Indeed, the

most common type of ego-alter interaction is one in which they share non-frequent lo-

cations. Additionally, the potential value of these results to inform activity-based models

and assess transport policies in which transport resources are shared has been discussed.

Despite the potential of mobile phone data to provide rich information about the in-

teraction between social networks and travel behavior, a number of drawbacks and

limitations shall be taken into account, such as the high spatio-temporal heterogeneity of

the data or the lack of socio-demographic information. These shortcomings and limitations

have been analyzed in depth. Data fusion with other data sources is a promising approach

to fill the gaps of information (such as socio-demographic gaps) as well as to validate the

results.

This research has thrown up many questions in need of further investigation. An in-

teresting future line of research is the analysis of the length distribution of the trips derived

from the social activities distinguishing between the different types of interactions ego-

alter (e.g. non-frequent–other). Especially interesting is the case in which both users share
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a non-frequent location, aiming to explore if there is any kind of joint decision among them

looking for a mutual benefit.
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Becker, R.A., Cáceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.: A tale of one
city: using cellular network data for urban planning. Pervasive Comput. IEEE 10(4), 18–26 (2011)

Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)
Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin–destination data from a mobile phone network.

IET Intell. Transp. Syst. 1(1), 5–26 (2007)
Caceres, N., Wideberg, J.P., Benitez, F.G.: Review of traffic data estimations extracted from cellular

networks. IET Intell. Transp. Syst. 2(3), 179–192 (2008)
Caceres, N., Romero, L.M., Benitez, F.G., Castillo, J.M.D.: Traffic flow estimation models using cellular

phone data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)
Calabrese, F., Pereira, F. C., Lorenzo, G. D., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone

mobility and social events. In: Proceedings of IEEE International Conference on Pervasive Computing
(2010)

Calabrese, F., Smoreda, Z., Blondel, V.D., Ratti, C.: Interplay between telecommunications and face-to-face
interactions: a study using mobile phone data. PLoS One 6(7), e20814 (2011a). doi:10.1371/journal.
pone.0020814

Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating origin-destination flows using mobile phone
location data. Pervasive Comput. IEEE 10(4), 36–44 (2011b)

Carrasco, J.A., Miller, E.J.: Exploring the propensity to perform social activities: social networks approach.
Transportation 33, 463–480 (2006)

Carrasco, J.A., Hogan, B., Wellman, B., Miller, E.J.: Collecting social network data to study social activity-
travel behaviour: an egocentric approach. Environ. Plan. B 35(6), 961–980 (2008a)

Carrasco, J.A., Hogan B., Wellman B., Miller E. J.: Agency in social activity and ICT interactions: The role
of social networks in time and space, Tijdschrift voor Economische en Sociale Geografie (J. Eco. Soc.
Geogr.), 99(5), 562–583 (2008b)

Carrasco, J.A., Miller, E.J., Wellman, B.: How far and with whom do people socialize? Empirical evidence
about the distance between social network members. Transp. Res. Rec. 2076, 114–122 (2008b)

Carrasco, J.A., Miller, E.J.: The social dimension in action: a multilevel, personal networks model of social
activity frequency. Transp. Res. Part A 43(1), 90–104 (2009)

Chen, C., Mei, Y.: Does distance still matter in facilitating social ties? The roles of mobility patterns and the
built environment. Presented at 93rd TRB annual meeting (2014)

Transportation (2015) 42:647–668 665

123

http://dx.doi.org/10.1371/journal.pone.0020814
http://dx.doi.org/10.1371/journal.pone.0020814


Cho E., Myers S.A., Leskovek J.: Friendship and mobility: user movement in location-based social net-
works. In: KDD ‘11 Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 1082–1090 (2011)

Clifton, K.J.: The social context of travel behavior. In: Zmud, J., et al. (eds.) Transport Survey Methods:
Best Practice for Decision Making, pp. 441–448. Emerald Press, London (2013)

Do T., Gatica-Perez D.: Contextual conditional models for smartphone-based human mobility prediction. In:
Proceedings ACM International Conference on Ubiquitous Computing, Pittsburgh, Sept (2012)

Doyle, J., Hung, P., Kelly, D., Mcloone, S., Farrell, R.: Utilising mobile phone billing records for travel
mode discovery. ISSC 2011, Trinity College Dublin, June (2011)

Dubernet, T., Axhausen K. W.: Solution concepts for the simulation of household-level joint descision
making in multi-agent travel simulation tools, paper presented at the 14th Swiss Transport Research
Conference (STRC), Ascona (2014)

Dugundji, E., Walker, J.: Discrete choice with social and spatial network interdependencies: an empirical
example using mixed GEV models with field and ‘‘panel’’ effects. Transp. Res. Rec. 1921, 70–78
(2005)

Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl.
Acad. Sci. (PNAS) 106(36), 15274–15278 (2009)
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