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Abstract
Tourism is becoming a significant contributor to medium and long range travels in an
increasingly globalized world. Leisure traveling has an important impact on the local
and global economy as well as on the environment. The study of touristic trips is thus
raising a considerable interest. In this work, we apply a method to assess the
attractiveness of 20 of the most popular touristic sites worldwide using geolocated
tweets as a proxy for human mobility. We first rank the touristic sites based on the
spatial distribution of the visitors’ place of residence. The Taj Mahal, the Pisa Tower
and the Eiffel Tower appear consistently in the top 5 in these rankings. We then pass
to a coarser scale and classify the travelers by country of residence. Touristic site’s
visiting figures are then studied by country of residence showing that the Eiffel Tower,
Times Square and the London Tower welcome the majority of the visitors of each
country. Finally, we build a network linking sites whenever a user has been detected
in more than one site. This allow us to unveil relations between touristic sites and find
which ones are more tightly interconnected.
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1 Introduction
Traveling is getting more accessible in the present era of progressive globalization. It has
never been easier to travel, resulting in a significant increase of the volume of leisure trips
and tourists around the world (see, for instance, the statistics of the last UNWTO re-
ports []). Over the last fifty years, this increasing importance of the economic, social and
environmental impact of tourism on a region and its residents has led to a considerable
number of studies in the so-called geography of tourism []. In particular, geographers
and economists have attempted to understand the contribution of tourism to global and
regional economy [–] and to assess the impact of tourism on local people [–].

These researches on tourism have traditionally relied on surveys and economic datasets,
generally composed of small samples with a low spatio-temporal resolution. However,
with the increasing availability of large databases generated by the use of geolocated in-
formation and communication technologies (ICT) devices such as mobile phones, credit
or transport cards, the situation is now changing. Indeed, this flow of information has
notably allowed researchers to study human mobility patterns at an unprecedented scale
[–]. In addition, once these data are recorded, they can be aggregated in order to ana-
lyze the city’s spatial structure and function [–] and they have also been successfully

© 2016 Bassolas et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1140/epjds/s13688-016-0073-5
http://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-016-0073-5&domain=pdf
mailto:maxime@ifisc.uib-csic.es


Bassolas et al. EPJ Data Science  (2016) 5:12 Page 2 of 9

tested against more traditional data sources [–]. In the field of tourism geography,
these new data sources have offered the possibility to study tourism behavior at a very
high spatio-temporal resolution [, –].

In this work, we propose a ranking of touristic sites worldwide based on their attrac-
tiveness measured with geolocated data as a proxy for human mobility. Many different
rankings of most visited touristic sites exist but they are often based on the number of vis-
itors, which does not really tell us much about their attractiveness at a global scale. Here
we apply an alternative method proposed in [] to measure the influence of cities. The
purpose of this method is to analyze the influence and the attractiveness of a site based
on the average radius traveled and the area covered by individuals visiting this site. More
specifically, we select  out of the most popular touristic sites of the world and analyze
their attractiveness using a dataset containing about  million geolocated tweets, which
have already demonstrated their efficiency as useful source of data to study mobility at a
world scale [, ]. In particular, we propose three rankings of the touristic sites’ attrac-
tiveness based on the spatial distribution of the visitors’ place of residence, we show that
the Taj Mahal, the Pisa Tower and the Eiffel Tower appear always in the top . Then, we
study the touristic site’s visiting figures by country of residence, demonstrating that the
Eiffel Tower, Times Square and the London Tower attract the majority of the visitors. To
close the analysis, we focus on users detected in more than one site and explore the rela-
tionships between the  touristic sites by building a network of undirected trips between
them.

2 Materials and methods
The purpose of this study is to measure the attractiveness of  touristic sites taking into
account the spatial distribution of their visitors’ places of residence. To do so, we analyze
a database containing . million geolocated tweets worldwide posted in the period be-
tween September ,  and October , . The dataset was built by selecting the
geolocated tweets sent from the touristic places in the general streaming and requesting
the time-lines of the users posting them. The touristic sites boundaries have been iden-
tified manually. Collective accounts and user exhibiting non-human behaviors have been
removed from the data by identifying users tweeting too quickly from the same place, with
more than  tweets during the same minute and from places separated in time and space
by a distance larger than what is possible to be covered by a commercial flight (with an
average speed of  km/h). Their spatial distributions and that of the touristic sites can
be seen in Figure .

In order to measure the site attractiveness, we need to identify the place of residence of
every user who have been at least once in one of the touristic sites. First, we discretize the
space by dividing the world into squares of equal area ( ×  km) using a cylindrical
equal-area projection. Then, we identify the place most frequented by a user as the cell
from which he or she has spent most of his/her time. To ensure that this most frequented
location is the actual user’s place of residence the constraint that at least one third of the
tweets has been posted from this location is imposed. The resulting dataset contains about
, users’ places of residence. The number of valid users is shown in Table  for each
touristic site. In the same way, we identify the country of residence of every user who have
posted a tweets from one of the touristic sites during the time period.

Two metrics have been considered to measure the attractiveness of a touristic site based
on the spatial distribution of the places of residence of users who have visited this site:
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Figure 1 Density of geolocated tweets and positions of the touristic sites.

Table 1 Number of valid users by touristic sites

Site Users

Alhambra (Granada, Spain) 1,208
Corcovado (Rio, Brazil) 1,708
Forbidden City (Beijing, China) 457
Golden Pavilion (Kyoto, Japan) 1,114
Hagia Sophia (Istanbul, Turkey) 2,701
Kukulcan (Chichen Itzá, Mexico) 209
Machu Pichu (Peru) 987
Niagara Falls (Canada-US) 920
Saint Basil’s (Moscow, Russia) 262
Times Square (NY, US) 13,356

Site Users

Angkor Wat (Cambodia) 947
Eiffel Tower (Paris, France) 11,613
Giza (Egypt) 205
Grand Canyon (US) 1,451
Iguazu Falls (Argentina-Brazil) 583
London Tower (London, UK) 3,361
Mount Fuji (Japan) 2,241
Pisa Tower (Pisa, Italy) 1,270
Taj Mahal (Agra, India) 378
Zocalo (Mexico City, Mexico) 16,193

• Radius: The average distance between the places of residence and the touristic site.
The distances are computed using the Haversine formula between the latitude and
longitude coordinates of the centroids of the cells of residence and the centroid of the
touristic site. In order not to penalize isolated touristic sites, the distances have been
normalized by the average distance of all the Twitter users’ places of residence to the
site. It has been checked that the results are consistent if the median is used instead of
the average radius for the rankings.

• Coverage: The area covered by the users’ places of residence computed as the number
of distinct cells (or countries) of residence.

To fairly compare the different touristic sites which may have different number of visi-
tors, the two metrics are computed with  users’ place of residence selected at random
and averaged over  independent extractions. Note that unlike the coverage the radius
does not depend on the sample size but, to be consistent, we decided to use the same
sampling procedure for both indicators.

3 Results
3.1 Touristic sites’ attractiveness
We start by analyzing the spatial distribution of the users’ place of residence to assess the
attractiveness of the  touristic sites. In Figure (a) and Figure (b), the touristic sites are
ranked according to the radius of attraction based on the distance traveled by the users
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Figure 2 Ranking of the touristic sites according to the radius and the coverage. (a) Radius.
(b) Coverage (cell). (c) Coverage (country).

from their cell of residence to the touristic site and the area covered by the users’ cells of
residence. In both cases, the results are averaged over  random selection of  users.
The robustness of the results have been assessed with different sample sizes (,  and
 users), we obtained globally the same rankings for the two metrics. Both measures are
very correlated and for most of the site the absolute difference between the two rankings is
lower or equal than  positions. However, since the metrics are sensitive to slightly differ-
ent information both rankings also display some dissimilarities. For example, the Grand
Canyon and the Niagara Falls exhibit a high coverage due to a large number of visitors
from many distinct places in the US but a low radius of attraction at the global scale.

To complete the previous results, we also consider the number of countries of origin
averaged over  random selection of  users. This gives us new insights on the origin
of the visitors. For example, as it can be observed in Figure , the visitors of the Grand
Canyon are mainly coming from the US, whereas in the case of the Taj Mahal the visi-
tors’ country of residence are more uniformly distributed. Also, it is interesting to note
that in most of the cases the nationals are the main source of visitors except for Angkor
Wat (Table ). Some touristic sites have a national attractiveness, such as the Mont Fuji
or Zocalo hosting about % and % of locals, whereas others have a more global attrac-
tiveness, this is the case of the Pisa Tower and the Machu Pichu welcoming only % of
local visitors.

More generally, we plot in Figure (c) the ranking of touristic sites based on the country
coverage. The results obtained are very different than the ones based on the cell coverage
(Figure (b)). Indeed, some touristic sites can have a low cell coverage but with residence
cells located in many different countries, this is the case of the Pyramids of Giza, which
went up  places and appears now in second position. On the contrary, other touristic
sites have a high cell coverage but with many cells in the same country, as in the previously
mentioned cases of the Grand Canyon and the Niagara Falls. Finally, the ranks of the Taj
Mahal, the Pisa Tower and Eiffel Tower are consistent with the two previous rankings,
these three sites are always in the top . Finally, we compare quantitatively the rankings
with the Kendall’s τ correlation coefficient which is a measure of association between two
measured quantities based on the rank. In agreement with the qualitative observations,
we obtain significant correlation coefficients comprised between . and . confirming
the consistency between rankings obtained with the different metrics.
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Figure 3 Heat map of the spatial distribution of the visitors’ country of origin for the Taj Mahal and
the Grand Canyon. The results have been averaged over 100 extractions of 200 randomly selected users.

3.2 Touristic site’s visiting figures by country of residence
We can also do the opposite by studying the touristic preferences of the residents of each
country. We extract the distribution of the number of visitors from each country to the
touristic sites and normalize by the total number of visitors in order to obtain a probability
distribution to visit a touristic site according to the country of origin. This distribution can
be averaged over the  countries with the higher number of residents in our database
(gray bars in Figure ). The Eiffel Tower, Times Square and the London Tower welcome in
average % of the visitors of each country. It is important to note that these most visited
touristic sites are not necessarily the ones with the higher attractiveness presented in the
previous section. That is the advantage of the method proposed in [], which allows us
to measure the influence and the power of attraction of regions of the world with different
number of local and non-local visitors.

We continue our analysis by performing a hierarchical cluster analysis to group to-
gether countries exhibiting similar distribution of the number of visitors according to the
touristic sites. Countries are clustered together using the ascending hierarchical clustering
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Table 2 The three countries hosting most of the visitors for each touristic site

Site Top 1 Top 2 Top 3

Alhambra (Spain) Spain 71.14% US 6.06% UK 2.61%
Angkor Wat (Cambodia) Malaysia 19.64% Philippines 17.4% US 9.59%
Corcovado (Brazil) Brazil 81.13% US 4.92% Chile 3.08%
Eiffel Tower (France) France 26.75% US 16.62% UK 8.92%
Forbidden City (China) China 26.48% US 14.46% Malaysia 10.95%
Giza (Egypt) Egypt 30.65% US 9.8% Kuwait 5.85%
Golden Pavilion (Japan) Japan 60.74% Thailand 11.72% US 4.84%
Grand Canyon (US) US 75.79% UK 2.87% Spain 2.16%
Hagia Sophia (Turkey) Turkey 71.26% US 5.48% Malaysia 1.67%
Iguazu Falls (Arg-Brazil-Para) Argentina 48.26% Brazil 26.61% Paraguay 8.63%
Kukulcan (Mexico) Mexico 73.78% US 10.07% Spain 2.83%
London Tower (UK) UK 65.61% US 10.24% Spain 2.77%
Machu Pichu Peru 20.43% US 19.95% Chile 10.43%
Mount Fuji (Japan) Japan 84.01% Thailand 5.83% Malaysia 2.66%
Niagara Falls (Canada-US) US 60.5% Canada 16.31% Turkey 3.25%
Pisa Tower (Italy) Italy 20.85% US 13.56% Turkey 10.95%
Sant Basil (Russia) Russia 66.71% US 5.06% Turkey 3.77%
Taj Mahal (India) India 27.97% US 15.59% UK 7.61%
Times Square (US) US 74.32% Brazil 3.26% UK 2.31%
Zocalo (Mexico) Mexico 92.22% US 3.1% Colombia 0.77%

The countries are ranked by percentage of visitors.

method with the average linkage clustering as agglomeration method and the Euclidean
distance as similarity metric, respectively. To choose the number of clusters, we used the
average silhouette index []. The results of the clustering analysis are shown in Figure .
Two natural clusters emerge from the data, these clusters are without surprise composed
of countries which tend to visit in a more significant way touristic sites located in countries
belonging to their cluster. The first cluster gather countries of America and Asia whereas
the second one is composed of countries from Europe and Oceania.

3.3 Network of touristic sites
In the final part of this work, we investigate the relationships between touristic sites based
on the number of Twitter users who visited more than one site during a time window be-
tween September  and October . More specifically, we built an undirected spatial
network for which every link between two touristic sites represents at least one user who
has visited both sites. As a co-occurrence network, the weight of a link between two sites
is equal to the total number of users visiting the connected sites. The network is repre-
sented in Figure  where the width and the brightness of a link is proportional to its weight
and the size of a node is proportional to its weighted degree (strenght). The Eiffel Tower,
Times Square, Zocalo and the London Tower appear to be the most central sites play-
ing a key role in the global connectivity of the network (Table ). The Eiffel Tower alone
accounted for a % of the total weighted degree. The three links exhibiting the highest
weights connect the Eiffel Tower with Time Square, the London Tower and the Pisa Tower
representing % the total sum of weights. Zocalo is also well connected with the Eiffel
Tower and Time Square representing % of the total sum of weights.

4 Discussion
We study the global attractiveness of  touristic sites worldwide taking into account the
spatial distribution of the place of residence of the visitors as detected from Twitter. In-
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Figure 4 Clustering analysis. (a) Map of the spatial distribution of the country of residence according to the
cluster. (b) Fraction of visitors according to the touristic site.

Figure 5 Network of undirected trips between touristic sites. The width and the brightness of a link is
proportional to its weight. The size of a node is proportional to its weighted degree.
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Table 3 Ranking of nodes based on the total weight

Site Node Total Weight

Eiffel Tower (France) 0.51
Times Square (US) 0.35
Zocalo (Mexico) 0.21
London Tower (UK) 0.2
Pisa Tower (Italy) 0.12
Hagia Sophia (Turkey) 0.08
Niagara Falls (Canada-US) 0.07
Corcovado (Brazil) 0.05
Alhambra (Spain) 0.05
Grand Canyon (US) 0.05

stead of studying the most visited places, the focus of the analysis is set on the sites attract-
ing visitors from most diverse parts of the world. A first ranking of the sites is obtained
based on cells of residence of the users at a geographical scale of  by  kilometers.
Both the radius of attraction and the coverage of the visitors’ origins consistently point
toward the Taj Mahal, the Eiffel tower and the Pisa tower as top rankers. When the users’
place of residence is scaled up to country level, these sites still appear on the top and we
are also able to discover particular cases such as the Grand Canyon and the Niagara Falls
that are most visited by users residing in their hosting countries. At country level, the top
rankers are the Taj Mahal and the Pyramids of Giza exhibiting a low cell coverage but with
residence cells distributed in many different countries.

Our method to use social media as a proxy to measure human mobility lays the founda-
tion for even more involved analysis. For example, when we cluster the sites by the country
of the origin of their visitors, two main clusters emerge: one including the Americas and
the Far East and the other with Europe, Oceania and South Africa. The relations between
sites have been also investigated by considering users who visited more than one place. An
undirected network was built connecting sites visited by the same users. The Eiffel Tower,
Times Square, Zocalo and the London Tower are the most central sites of the network.

In summary, this manuscript serves to illustrate the power of geolocated data to provide
world wide information regarding leisure related mobility. The data and the method are
completely general and can be applied to a large range of geographical locations, travel
purposes and scales. We hope thus that this work contribute toward a more agile and
cost-efficient characterization of human mobility.
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