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Abstract
The so-called Granovetter–Watts model was introduced to capture a situation in which the
adoption of new ideas or technologies requires a certain redundancy in the social environment of
each agent to take effect. This model has become a paradigm for complex contagion. Here we
investigate a symmetric version of the model: agents may be in two states that can spread equally
through the system via complex contagion. We find three possible phases: a mixed one
(dynamically active disordered state), an ordered one, and a heterogeneous frozen phase. These
phases exist for several configurations of the contact network. Then, we consider the effect of
introducing aging as a non-Markovian mechanism in the model, where agents become increasingly
resistant to change their state the longer they remain in it. We show that when aging is present, the
mixed phase is replaced, for sparse networks, by a new phase with different dynamical properties.
This new phase is characterized by an initial disordering stage followed by a slow ordering process
toward a fully ordered absorbing state. In the ordered phase, aging modifies the dynamical
properties. For random contact networks, we develop a theoretical description based on an
approximate master equation that describes with good accuracy the results of numerical
simulations for the model with and without aging.

1. Introduction

In recent decades, various techniques of probability and statistical physics have been employed to measure
and explain social phenomena [1–3]. A variety of social collective phenomena can be well understood
through stochastic binary-state models of interacting agents. In these models, each agent is assumed to be in
one of two possible states, such as susceptible/infected, adopters/non-adopters, etc depending on the context
of the model. The interaction among agents is determined by the underlying contact network and the
dynamical rules of the model. There are various examples of binary-state models, including processes of
opinion formation [4–8] and disease or social contagion [9, 10], among others. The consensus problem
consists of determining under which circumstances the agents end up sharing the same state or when the
coexistence of both states prevails. This is characterized by a phase diagram that provides the boundaries
separating domains of different behaviors in the control parameter space. Macroscopic descriptions of these
models in terms of mean-field, pair, and higher-order approximations are well established [11].

An important category of binary-state models are threshold models [12], which were originally
introduced by Granovetter [9] to address problems of social contagion such as rumor propagation,
innovation adoption, riot participation, etc. Multiple exposures, or group interaction, are necessary in these
models to update the current state, a characteristic of complex contagion models [13, 14]. The threshold
model presents a discontinuous phase transition from a ‘global cascade’ phase to a ‘no cascade’ phase, which
was analyzed in detail in [12]. This model has been extensively studied on various network topologies, such
as regular lattices, small-world [13], random [15], clustered [16, 17], modular [18], hypergraphs [19],
homophilic [20] and coevolving [21] networks.
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A main difference between the threshold model and other binary-state models, such as the Voter [4],
majority vote [22–24], and nonlinear Voter model [25–30], is the lack of symmetry between the two states.
In the threshold model, changing state is only possible in one direction, representing the adoption forever of
a new state that initially starts in a small minority of agents. A symmetric version of the threshold model,
with possible changes of states in both directions, was introduced in references [31, 32] to investigate the
impact of noise and anticonformity. However, a complete characterization of the symmetrical threshold
model and its ordering dynamics have not been addressed so far.

Aging is an important non-Markovian effect in binary-state models that has significant implications. It
describes how the persistence time of an agent in a particular state influences the transition rate to a different
state [33–37]. As such, the longer an agent remains in the current state, the smaller the probability of
changing. Aging has been shown to cause coarsening dynamics toward a consensus state in the Voter model
[34, 38], to induce bona fide continuous phase transitions in the noisy Voter model [39, 40], modify the
phase diagram and non-equilibrium dynamics of the Schelling segregation model [41], and to modify
non-trivially the cascade dynamics of the threshold model [42]. The introduction of aging is motivated by
strong empirical evidence that human interactions do not occur at a constant rate and cannot be described
using a Markovian assumption. Empirical studies have reported heavy-tail inter-event time distributions that
reflect heterogeneous temporal activity patterns in social interactions [43–47].

In this work, we present a comprehensive analysis of the symmetrical threshold model, including its full
phase diagram, and we investigate the effects of aging in the model. The model is examined in various
network topologies, such as the complete graph, Erdős–Rényi (ER) [48], random regular (RR) [49], and a
two-dimensional Moore lattice. The possible phases of the system are defined by the final stationary state as
well as by the ordering/disordering dynamics characterized by the time-dependent magnetization, interface
density, persistence, and mean internal time. For both the original model and the aging variant, the results of
Monte Carlo (MC) numerical simulations are compared with results from the theoretical framework
provided by an approximate master equation (AME) [42, 50] which is general for any random network. We
also derive a mean-field analysis to describe the outcomes in a complete graph.

The article is organized as follows: in section 2, we describe the symmetrical threshold model and provide
the numerical and theoretical analysis of the phase diagram. Each subsection reports the results for the
different networks chosen. Section 3 presents the symmetrical threshold model with aging, the corresponding
numerical and theoretical analysis, and the comparison with the model without aging. The results for the
Moore lattice are shown in section 4. Finally, we conclude with a summary and conclusions in section 5.

2. Symmetrical threshold model

The system consists of a set of N agents located at the nodes of a network. The variable describing the state of
each agent i takes one of the two possible values: si =±1. Every agent has assigned a fixed threshold
0⩽ T⩽ 1, which determines the fraction of different neighbors required to change state. Even though this
value might be agent-dependent, we will consider here only the case with a homogeneous T value for all the
agents of the system. In each update attempt, an agent i (called active agent) is randomly selected, and if the
fraction of neighbors with a different state is larger than the threshold T, the active agent changes state
si →−si. In other words, ifm is the number of neighbors in state−1 out of the total number of neighbors k,
the condition to change is θ(m/k−T), for a node in state+1, and θ((k−m)/k−T), for a node in state−1,
where θ(x) is the Heaviside step function. Notice that this update rule is equivalent to ‘shifted’ Glauber
dynamics [51], with swapping probability 1/(1+ exp[β(∆E+C)] (where β is the inverse temperature,∆E
the energy loss to swap the state of a node according to Ising Hamiltonian and C a shifting constant), at the
limit of zero temperature (β →∞). We analyze the model dynamics using numerical simulations.
Simulation time is measured in MC steps, i.e. N update attempts. Numerical simulations run until the
system reaches a frozen configuration (absorbing state) or until the average magnetization,m= (1/N)

∑
i si,

fluctuates around a constant value.

2.1. Mean-field
We first consider the mean-field case of the complete graph (all-to-all connections). We take an initial
random configuration with magnetizationm0 and run numerical simulations for various values of T to
construct the phase diagram (shown in figure 1(a)). We find three different phases based on the final state:

• Phase I or mixed: the system reaches an active disordered state (final magnetization mf = 0) where the
agents change their state continuously.

• Phase II or ordered: the system reaches the ordered absorbing states (mf =±1) according to the initial
magnetizationm0.
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Figure 1. Phases of the symmetrical threshold model. (a) Phase diagram of the symmetrical threshold model in a complete graph
of N= 2500 nodes. Dotted and dashed lines correspond to T= (1− |m0|)/2 and T= (1+ |m0|)/2, respectively. Average
performed over 5000 realizations. (b) Potential representation from equation (2) for a set of values of the threshold T, shown in
different colors.

• Phase III or frozen: the system freezes at the initial random statemf =m0.

For a given initial magnetizationm0 ̸= 0 and increasing T, the system undergoes a mixed-ordered transition
at a critical threshold Tc = (1− |m0|)/2, and an ordered-frozen transition at a critical threshold
T∗
c = (1+ |m0|)/2> Tc (indicated by dotted and dashed black lines in figure 1(a), respectively). In this

mean-field scheme, if the fraction of nodes in state+1 is denoted by x, the condition for a node in state−1
to change its state is given by θ(x−T), where θ is the Heaviside step function. Thus, in the thermodynamic
limit (N→∞), the variable x evolves over time according to the following mean-field equation:

dx

dt
= (1− x) θ (x−T)− x θ (1− x−T) =−∂V(x)

∂x
. (1)

Here, V(x) is the potential function. The stationary value of x, xst, is the solution of the implicit equation
resulting from setting the time derivative equal to 0. The stationary solutions are xst = 1/2 (m= 0), the
absorbing states xst = 0,1 (m=±1) or a degenerate continuum of solutions. The stability of these solutions
can be understood in terms of the potential V(x):

V(x) =−
ˆ

(1− x) θ (x−T)− x θ (1− x−T) dx

=
x2

2
+

1

2

(
T2 − 2T− x2 + 1

)
θ (T+ x− 1)

− 1

2

(
T2 − 2T− x(x− 2)

)
θ (x−T) . (2)

The minimum and maximum values of V(x) correspond to stable and unstable solutions, respectively.
Figure 1(b) shows the potential’s dependence on the magnetization, obtained after a variable change
m= 2x− 1 in equation (2). For T< 0.5,m= 0 is a stable solution, but increasing the threshold reduces the
range of values of the initial magnetization from which this solution is reached, enclosing phase I between
the unstable solutionsm= 1− 2T and 2T− 1. In fact, ifm0 > 1− 2T, the system reaches the absorbing
solutionm=+1, while ifm0 <−1+ 2T, it reachesm=−1 (phase II). For T= 0.5, there is just one
unstable solution atm= 0, and all the initial magnetization values reach the absorbing statesm=±1. For
T> 0.5, the potential is equal to a constant value for a range ofm0, which means that an initial condition will
remain in this state forever (phase III). The range of values of the initial condition from which this phase is
reached grows linearly with T until T= 1, where all initial conditions fulfill dm

dt = 0.
Note that the mean-field symmetrical threshold model for T= 1 shows the same potential profile as the

mean-field Voter model [1, 4, 6]. The important difference is that for the Voter model, any initial
magnetization is marginally stable, while in our model any initial magnetization is an absorbing state in
phase III. In the Voter model finite size fluctuations will take the system to the absorbing statesm=±1.
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Figure 2. Phase diagram in random networks. Phase diagram of the symmetrical threshold model in an ER (a) and an RR (b)
graph, both of N= 4 · 104 nodes and mean degree ⟨k⟩= 8. The color map indicates the value of the average final magnetization
mf. The red dashed line is the HMF prediction of the mixed-ordered critical line. The black solid lines correspond to the AME
prediction of the borders of phase II. (c) Average final magnetizationmf as a function of the initial magnetizationm0 for different
T values (indicated with different colors and markers) in the RR graph. The average is performed over 5000 realizations. The
dotted and solid lines are the HMF (for T= 1/8–4/8) and AME predictions (for all T), respectively.

2.2. Random networks
We analyze the phase diagram of the symmetrical threshold model in two random networks: ER [48] and RR
[49] graphs with mean degree ⟨k⟩= 8. Figures 2(a) and (b) show the phase diagram for both networks,
where it is shown that the existence of the three phases previously described is robust to changes in network
structure. The main difference from the all-to-all scenario is that phase III does not freeze exactly at the same
initial magnetization. Instead, the system reaches an absorbing state with a higher magnetizationmf >m0. In
this phase, the value ofmf depends on the threshold such that increasing T, increases the disorder in the
system, until T= 1, wheremf =m0 (see figure 2(c)). On the other hand, phases I and II reach the same
stationary state as in the mean-field case. Furthermore, the critical thresholds Tc and T∗

c show a different
dependence onm0 depending on the network structure.

To explain the transitions exhibited by the model, we use a theoretical framework for binary-state
dynamics in complex networks [50]: the AME, which considers agents in both states±1 with degree k,m
neighbors in state−1 that have been j time steps in the current state (called ‘internal time’ or ‘age’) as
different sets in a compartmental model (see details of the AME derivation in [42, 50]). In general, the
AME is:

d

dt
x±k,m,0 (t) =− x±k,m,0 (t)+

∑
l

T∓
k,m,l x

∓
k,m,l (t)− (k−m) β± x±k,m,0 (t)−mγ± x±k,m,0 (t) ,

d

dt
x±k,m,j (t) =− x±k,m,j (t)+A±

k,m,j x
±
k,m,j−1 (t)− (k−m) β± x±k,m,j (t)

+ (k−m+ 1) β± x±k,m−1,j−1 (t)+ (m+ 1) γ± x±k,m+1,j−1 (t)−mγ± x±k,m,j (t) , (3)

where variables x+k,m,j(t) and x−k,m,j(t) are the fractions of k-degree nodes that are in state+1 (respectively,

−1) that havem neighbors in state−1 and age j. The configuration-dependent rates β± account for the
change of state of neighbors (±) of a node in state+1. The rates γ± are equivalent but for nodes in state−1.
To build the AME, we need to assume that these rates are equal for all nodes in the same state, as in [50]:

β+ =

∑
j

∑
k pk

∑k
m=0 (k−m) T+

k,m,j x
+
k,m,j∑

j

∑
k pk

∑k
m=0 (k−m) x+k,m,j

,

β− =

∑
j

∑
k pk

∑k
m=0mT+

k,m,j x
+
k,m,j∑

j

∑
k pk

∑k
m=0mx+k,m,j

,

γ+ =

∑
j

∑
k pk

∑k
m=0 (k−m) T−

k,m,j x
−
k,m,j∑

j

∑
k pk

∑k
m=0 (k−m) x−k,m,j

,

γ− =

∑
j

∑
k pk

∑k
m=0mT−

k,m,j x
−
k,m,j∑

j

∑
k pk

∑k
m=0mx−k,m,j

, (4)

where the degree distribution of the chosen network is pk. Notice that these equations are written using a
dimensionless time t. The transition rate T±

k,m,j is for the probability of changing state (±→∓) for an agent
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of degree k,m neighbors in state−1 and age j, while the aging rate A±
k,m,j is for the probability of staying in

the same state and increasing the internal time (j → j + 1). For the symmetrical threshold model, according
to the update rules these rates do not depend on internal time j (Markovian dynamics):

T+
k,m,j = θ (m/k−T) T−

k,m,j = θ ((k−m)/k−T) ,

A±
k,m,j = 1−T±

k,m,j. (5)

Therefore, if we were not concerned with the internal time dynamics, we can simplify our AME to the one
proposed by Gleeson in [50] for general binary-state models. Here we keep the internal times for a dynamical
characterization of the different phases and as a reference frame for the aging studies in the next section.

The AME is based is based in the same basic assumptions used in [50]: an uncorrelated network with
negligible levels of clustering created using the configuration model [52] (using a degree distribution pk).
The approximation also neglects finite size effects, being only valid in the thermodynamic limit (N→∞).
Notice that we cannot use the AME to describe the complete graph. For the complex networks considered in
this section, these conditions are satisfied for large N, and the differential equations can be solved
numerically using standard methods (a general script in Julia is available in the author’s GitHub repository
[53]). The mixed order and ordered frozen transitions predicted (solid black lines in figures 2(a) and (b),
respectively) are in agreement with the numerical simulations. The predicted lines represent the initial and
final values of T at which the AME reaches the ordered absorbing statesmf =±1. In figure 2(c), we also
observe a good agreement between numerically integrated solutions (solid colored lines) and numerical
simulations (markers), which is quantified via the relative difference∆ (see at figure captions).

An alternative simpler approximation is to consider a heterogeneous mean-field (HMF) approximation
(refer to appendix A for further details). This approximation is very useful when we work with networks with
high clustering, close to the complete graph scenario (⟨k⟩/N→ 1), a regime where the AME does not work
properly because the clustering is not negligible. For our networks, HMF captures the qualitative behavior
but the numerically integrated solutions do not agree with numerical simulations (see red dashed lines in
figures 2(a) and (b)), and the colored dotted lines in figure 2(c), and the frozen phase is not predicted by this
framework. These findings demonstrate that threshold models (in networks far from ⟨k⟩/N= 1) need
approximations beyond mean-field to achieve accuracy, in agreement with the findings in [15, 42, 50].

Beyond the stationary states, the previous phases can be characterized by their ordering dynamical
regimes. To describe the coarsening process, we use the time-dependent average interface density ρ(t)
(fraction of links between nodes in different states), the average magnetizationm(t), the mean internal time
τ̄(t) (mean time spent in the current state over all the nodes) and the persistence p(t) (fraction of nodes that
remain in their initial state at time t) [54]. Figure 3 shows the average results obtained from the numerical
simulations, starting from an initial magnetizationm0 = 0.5. There are three regimes with different
dynamical properties:

• Mixed regime (phase I): it corresponds to phase I in the static phase diagram and it is characterized by fast
disordering dynamics, which is reflected by an exponential decay of the persistence. The interface density,
the magnetization, and the mean internal time exhibit fast dynamics toward their asymptotic values in the
dynamically active stationary state (see T= 0.12,0.24 in figure 3).

• Ordered regime (phase II): it coincides with phase II in the static diagram and it is characterized by an
exponential decay of the interface density. The magnetization tends to the ordered absorbing state based on
the initial majority, and the mean internal time tends to scale as τ̄(t)∼ t. Persistence in this phase decays
until a plateau that corresponds to the initial majority that reaches consensus (since this fraction of nodes
does not change state from the initial condition). When consensus is reached, the surviving trajectory is
stopped (see T= 0.36,0.49 in figure 3).

• Frozen regime (phase III): this regime corresponds to phase III and it is characterized by an initial ordering
process followed by the stop of the dynamics, with constant values of the metrics. The only exceptions are
the mean internal time that grows as τ̄(t)∼ t (see T= 0.86 in figure 3) and the persistence.

Using the numerically integrated solutions of AME (x±k,m,j(t)), we can compute the magnetizationm(t), the
interface density ρ(t), and the mean internal time τ̄ :

ρ(t) =

∑
j

∑
k pk

∑
mmx+k,m,j

1
2

∑
j

∑
k pk

∑
m k

(
x+k,m,j + x−k,m,j

) , (6)
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Figure 3. Symmetrical threshold model dynamics in random networks. Evolution of the average interface density ρ(t) (a), the
average magnetizationm(t) (b), the mean internal time τ̄(t) (c), and the persistence p(t) (d) for the symmetrical threshold
model. The average is computed over 5000 surviving trajectories (simulations stop when the system reaches the absorbing
ordered states). Results for different values of T are plotted with diverse markers and colors: red (T= 0.12) and blue (T= 0.24)
belong to phase I, green (T= 0.36) and gray (T= 0.49) belong to phase II and purple (T= 0.86) belongs to phase III. Solid
colored lines are the AME integrated solutions, using equations (6)–(8). The initial magnetization ism0 = 0.5. The system is on
an ER graph with N= 4 · 104 and mean degree ⟨k⟩= 8. The dashed green line in (a) shows ρ(t)∼ ρ0 e−t, the dashed purple line
in (c) shows τ̄(t) = t and the dashed lines in (d) show p(t)∼ e−αt, where α= 1 (red) and α= 3/4 (blue). We compute the
relative difference,∆, between the simulation and the integrated solution (until simulation ends): for all T,∆ρ < 5%,∆m < 1%
and∆τ̄ < 5% (except for T= 0.86 where∆τ̄ = 11%).

m(t) = 2
∑
j

∑
k

pk
∑
m

x+k,m,j − 1

=−2
∑
j

∑
k

pk
∑
m

x−k,m,j + 1, (7)

τ̄ (t) =
∑
j

∑
k

pk
∑
m

j
(
x+k,m,j + x−k,m,j

)
. (8)

All metrics exhibit a strong agreement between the numerical simulations and the integrated solutions (see
solid lines in figure 3). However, the persistence cannot be directly calculated from the integrated solutions.
This is because the fraction of persistent nodes at time t corresponds to the fraction of nodes with internal
time j= t, which is at an extreme of the age distribution at each time step, since x±k,m,j(t) = 0 for j> t.
Therefore, the computation of this measure requires a more sophisticated analysis using extreme value
theory [55].

We note that the dynamical characterization discussed above holds for all possiblem0 except for the
symmetric initial conditionm0 = 0. In this case, an order–disorder transition arises at a critical mean degree
kc, whose value depends on the size of the system N [56].

3. Symmetrical threshold model with aging

Aging refers to the property of agents becoming less likely to change their state the longer they have remained
in that state [33, 37–42, 46]. In contrast to the original model, which assumes that agents update their state at
a constant rate, this model introduces an activation function pA( j) that is inversely proportional to the
agent’s internal time j. At each time step, the following two steps are performed:

6
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Figure 4. Aging effects in the complete graph. Evolution of the average magnetizationm(t) (a) and the mean internal time τ̄(t)
(b) in a complete graph of N= 2500 nodes. Results are shown for the symmetrical threshold model (pluses) and the version with
aging (crosses) obtained from simulations. Different colors correspond to different values of the threshold T: red (T= 0.1)
belongs to phase I, green (T= 0.5) belongs to phase II, and purple (T= 0.9) to phase III. The initial magnetization is fixed at
m0 = 0.5. The solid and dashed lines correspond to the numerically integrated solutions from equation (11) for the original
model (pA( j) = 1) and the version with aging (pA( j) = 1/(t+ 2)), respectively. The dashed lines in (b) show τ̄(t) = t (purple)
and the solution from the recursive relation in equation (C.2) (red). As computed in figure 3, for the non-aging version,
∆m,∆τ̄ < 4% (except for T= 0.86 where∆τ̄ = 10%) and for the aging version,∆a

m,∆
a
τ̄ < 9% (except for T= 0.86 where

∆a
τ̄ = 15%).

(i) A node i with age j is selected at random and activated with probability pA( j).
(ii) If the fraction of neighbors in a different state is greater than the threshold T, the activated node changes

its state from si to−si and resets its internal time to j= 0.

Following previous literature on aging effects [30, 34, 39, 41, 42] we make the choice of pA( j) = 1/( j+ 2)
for the aging probability. This particular choice is motivated by the fact that it allows to reproduce
inter-event time distributions observed empirically [44, 46].

3.1. Mean-field
Figure 4 compares the evolution of the average magnetization and mean internal time on a complete graph
of the original symmetrical threshold model and the version with aging in phases I, II, and III. We observe
that, for all considered threshold values, aging introduces a delay. However, the final stationary state
coincides with the one observed for the original model. To explain these dynamics, we use an HMF approach
that considers the effects of aging, as in [37] for other binary-state models (we use a general HMF description
to be applied for a complete graph and to random networks in next section). In this case, the AME does not
work well due to the high density of the network. For a general network with degree distribution pk, we
define the fraction of agents in state±1 with k neighbors and age j at time t as x±k,j(t). The probability of

finding a neighbor in state±1 is x̃±, which can be written as

x̃± =
∑
k

pk
k

⟨k⟩

∞∑
j=0

x±k,j, (9)

where ⟨k⟩ is the mean degree of the network. The transition rate ω±
k,j for a node with state±1, degree k and

age j to change state is given by

ω±
k,j = pA ( j)

k∑
m=0

θ
(m
k
−T

)
Bk,m

[
x̃∓

]
, (10)

where Bk,m[x] is the binomial distribution with k attempts,m successes, and with the probability of success x.
In our model, there are two possible events for a node with degree k and age j:

• It changes state and the age is reset to j= 0.
• It remains at its state and the age increases by one time step j = j + 1.

According to these possible events, we can write the rate equations for the variables x±k,j and x±k,0 as

7
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Figure 5. Phase diagram modified by aging. Phase diagram of the symmetrical threshold with aging model in an ER graph of
N= 4 · 104 nodes and ⟨k⟩= 8. The blue, red, and green dotted lines show the borders of phase II (first and last value of T where
the system reaches the absorbing ordered state for eachm0) computed from numerical simulations evolving until tmax = 103, 104

and 105 time steps, respectively. Black solid lines show AME solution integrated 105 time steps. Phases I∗, II and III correspond
with the orange, white and gray areas, respectively. The solid purple lines are the mixed-ordered and ordered-frozen critical lines
for the non-aging version of the model.

dx±k,0
dt

=
∞∑
j=0

x∓k,jω
∓
k,j − x±k,0,

dx±k,j
dt

= x±k,j−1

(
1−ω±

k,j−1

)
− x±k,j j > 0. (11)

It can be shown from equation (11) that the stationary solution for the fraction of agents in state+1, xf,
obeys the following implicit equation for a complete graph (see appendix B for a detailed explanation):

xf =
F(1− xf)

F(xf)+ F(1− xf)
, (12)

where,

F(x) = 1+
∞∑
j=1

j−1∏
a=0

1− pA (a)
N−1∑

m=(N−1)T

BN−1,m [x]

 . (13)

A solution of equation (12) can be obtained numerically using standard methods, as in [37]. The final
magnetization is calculated asmf = 2xf − 1. With this method, we obtain that the phase diagram for the
model with aging is the same as for the original model (refer to figure 1(a)). As a technical point, we note
that a truncation of the summation of the variable j in equation (13) is required for the numerical resolution
of the implicit equation. The higher the maximum age considered jmax, the higher the accuracy. With
jmax = 5 · 104, the transition lines predicted by this mean-field approach show great accuracy. Moreover, by
numerically integrating equation (11), the dynamical evolution of the magnetization and mean internal time
can be obtained. Figure 4 shows the agreement between integrated solutions and MC simulations of the
system both for the aging and non-aging versions. It should be noted that, while aging introduces only a
dynamical delay for the magnetizationm(t), the mean internal time τ̄(t) in phase I shows a different
dynamical behavior with aging than in the original model. In this phase, due to the low value of T, the agents
selected randomly will change their state (as they fulfill the threshold condition) and reset their internal time.
Consequently, while the internal time fluctuates around a stationary value for the original model, when aging
is incorporated, due to the activation probability pA( j) chosen, the mean internal time increases following a
recursive relation (equation (C.2)). We refer to appendix C for a derivation of this result.

3.2. Random networks
In contrast to the results obtained in a complete graph, aging effects have a significant impact on the phase
diagram of the model on random networks. In figure 5, we show the borders of phase II (first and last value of
T where the system reaches the absorbing ordered state for eachm0) obtained fromMC simulations running
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Figure 6. Symmetrical threshold model with aging dynamics in random networks. Evolution of the average interface density ρ(t)
(a) and the average magnetizationm(t) (b) for the symmetrical threshold model with aging. The average is computed over 5000
surviving trajectories (simulations stop when the system reaches the absorbing ordered states) for different values of T, shown by
different markers and colors: red (T= 0.12) and blue (T= 0.24) belong to phase I∗, green (T= 0.36) and gray (T= 0.49) belong
to phase II and purple (T= 0.86) belong to phase III. The inset in (a) shows a close look to the evolution for T= 0.12, in
linear-log scale. Solid colored lines are the AME integrated solutions for 104 time steps, using equations (6) and (7). The initial
magnetization ism0 = 0.5. The system is on an ER graph with N= 4 · 104 and mean degree ⟨k⟩= 8. The dashed green line in (a)
shows ρ(t)∼ ρ0 t−1. As computed in figure 3, for all T,∆a

ρ < 12%,∆a
m < 15%.

up to a maximum time tmax (dotted colored lines). Reaching the stationary state in this model requires a large
number of steps (with a corresponding high computational cost). The two borders of phase II exhibit
different behavior as we increase the time cutoff tmax: while the ordered-frozen border does not change with
different tmax, the mixed-ordered border is shifted to lower values of T as we increase the time cutoff tmax.
Our results suggest that phase I is actually replaced in a good part of the phase diagram by an ordered phase
in which the absorbing statemf =±1 is reached after a large number of time steps. Similar results are found
for an RR graph (see appendix D). The dependence of the results with tmax calls for a characterization of
different phases in terms of dynamical properties rather than by the asymptotic value of the magnetization.

Figure 6 shows the time evolution of our ordering metrics. The dynamical properties are largely affected
by the aging mechanism. In terms of the evolution, we find the following regimes:

• Initial mixing regime (phase I∗): it is characterized by two dynamical transient regimes: a fast initial dis-
ordering dynamics followed by a slow ordering process. After the initial fast disordering stage, the average
interface density exhibits a very slow (logarithmic-like) decay. Later, due to the finite size of the system, the
average interface density follows a power law decay with time, where ρ(t) scales as t−1. This phase exists for
the same domain of parameters (m0, T) as phase I (orange region in figure 5) in the model without aging
(see T= 0.12,0.24 in figure 6).

• Ordered regime (phase II): according to the initial majority, the magnetization tends to the ordered
absorbing state. This regime is characterized by a power-law interface decay, where ρ(t) scales as t−1. (see
T= 0.36,0.49 in figure 6).

• Frozen regime (phase III): each individual realization is characterized by an initial tendency toward the
majority consensus, but very fast reaches an absorbing frozen configuration (see T= 0.86 in figure 6).

The main effect of aging is that the mixed states of phase I are no longer present, at least not for the type of
networks that we are analyzing here. We will show later that phase I reemerges in denser graphs. Instead, for
sparse graphs, we observe a new phase I∗ in which the system initially disorders and later orders until
reaching the absorbing statesmf =±1. This behavior is shown in figure 6 for T= 0.12 and 0.26. For
T= 0.12, the system initially disorders, and then the interface density follows a logarithmic-like decay (see
inset in figure 6(a)). Due to the slow decay, the system stays in this transient regime even after 106 time steps,
and the fall to the absorbing states is not observed in this figure. Similarly, for T= 0.26 the disordering
process stops and then the system gradually evolves toward a fully ordered state. For this value of T, the
logarithmic-like decay is not appreciated and we just observe the power-law decay due to the finite size of the
system. The difference between T= 0.12 and T= 0.26 comes from the fact that in this phase I∗, the interface
decay becomes faster as we increase the threshold T (see figures 7(a)–(c)). Notice the different interface decay
in figure 7(c) (inset) between values of T< 0.3 (phase I∗), where all trajectories show a logarithmic-like
decay of ρ(t) in a transient regime, and T⩾ 0.3 (phase II), where trajectories from the initial condition
exhibit fast ordering dynamics toward the majority consensus. Moreover, we observe that in phase I∗, the
initial magnetizationm0 introduces a bias to the stochastic process, implying that the largerm0 in absolute
value, the larger the number of realizations that reach the absorbing state with the same sign ofm0. However,

9



New J. Phys. 26 (2024) 013033 D Abella et al

Figure 7. Phase I∗ slow decay and minority consensus. Magnetizationm(t) (a) and interface density ρ(t) (c) trajectories for
different values of the threshold T (m0 =−0.2) using the symmetrical threshold model with aging. (b) Final magnetization
histogram of 1000 trajectories for the same system at T= 0.25. Different colors indicate different values of T. The inset at (b)
shows a close look at the logarithmic-like decay, shown in linear-log scale. The system is an ER graph with N= 4 · 104 and mean
degree ⟨k⟩= 8.

the system can still reach the absorbing state of the opposite sign ofm0 (initial minority), as shown in the
trajectories with T= 0.25 in figure 7(a). Due to the characteristic logarithmic decay of phase I∗, a statistical
analysis of the inversion process incurs a significant computational cost. In figure 7(b), we present the final
magnetization histogram for T= 0.25, a value proximal to the I∗–II boundary where this analysis is
computationally feasible. As depicted in this figure, the proportion of realizations in which consensus is
reached in the initial minority state is approximately 3.3%.

In phase II, the system asymptotically orders for any initial condition as in the original model, but the
dynamical properties are modified due to the presence of aging: the exponential decay of the interface
density is replaced by a slow power-law decay, where the exponents of the exponential and the power-law are
found to be similar. Contrary, the dynamical properties of phase III are not affected by the presence of aging.
The temporal magnitudes analysis (mean internal time and persistence) can be found in appendix E.

As it occurred for the non-aging version of the model, the dynamical characterization discussed above
holds for all possiblem0 except for the symmetric initial conditionm0 = 0. The implications of the
order–disorder transition (that occurs at a critical mean degree kc(N)) [56] are still present in the model with
aging.

To account for the results of our MC simulations, we use the same mathematical framework as described
in equation (3). According to the update rules of the symmetrical threshold model with aging, the transition
probabilities now depend on the age j, as given by the activation probability pA( j):

T+
k,m,j = pA ( j) θ (m/k−T) T−

k,m,j = pA ( j) θ ((k−m)/k−T) ,

A±
k,m,j = 1−T±

k,m,j. (14)

We show in figure 5 the mixed-ordered and ordered-frozen transition lines predicted by the integration of
the AME equations until a time cutoff tmax. We find good agreement between the theoretical predictions and
the simulations both for ER and RR networks (see RR results in appendix D). Regarding dynamical
properties, the AME integrated solutions exhibit a remarkable concordance with the evolution of all the
metrics as shown in figure 6. Minor discrepancies between the numerical simulations and the integrated
solutions are attributed to the different assumptions, discussed previously, on which the AME is based.

The numerical results discussed so far are for random networks with average degree ⟨k⟩= 8. According
to them and to the analytical insights, one can conclude that aging significantly changes the phase diagram
for sparse networks. However, we know that the model with aging shows the same phase diagram as the
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Figure 8. Phase I∗ dependence with the network mean degree. Critical threshold Tc dependence with the mean degree ⟨k⟩ for the
symmetrical threshold model with aging for an ER graph with N= 4× 104 nodes for an initial magnetization ofm0 = 0.25 (a)
andm0 = 0.75 (b). The blue and red markers indicate the borders of phases I and II, which coincide for a sufficiently large value
of the mean degree. The hatched area corresponds to the fulfillment of the inequality in the legend.

model without aging for a fully connected network. This implies that, for ER graphs, as the mean degree ⟨k⟩
approaches N, phase I∗ must disappear. Therefore, the combined effects of increasing the mean degree and
introducing aging need to be investigated in more detail. Phase II is distinguishable from phases I and I∗

because the system initially orders, i.e. |ρ0 − ρmax|= 0, where ρmax is the maximum value attained by the
interface density during the dynamical evolution. In contrast, Phase I is distinguished from phases I∗ and II
because the system remains disordered, i.e. |ρmax − ρ(tmax)| ≈ 0. Thus, Phase I∗ is the only phase among
these three where |ρ0 − ρmax|> 0 and |ρmax − ρ(tmax)|> 0. Using this criterion, we studied the dependence
of the critical threshold Tc on the mean network degree defining the transition lines between phases I, I∗, and
II (see figure 8). In the absence of aging, the red line in figure 8 gives the value of the mixed-ordered
transition line Tc. When aging is included, at low degree values, phase I is replaced by I∗, as expected.
However, as the mean degree increases, phase I emerges despite the presence of aging, leading to the
coexistence of phases I and I∗ in the same phase diagram over a range of mean degree values. As the mean
degree is further increased, a critical value is reached where phase I∗ is no longer present, and the
discontinuous transition I–II occurs at the same value than in the model without aging. Importantly, this
critical mean degree at which phase I∗ disappears, depends significantly on the initial magnetizationm0.

4. Symmetrical threshold model in aMoore lattice

We consider next the symmetrical threshold model in a Moore lattice, which is a regular two-dimensional
lattice with interactions among nearest and next-nearest neighbors (k= 8). From numerical simulations, we
obtain a phase diagram (figure 9(a)) that is consistent with our previous results in random networks. The
system undergoes a mixed-ordered transition at a threshold value Tc = 2/8 which is independent of the
value of the initial magnetizationm0. When T> 4/8, the system undergoes an ordered-frozen transition at a
critical threshold T∗

c , which depends onm0 (similarly to what happens in random networks). The final
magnetizationmf (m0) (figure 9(b)) also shows a dependence onm0 similar to the one found in RR networks
(figure 2(c)).

4.1. Original model without aging
Figure 10 shows the results from numerical simulations (form0 = 0 and 0.5) for the average interface density,
the magnetization, and the persistence (the internal time shows the same results as in random graphs).
Dynamical properties change significantly for different values of the threshold and initial magnetizationm0.
Similarly to the case of random networks, we find three different regimes corresponding to the three phases,
but with some properties different from the results on random networks:

• Mixed regime (phase I): it is characterized by fast disordering dynamics with a persistence decay p(t)∼
exp(− ln(t)2), consistent with the results of the Voter model [54]. The interface density and the magnet-
ization exhibit fast dynamics toward their asymptotic values in the dynamically active stationary state (see
T= 1/8,2/8 in figure 10).
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Figure 9. Symmetrical threshold model in a Moore lattice. (a) Phase diagram of the symmetrical threshold model in a Moore
lattice of size N= L× L, with L= 100. The color map indicates the value of the average final magnetizationmf. Solid black lines
are the borders of phase II (first and last value of T where the system reaches the absorbing ordered state for eachm0), computed
from the numerical simulations. (b) Average final magnetizationmf as a function of the initial magnetizationm0 for the discrete
values of the threshold T (indicated with different colors and markers) in a Moore lattice of the same size. Average performed over
5000 realizations.

Figure 10. Dynamical regimes in a Moore lattice. Evolution of the average interface density ρ(t) (a) and (b), the average
magnetizationm(t) (c) and (d), and the persistence p(t) (e) and (f) for the symmetrical model in a Moore lattice starting from a
random configuration withm0 = 0.5 (a, c, e) andm0 = 0 (b, d, f). We plot 50 different trajectories in solid lines and the average
of 5000 surviving trajectories (simulations stop when the system reaches the absorbing ordered states) in different markers.
Different colors and markers indicate different threshold values: red (T= 1/8) and blue (T= 2/8) belong to phase I, green
(T= 3/8) and black (T= 4/8), and purple (T= 5/8,7/8) belong to phase III. The average magnetizationm(t) is computed
according to the two symmetric absorbing states. System size is fixed at N= L× L, L= 200. The dashed lines in (a) are
ρ∼ exp(−α · t) with α= 0.5 (black) and α= 0.8 (green), in (b) are ρ(t)∼ at−1/2 with a= 0.36 (black) and a= 0.2 (green), in
(e) and (f) is p(t)∼ exp(− ln(t)2) (blue).
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Figure 11. Symmetrical threshold model with aging in a Moore lattice. (a) Phase diagram of the Symmetrical Threshold model
with aging in a Moore lattice of N= L× L, with L= 100. The blue, red and green dotted lines show the borders of phase II (first
and last value of T where the system reaches the absorbing ordered state for eachm0) from numerical simulations evolving until
tmax = 103, 104 and 105 time steps, respectively. Phases I∗, II and III correspond with the orange, white and gray areas,
respectively. The solid purple lines are the mixed-ordered and ordered-frozen critical lines for the symmetrical threshold model
(from figure 9) (b) Average magnetization at time tmax (mf(tmax)) as a function of the initial magnetizationm0 for different values
of the threshold T (indicated with different colors and markers) in a Moore lattice of N= L× L, with L= 100. The numerical
simulations are obtained until tmax = 104 time steps. Average performed over 5000 realizations.

• Ordered regime (phase II): it is characterized by an exponential or power-law decay of the interface density,
depending on the initial condition (see details below). The magnetization tends to the absorbing ordered
state (see T= 3/8,4/8 in figure 10).

• Frozen regime (phase III): it is characterized by an initial ordering process, but the system freezes fast (see
T= 5/8 in figure 10).

In particular, in phase II form0 = 0 the persistence and interface density decay are found to decay as a power
law, p(t)∼ t−0.22 and ρ(t)∼ t−1/2, respectively (consistent with the results of the Ising model [57–60]). For a
biased initial condition (m0 = 0.5), p(t) decays to the initial majority fraction (which corresponds to the
state reaching consensus), and ρ(t) follows an exponential-like decay. Note that, form0 = 0, not all
trajectories reach the ordered absorbing states (mf =±1). There exist other absorbing configurations as, for
example, a flat interface configuration for T= 4/8, no agent will be able to change, and the system remains
trapped in this state. This result is not observed form0 > 0.

Contrary, phases I and III show similar dynamics for balanced (m0 = 0) and unbalanced (m0 = 0.5)
initial conditions. In phase I, the system shows disordering dynamics with a persistence decay similar to the
one exhibited for the Voter model in a lattice [54] while in phase III, the system exhibited freezing dynamics
with an initial tendency toward the majority consensus.

Due to the lattice structure and high clustering, the mathematical tools employed in the previous sections
for random networks are inapplicable to regular lattices. Consequently, we limit ourselves to the results of
numerical simulations. On the other hand, a regular structure facilitates easy modification of the geometry
structure of the initial condition. Appendix F presents an analysis of how a compact initial condition
influences the dynamics of the symmetrical threshold model (and its variant with aging).

4.2. The role of aging
We show in figure 11(a) the borders of phase II obtained from numerical simulations running up to a time
tmax (dotted colored lines). Similarly to the behavior observed in random networks, the mixed-ordered
border is shifted to lower values of T as we increase the simulation time cutoff tmax. Thus, phase I is replaced
by an ordered phase due to the aging mechanism. Examining the dependence of the final value of the
magnetization on its initial conditionmf(m0) (figure 11(b)), one can conclude that the mixed phase is still
present, at least transiently, as in the initial disordering phase described in the previous section (phase I∗).
Phase II is again characterized by an asymptotically ordered state where the initial majority reaches
consensus. However, for this specific structure, nearm0 = 0 and T= 1/2, the ordered state is not reached for
any threshold value. Furthermore, comparing with figure 11(b) with the results from the model without
aging (figure 9(b)), the discontinuous jump atm0 = 0 for T= 3/8,4/8 is replaced by a continuous transition,
where a range of states with 0< |mf|< 1 are present aroundm0 = 0. To determine whether these states
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Figure 12.Modified dynamical regimes by aging in a Moore lattice evolution of the average interface density ρ(t) (a) and (b), the
average magnetizationm(t) (c) and (d), and the persistence p(t) (e) and (f) for the Symmetrical model with aging in a Moore
lattice starting from a random configuration withm0 = 0.5 (a, c, e) andm0 = 0 (b, d, f). We plot 30 different trajectories in solid
lines and the average of over 5000 surviving trajectories in symbols. Colors and symbols indicate different threshold values: red
(T= 1/8) and blue (T= 2/8) belong to phase I∗, green (T= 3/8), and black (T= 4/8) belong to phase II, and purple
(T= 5/8,7/8) belong to phase III. The average magnetization is computed according to the two symmetric absorbing states. The
insets in (a) and (b) show a close look at the evolution for T= 0.12, in linear-log scale. System size is fixed at N= L× L, L= 200.
The dashed lines in (a) are ρ∼ t−α with α= 0.5 (black) and α= 0.8 (green), and in (c) are p(t)∼ t−1 (red). Simulations stop
when the system reaches the absorbing ordered states.

belong to phases I∗, II or III, we need again a characterization of phases in terms of dynamical properties.
According to the results in figure 12, we find here the same regimes identified for random networks:

• Initial mixing regime (phase I∗): after the initial disordering stage, the average interface density shows a
very slow decay reflecting the slow growth of spatial domains in each binary state. The persistence in this
phase shows a power-law decay p(t)∼ t−1 (see T= 1/8,2/8 in figure 12).

• Ordered regime (phase II): it is characterized by coarsening dynamics that end in the absorbing statesmf =
±1. The form of the decay of the interface density depends on the value ofm0 (seeT= 3/8,4/8 in figure 12).

• Frozen regime (phase III): it is characterized by an initial tendency to order but the system very fast reaches
an absorbing frozen configuration (see T= 5/8,7/8 in figure 12).

The implications of aging become explicit by comparing the dynamical properties of the cases with aging
(figure 12) and without aging (figure 10). When the threshold is T< 3/8, phase I is replaced by phase I∗ in
which there is an initial disordering process very fast followed by a slow coarsening process that accelerates
when we increase the threshold. Although the aging implications in this phase are similar to those observed
in the ER graph, the coarsening process is slower (see insets in figures 12(a) and (b)).

In phase II (T= 3/8,4/8) and whenm0 = 0.5, the system exhibits coarsening toward the ordered state
mf =±1. In this case, the interface decay ρ∼ exp(−α t), observed in the absence of aging is replaced, due to
aging, by a power law decay ρ∼ t−α, as noted in [42]. We find α= 0.5 and 0.8 for T= 3/8 and 4/8,
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Figure 13. System evolution at T= 0.5 andm0 = 0. Evolution of a single realization for T= 0.5 andm0 = 0 using the
symmetrical threshold model (a) and the version with aging (b). Snapshots are taken after 1, 10, 60, 440 and 3300 time steps in (a)
and after 1, 60, 3300, 2 · 105 and 5 · 106 time steps in (b), increasing from left to right. System size is fixed to N= L× L, L= 256.

respectively. Form0 = 0, the power law decay of the interface density vanishes with aging, and the system
exhibits coarsening dynamics much slower than for an unbalanced initial condition. In this region of the
phase diagram, spatial clusters start to grow from the initial condition, but once formed, it takes a long time
for the system to reach the absorbing statemf =±1. We note that for these parameter values, the system is
not able to reach |m| over 0.1 even after 106 time steps, but since there is coarsening from the initial
condition, the expected stationary state as t→∞ ismf =±1. There is neither initial disordering nor
freezing, these values correspond to the defined phase II, even though the system exhibits ‘long-lived
segregation’ long transient dynamics (see the difference with the dynamics of the model without aging in
figure 13). In figure 11(a), we differentiate phase II from phase III by analyzing the activity in the system: if
agents are changing, even though the interface decay is slow, the system is in phase II. If agents are frozen, it
lies in phase III. When comparing the ordered-frozen critical line to the one from the original model (purple
line), we notice that aging causes certain values (m0, T) that were previously in phase II near the critical line
to enter the frozen phase.

Finally, it should be noted that in phase I∗, the initial disordering dynamics drive the system toward
m= 0. Therefore, the subsequent coarsening dynamics follow the slow interface decay observed in phase II
form0 ∼ 0. Thus, the presence of aging implies that the system asymptotically orders for any initial
condition, but due to the initial disordering, the coarsening dynamics fall into the ‘long-lived segregation’
regime independently of the initial condition.

5. Summary and conclusions

In this work, we have studied with MC numerical simulations and analytical calculations the symmetrical
threshold model. In this model, the agents, nodes of a contact network, can be in one of the two symmetric
states±1. System dynamics follows a complex contagion process in which a node changes state when the
fraction of neighboring nodes in the opposite state is above a given threshold T. For T= 1/2, the model
reduces to a majority rule or the zero temperature spin flip kinetic Ising model. When the change of state is
only possible in one direction, say from 1 to−1, it reduces to the Granovetter–Watts Threshold model [9, 12,
42]. We have considered the cases of a fully connected network, ER, and RR networks, as well as a regular
two-dimensional Moore lattice.

We have found that, in the parameter space of threshold T and initial magnetizationm0, the model
exhibits three distinct phases, namely phase I or mixed, phase II or ordered, and phase III or frozen. The
existence of these three phases is robust for different network structures. These phases are well characterized
by the final state (mf), and by dynamical properties such as the interface density ρ(t), time-dependent
average magnetizationm(t), persistence times p(t), and mean internal time τ̄(t). These phases can be
obtained analytically in the mean-field case of a fully connected network. For the random networks
considered, we derive an AME [42, 50] considering agents in each state according to their degree k, neighbors
in state−1,m, and age j. From this AME, we have also derived an HMF approximation. While the AME
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reproduces with great accuracy the results of MC numerical simulations of the model (both static and
dynamic), the HMF shows an important lack of agreement, highlighting the importance of high-accuracy
methods necessary for threshold models.

Aging is incorporated in the model as a decreasing probability to modify the state as the time already
spent by the agent in that state increases. The key finding is that the mixed phase (phase I), characterized by
an asymptotically disordered dynamically active state, does not always exist: the aging mechanism can drive
the system to an asymptotic absorbing ordered state, regardless of how low the threshold T is set. A similar
effect of aging was already described for the Schelling model in [41]. When the dynamics are examined in
detail, a new phase I∗, defined in terms of dynamical properties, emerges in the domain of parameters where
the model without aging displays phase I. This phase is characterized by an initial disordering regime
(m→ 0) followed by a slow ordering dynamics, driving the system toward the ordered absorbing states
(including the one with spins opposite to the majoritarian initial option). This result is counter-intuitive
since aging incorporates memory into the system, yet in this phase, the system ‘forgets’ its initial state. The
network structure plays an important role in the emergence of phase I∗ since it does not exist for complete
graphs. A detailed analysis reveals that phase I∗ replaces phase I only for sparse networks, including the case
of the Moore lattice. For ER networks we find that, as the mean degree increases, phase I reappears and there
is a range of values of the mean degree for which phases I and I∗ coexist. Beyond a critical value of the mean
degree, phase I extends over the entire domain of parameters where phase I∗ was observed.

While aging favors reaching an asymptotic absorbing ordered state for low values of T (phase I), in phase
II the ordering dynamics are slowed down by aging, changing, both in random networks and in the Moore
lattice, the exponential decay of the interface density by a power law decay with the same exponent. The
aging mechanism is found not to be important in the frozen phase III. All these effects of aging in the three
phases are well reproduced for random networks by the AME derived in this work, which is general for any
chosen activation probability pA( j).

For the Moore lattice, we have also considered in detail the special case of the initial conditionm0 = 0. In
this case, phase I∗ emerges, and phase III is robust against aging effects. However, in phase II aging destroys
the characteristic power law decay of the interface density, ρ(t)∼ at−1/2, associated with curvature reduction
of domain walls. This would be a main effect of aging in the dynamics of the phase transition for the zero
temperature spin flip kinetic Ising model [61]. Additionally, this regular structure allowed us to analyze the
effects of a compact initial condition. We have shown that the joint effect of aging and a compact initial
condition prevent the ordered phases from reaching the consensus state (see appendix F).

As a final remark on the general effects of aging in different models of collective behavior, we note that
the replacement of a dynamically active disordered stationary phase by a dynamically ordering phase is
generic. In this paper, we find the replacement of phase I by phase I∗. Likewise in the Voter model, aging
destroys long-lived dynamically active states characterized by a constant value of the average interface
density, and it gives rise to coarsening dynamics with a power law decay of the average interface density [34].
In the same way, in the Schelling segregation model, a dynamically active mixed phase is replaced, due to the
aging effect, by an ordering phase with segregation in two main clusters. Another aging effect that seems
generic, in phases in which the system orders when there is no aging, is the replacement of dynamical
exponential laws by power laws. This is what happens here in phase II for the decay of the average interface
density but, likewise, exponential cascades in the Granovetter–Watts model are replaced due to aging by a
power-law growth with the same exponent [42].

Further research with the general AME used in this study would involve a new approach that considers
the master equation, as described in [62]. This approach aims to incorporate finite size effects, which are
relevant whenm0 is close to zero, and would provide a mathematical framework for further analysis of the
results in [56]. Regarding the model, this article reports the main features of the symmetrical threshold
model dynamics and the aging effects. However, there are several areas for future research along this lines,
such as investigating the impact of strongly heterogeneous [63] or coevolving networks [64, 65], exploring
the dependence of the results on the aging activation function pA, and examining the joint effect of aging and
strongly heterogeneous degree distributions.
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Appendix A. Heterogeneous mean-field

When the transition and aging probabilities do not depend on j, T±
k,m,j = T±

k,m and A±
k,m,j = A±

k,m, if we are not

interested in the solutions x±k,m,j(t) and we just want the final magnetization, equation (3) is reduced to
Gleeson’s AME [50] by summing variable j. If we truncate the degree distribution at a reasonable large degree
kmax, Gleeson’s AME is a system of (kmax + 1)(kmax + 1) differential equations without loss of accuracy.

Moreover, following the steps in [50], we perform a heterogeneous mean-field (HMF) approximation to
reduce our system to kmax + 1 differential equations:

d

dt
x−k =− x−k

k∑
m=0

T−
k,mBk,m [ω] +

(
1− x−k

) k∑
m=0

T+
k,mBk,m [ω] , (A.1)

where x−k =
∑

j

∑k
m x−k,m,j and ω =

∑
k pk

k
z x

−
k . This system of differential equations, coupled via ω, cannot be

solved analytically. Solving numerically with standard methods, HMF predicts a mixed-ordered transition
line that qualitatively captures the critical line dependence but quantitatively differs from the numerical
simulations (see the red dashed line in figures 2(a) and (b) and the dotted colored lines in figure 2(c).
Moreover, this approximation does not predict a frozen phase in any of the networks considered. Instead, for
high values of T, the integrated stationary solutions are alwaysmf =±1, regardless ofm0. From this analysis,
we conclude that we need sophisticated methods beyond an HMF description to describe the symmetrical
threshold model’s phase diagram (in a random sparse network), as occurs for the asymmetrical
Granovetter–Watts’ threshold model (see [42]). The accuracy of the HMF approximation increases when we
approach the complete graph scenario ⟨k⟩/N→ 1.

Appendix B. Derivation of the stationary solution via the HMF taking into account
aging

Setting the time derivatives to 0 in equations (11), we obtain the relations for the stationary state:

x±k,0 =
∞∑
j=0

x∓k,jω
∓
k,j

x±k,j = x±k,j−1

(
1−ω±

k,j−1

)
j > 0, (B.1)

from where we extract the stationary condition x−k,0 = x+k,0, as in [37]. Notice that by setting pA( j) = 1 and
summing over all ages j, we recover the HMF approximation (equation (A.1)) for the model without aging.
Defining x±j (t) as the fraction of agents in state±1 with age j:

x±j =
∑
k

pk x
±
k,j, (B.2)

and using the degree distribution of a complete graph pk = δ(k−N+ 1) (where δ(·) is the Dirac delta), we
sum over the variable k and rewrite equation (B.1) in terms of x±j :

x±0 =
∞∑
j=0

x∓j ω∓
j ,

x±j = x±j−1

(
1−ω±

j−1

)
j > 0, (B.3)

where ω±
j ≡ ω±

N−1,j. Note that the stationary condition x−0 = x+0 remains valid after summing over the degree

variable. We compute the solution x±j recursively as a function of x±0 :

x±j = x±0 F±j where F±j =

j−1∏
a=0

(
1−ω±

a

)
, (B.4)

and summing all j,
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x± = x±0 F± where F± = 1+
∞∑
j=1

F±j . (B.5)

Using the stationary condition x−0 = x+0 , we reach:

x+

x−
=

F+

F−
. (B.6)

Notice that, for the complete graph, x̃+ = x, x̃− = 1− x. Therefore, F± is a function of the variable x∓

(F+ = F(1− x)). Thus, we rewrite the previous expression just in terms of the variable x:

x

1− x
=

F(1− x)

F(x)
. (B.7)

Appendix C. Internal time recursive relation in phase I/I∗

In phases I and I∗, the exceeding threshold condition (m/k> T) is full-filled for almost all agents in the
system. Thus, agents will change their state and reset the internal time once activated. For the original model,
all agents are activated once in a time step on average, but for the model with aging, the activation
probability plays an important role. We consider here a set of N agents that are activated randomly with an
activation probability pA( j) and, once activated, they reset their internal time. Being ni(t) the fraction of
agents with internal time i at the time step t, we build a recursive relation for the previously described
dynamics in terms of variables i and t:

n1 (t) =
t−1∑
i=1

pA (i) ni (t− 1)

ni (t) = (1− pA (i− 1)) ni−1 (t− 1) i > 1. (C.1)

This recursion relation can be solved numerically from the initial condition (n1(0) = 1, ni(0) = 0 for
i> 1). To obtain the mean internal time at time t, we just need to compute the following:

τ̄ (t) =
t∑

i=1

i ni (t) . (C.2)

The solution from this recursive relation describes the mean internal time dynamics with great
agreement with the numerical simulations performed at phase I (for the complete graph) and phase I∗ (for
the Erdős–Rényi and Moore lattice).

Appendix D. Symmetrical threshold model with aging in random-regular graphs

Figure D1 shows the borders of phase II (first and last value of T where the system reaches the absorbing
ordered state for eachm0) obtained fromMonte Carlo simulations running up to a maximum time tmax

(dotted colored lines) for an RR graph. Reaching the stationary state in this model requires a large number of
steps and it has a high computational cost. The two borders of phase II exhibit different behavior as we
increase the maximum number of time steps tmax: while the ordered-frozen border does not change with
different tmax, the mixed-ordered border is shifted to lower values of T as we increase the simulation time
cutoff tmax. As it occurs for the results in ER graphs (figure 5), our results suggest that phase I is actually
replaced in a good part of the phase diagram by an ordered phase in which the absorbing statemf =±1 is
reached after a large number of time steps. The ordered-frozen border is now slightly shifted to lower values
of the threshold T due to aging. Figure D1(b) shows the average magnetization on RR graphs with
simulations running up to a time tmax = 104. Upon comparison with figure 2(c), the dependence onm0 is
quite similar, indicating the persistence of a transient mixed phase. This calls for a characterization of
different phases in terms of dynamical properties and not only by the asymptotic value of the magnetization.

Regarding to the AME integrated solutions, figure D1 shows the mixed-ordered and ordered-frozen
transition lines predicted by the integration of the AME equations until a time cutoff tmax, which show a
good agreement with the numerical simulations. Figure D1(b) also shows the predicted dependence of
mf(m0) for the RR graph. For comparison purposes, the numerical integration is computed until the highest
tmax used in the Monte Carlo simulations. In addition, we apply the previously introduced HMF taking into
account aging (HMFA) to these random networks by numerically integrating equations (11). The results,
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Figure D1. Symmetrical threshold model with aging in a random regular network. Phase diagram of the symmetrical threshold
with aging model in an RR graph (a) of N= 4 · 104 nodes and ⟨k⟩= 8. The blue, red, and green dotted lines show the borders of
phase II (first and last value of T where the system reaches the absorbing ordered state for eachm0) computed from numerical
simulations evolving until tmax = 103, 104 and 105 time steps, respectively. Black solid lines show AME solution integrated 105

time steps. Phases I∗, II and III correspond with the orange, white and gray areas, respectively. The solid purple lines are the
mixed-ordered and ordered-frozen critical lines for the non-aging version of the model. (b) Average magnetization at time tmax

(m(tmax)) as a function of the initial magnetizationm0 for different values of the threshold T (indicated with different colors and
markers) in an eight-regular graph of N= 4 · 104. Average performed over 5000 realizations evolved until tmax = 104 time steps.
Dotted and solid lines are the HMFA (for T= 1/8–4/8) and AME (for all T) solutions integrated numerically 104 time steps.

Figure E1. Temporal dynamics of the symmetrical threshold model with aging. Evolution of the mean internal time τ̄(t) (a) and
the persistence p(t) (b) for the symmetrical threshold model with aging. The average is computed over 5000 surviving trajectories
(simulations stop when the system reaches the absorbing ordered states) for different values of T, shown by different markers and
colors: red (T= 0.12) and blue (T= 0.24) belong to phase I∗, green (T= 0.36) and gray (T= 0.49) belong to phase II and purple
(T= 0.86) belong to phase III. Solid colored lines are the AME integrated solutions for 104 time steps, using equation (8). The
initial magnetization ism0 = 0.5. The system is on an Erdős–Rényi graph with N= 4 · 104 and mean degree ⟨k⟩= 8. The dashed
lines in (a) show τ̄(t) = t (purple) and the solution from the recursive relation in equation (C.2) (red). The dashed red line in (b)
shows p(t) = t−1. As computed in figure 3, for all T,∆a

τ̄ < 20%.

displayed as dotted colored lines in figure D1(b), show similarity to the AME solution for T< 0.5.
Nevertheless, as it occurred for the HMF in the original model, this mathematical framework is not able to
describe the frozen phase.

Appendix E. Temporal dynamics in the symmetrical threshold model with aging

Figure E1 shows the evolution of the temporal dynamics via the mean internal time and the persistence. The
persistence in phase I∗ shows a power-law decay, where p(t) scales as t−1, and the internal time shows an
increase following the recursive relation given in equation (C.2), as it occurred for the mean-field scenario
(figure 4). On the other hand, in phase II, the persistence decays from 1 to the fraction of nodes of the initial
majority (the one that does not change state and reaches consensus) and the mean internal time scales
linearly with time, τ̄(t)∼ t. For the internal time, the AME integrated solutions exhibit a remarkable
concordance with the numerical simulations. Minor discrepancies between the numerical simulations and
the integrated solutions can be attributed to the assumption of an infinitely sized system in the AME. As it
occurred for the model without aging, the persistence cannot be predicted by this framework.
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Figure F1. Evolution from a segregated initial condition. Evolution of a single realization starting from a segregated initial
condition for T= 1/8 andm0 = 0.5 using the Symmetrical Threshold model (a) and the version with aging (b). Snapshots are
taken after 1,4 and 20 time steps in (a) and after 1,300 and 5 · 104 time steps in (b), increasing from left to right. System size is
fixed to N= L× L, L= 128. Evolution of the interface density ρ(t) using the symmetrical threshold model (c) and the version
with aging(d). The average is computed over 5000 surviving trajectories (simulations stop when the system reaches the absorbing
ordered states) for different values of T, shown by different markers and colors: red (T= 1/8), blue (T= 2/8), green (T= 3/8),
gray (T= 0.49) and purple (T= 0.86). The system is a Moore lattice with N= L× L, L= 200.

Appendix F. Joint effect of aging and a segregated initial condition in a lattice

So far, we have analyzed the dynamics of the symmetrical threshold model (with and without aging) starting
from a random initial condition with magnetizationm0. However, a segregated initial condition, in which
nodes on the same state are clustered together, may affect the dynamical behavior. In this appendix, we run
numerical simulations starting with a segregated initial condition. In our system of side L, the segregated
initial condition consists of a centered square of agents with state−1 (of side L/4), surrounded by agents in
state+1. Therefore, the initial magnetization ism0 = 0.5.

Firstly, due to the geometry of the initial condition, any value of T> 5/8 remains trapped at the initial
condition, as no agent in the system will have their threshold exceeded. Consequently, all values of T> 5/8
fall under phase III (frozen phase). This phenomenon occurs for both the aging and non-aging versions of
the model.

The interesting behavior occurs at T< 5/8. In figure F1(c), we present the evolution of the interface
density for the symmetrical threshold model (without aging). The three phases of the model found starting
from a random configuration, are robust (at the same values of T): the system tends toward a mixed active
state in phase I (T= 1/8,2/8), tends toward the ordered state according to the initial majority in phase II
(T= 3/8,4/8) and freezes in phase III (T> 5/8). Nevertheless, the dynamics toward the final state differ
from the results in section 4. Specifically, at T= 3/8 and 4/8, due to the initial segregated condition, the
system remains trapped in a transient segregated state for more than 103 time steps. In phase I
(T= 1/8,2/8), the disordered domains grow from the interface (of the segregated initial condition) until it
fills the whole system (see figure F1(a)).

When aging is included (figure F1(d)), the dynamical regimes are similar to the ones starting from an
initial random condition: the system exhibits an initial disordering followed by coarsening dynamics in phase
I∗ (T= 1/8,2/8), tends toward order (but gets trapped into a ‘long-lived’ transient regime) in phase II
(T= 3/8,4/8) and freezes at phase III (T> 5/8). A segregated initial condition favors that agents in the bulk
of the system do not get activated because they never exceed the threshold condition and the internal time
keeps growing at each time step. As it occurred starting from an initial random condition atm0 = 0 (see
figure 12(b)), for T= 3/8,4/8 (phase II) the system gets trapped into a ‘long-lived segregated’ transient state
(favored by the initial condition), preventing the system from reaching an ordered state.

For T= 1/8,2/8 (phase I∗), the system exhibits an initial disordering followed by slow coarsening
dynamics. For T= 2/8, figure F1(d) shows that the interface initially increases, but, after a few time steps,
starts to slowly decrease, while for T= 1/8, we only see the initial disordering transient state. Figure F1(b)
shows for T= 1/8 the emergence of small ordered clusters within the disordered region of the system (after
several time steps) due to the presence of aging.

To summarize, the main effect of a segregated initial condition (in comparison with the random initial
condition) is to trap the system into a transient segregated state at the ordering phases (phase II in the
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non-aging version and phases I∗ and II in the aging version). In addition, aging favors this transient
segregated state, leading the system into a slow-ordering dynamical regime.
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