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The real estate market shows an inherent connection to space. Real estate agencies unevenly op-
erate and specialize across space, price and type of properties, thereby segmenting the market into
submarkets. We introduce here a methodology based on multipartite networks to detect the spatial
segmentation emerging from data on housing online listings. Considering the spatial information of
the listings, we build a bipartite network that connects agencies and spatial units. This bipartite
network is projected into a network of spatial units, whose connections account for similarities in
the agency ecosystem. We then apply clustering methods to this network to segment markets into
spatially-coherent regions, which are found to be robust across different clustering detection algo-
rithms, discretization of space and spatial scales, and across countries with case studies in France
and Spain. This methodology addresses the long-standing issue of housing market segmentation,
relevant in disciplines such as urban studies and spatial economics, and with implications for poli-
cymaking.
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I. INTRODUCTION

The spatial dimension of housing markets is a crucial
aspect for urban studies and planning. Understanding
the spatial segmentation of the housing market into sub-
markets [1, 2] has important implications for real estate
valuation and investment decisions, which together affect
urban development and social equity [2]. Spatial segmen-
tation is the product of many factors such as residential
location and the proximity to amenities [2], differences
in housing stock [3], price levels [4], and consumer pref-
erences [5].

The spatial division of the real estate market has been
studied from different perspectives and with different
methods in the literature. Some studies have examined
the spatial segmentation of the urban housing market fo-
cusing on neighborhood correlations of housing prices [6],
the spatial effects of urban public policies on housing val-
ues [7], the neighborhood quality and accessibility effects
on housing prices [8], while others have determined if a
specific property market is spatially segmented into sub-
markets, and whether accounting for the existence of sub-
markets improves the accuracy of price modeling [3, 9].
This is especially important for hedonic pricing models
that seek to incorporate spatial autocorrelation and het-
erogeneity [9–12]. Ref. [13] distinguishes two main ap-
proaches for spatial segmentation: using pre-defined ge-

ographical boundaries based on a priori knowledge, such
as local administrative boundaries or expert areas used
by market stakeholders, or relying on clustering methods
to infer patterns from the structure of the data. For the
latter, popular statistical approaches to divide space into
submarkets are principal component analysis and hierar-
chical clustering [2, 4, 14].

The digitization of the housing market [15] provides
untapped research opportunities for data-driven studies
of market segmentation. With property portals being
nowadays the dominant way to create and access market
information, online listings constitute a new type of data
to study housing markets [16–18]. Scholars studied the
spatio-temporal distribution of housing prices [19, 20], re-
vealed the persistence of spatial inequalities in the hous-
ing information landscape [21], predicted the social pro-
file of neighborhoods [22], or detected the segmentation
of the market from online search patterns [23]. Aside
price, pictures or textual descriptions, a listing includes
a critical piece of information: the identity of the mar-
keting agency that has posted the listing on the portal.
As such, listings constitute digital traces [24] of the work
performed by real estate agencies when acquiring, selling
or marketing on property portals. It is therefore possible
to reconstruct, for each agency, its own portfolio of list-
ings, whose volume and location patterns result from and
reflect the heterogeneous practices and market shares of
real estate agencies. By informing on who sells where,
listings offer new ways to examine how real estate agen-
cies unevenly operate and specialize across space, thereby
segmenting the market into submarkets [25].
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FIG. 1. Bipartite network construction and projec-
tion. (a) A tripartite network is constructed between real
estate agencies, listings, and spatial units obtained from ge-
olocalized housing data and the division of space in regular
grid cells. In this network, each listing is connected to its real
estate agency and the spatial cell where it is located. This
simple tripartite network is contracted into a bipartite net-
work linking agencies and cells, where the link weight ωB

α,i

corresponds to the number of listings the agency α has in the
spatial cell i. Finally, the network is then projected over the
cells to form a weighed network of spatial units, where the
weight ωi,j of the link between cells i and j quantifies how
much they are similar in the market – ωi,j is properly defined
by Equation (2). Two simple examples of the projection pro-
cess are shown below: with (b) equal and (c) complementary
listings distributions for the agencies in the cells.

There is ample evidence underlining how real estate
agencies influence market segmentation by determining
housing prices, sorting homebuyers into different market
channels, and specializing in certain types of neighbor-
hoods and market segments [3, 6, 25–27]. Furthermore,
it has been shown that the definition of submarkets based
on agencies is far superior to other segmentation tech-
niques [28].

This work introduces a new method to identify the
housing market segmentation using geospatial data, com-
plex network analysis techniques, and taking as a basis
the local ecosystem of real estate agencies. We build
a network structure based on two factors: the presence
of an agency within a particular area, and the relative
influence of an agency in this area, determined by the
agency’s proportional share of all listings located in the
area. Our methodology is applied to the residential prop-
erty market in 3 Spanish provinces and 3 French urban
areas, for which we have a rich, high resolution dataset
sourced from property portals. We find that the market
in those regions is divided into a hierarchy of subregions.
We test the robustness of our results against different
community detection algorithms, scales, and administra-
tive boundaries in different countries.

II. MATERIALS AND METHODS

A. Data description

For Spain, we analyze listings published on the portal
Idealista.com [29]. The dataset covers a 2-year time
period, from January 2017 to December 2018 and it com-
prises a comprehensive collection of online listings geo-
referenced with their (lat, long) coordinates in the Span-
ish provinces of Balearic Islands, Barcelona, and Madrid.
These listings were posted by more than 50, 000 real es-
tate agencies, each identified with its unique id. There
are about one million listings for sales, and over 800, 000
for rentals.
French listings were obtained from the portal

SeLoger.com [30]. The dataset includes all listings
posted in the country over a 6-month period from July to
December 2019 - representing over 2 million sale listings.
Geographical information is only available at the ad-
ministrative and census levels, such as ZIP codes (“code
postal”), municipalities (“communes”), and census tracts
(“IRIS”), the finest and basic scale for sub-municipal in-
formation in France. We focus on three major urban
areas: Paris, Marseilles and Toulouse.
For both datasets, we focus on houses and apartments,

and do not consider farms or rural parcels.

B. Building a network

We begin by discretizing the space into spatial units
(square grid cells, municipalities, districts, postal codes,
census-tracts, etc). This allows us to label each listing
according to the spatial unit it falls into, along with
the agency that posted this listing. By doing so, we
build a tripartite relation between agencies, listings, and
spatial units. Based on this structure, we can build a
weighted bipartite network that connects agencies and
spatial units, where the link weight ωB

α,i accounts for the
number of listings posted by agency α that are located
in the spatial unit i. The resulting network contains all
the information about the spatial characteristics of the
housing market.
Bipartite networks can be projected to create networks

with a single type of nodes [31–33]. In our case, we
project it to build a new weighted network connecting
spatial units (see Fig. 1(a) for schematic representation,
taking as an example the discretization of space with
square grid cells). Let us assume that we have N spatial
units and Na real estate agencies. The set of all agen-
cies operating in the entire area is {α}, while the subset
operating in the spatial unit i is denoted by {α}i. The
fraction of listings in i that belong to a certain agency α
is

fα,i =
ωB
α,i∑

γ∈{α}i
ωB
γ,i

, (1)



3

(a)

Comm. 00
Comm. 01
Comm. 02
Comm. 03

Comm. 04
Comm. 05
Comm. 06

(b)Comm. 00
Comm. 01
Comm. 02
Comm. 03
Comm. 04
Comm. 05
Comm. 06

(c)Comm. 00
Comm. 01
Comm. 02
Comm. 03

Comm. 04
Comm. 05
Comm. 06
Comm. 07

FIG. 2. Market segmentation for 1 km square cells. Communities from the projected network for the three Spanish
provinces studied: Balearic Islands (a), Barcelona (b), and Madrid (c). The spatial cells are 1 km square cells. The communities
shown are detected using the Louvain algorithm with a consensus clustering of 1000 realizations. The underground map data
is rendered from OpenStreetMap under ODbL.

where the index γ runs over all the agencies operating
in i. In the projected network, we define the influence
weight between two spatial units i and j as

ωi,j =

∑
γ∈{α}ij

fγ,i fγ,j

1
2

[∑
γ∈{α}i

f2
γ,i +

∑
β∈{α}j

f2
β,j

] , (2)

where {α}ij ≡ {α}i ∩ {α}j is the subset of agencies op-
erating in i and j. The weight ωi,j = 1 if the agencies
operating in i and j are the same, and cover an equal frac-
tion of the market in both spatial units. If the market
distribution is similar, but not equal, the weight will de-
viate from 1. Reciprocally, if no common agency is found
across the two spatial units, the weight is zero and there
is no link between them. Fig. 1(b) and 1(c) show exam-
ples of the influence weights between two spatial units
with equal distribution of the listings in (b), for which
ωi,j = 1, and a complementary distribution in (c) with
a value of ωi,j = 0.02. Note that our influence weight is
related to the participation ratio introduced by Derrida
et al. in [34].

The projected network is thus built with the spatial
units as nodes, which are connected with links weighted
according to Equation 2. A group of spatial units
strongly connected between them implies that they share
a common ecosystem of agencies, that operate with a sim-
ilar market share in these units. Searching for clusters
in this weighted spatial network should therefore inform
us on the spatial segmentation of the housing market,
the clusters corresponding to submarkets. In the net-
work literature, such clusters are commonly referred to
as communities, with numerous methods proposed to de-
tect them [35]. We use several classic community detec-
tion algorithms [36–40] that account for network weights,
including Louvain [39], Infomap [37], and OSLOM [40].
These algorithms enable us to classify the spatial units
into communities. Since these algorithms are stochas-
tic, we perform several realizations of each method, and
perform consensus clustering [41] for higher stability.

III. RESULTS

A. Segmenting the market according to agencies’
operations

We start by analyzing the spatial segmentation that
arises from the data geolocated in the Balearic Islands,
Barcelona, and Madrid using 1 km-sided square cells.
Fig. 2 presents the communities listed according to their
size, from larger to smaller. Even though our methodol-
ogy does not consider spatial proximity, we observe spa-
tial segmentation in adjacent regions with few exceptions.
For the Balearic Islands, we observe that spatial con-
straints, such as insular nature of the environment, affect
the segmentation of the housing market: while the same
submarket covers Minorca or Ibiza-Formentera, Majorca
is divided into four different ones. It is noteworthy that
the submarkets that emerge in all these three provinces
are slightly larger than municipalities.
To study the robustness of identified submarkets in

each of the three provinces, we run several community
detection algorithms, and compare the communities ob-
tained across realizations of different algorithms. We de-
fine as a network partition the classification of the cells
in communities, X = {x0, x1, · · · , x|X|−1}, where each
community xi is a set of cells. The partition X has |X|
communities in this notation. Every cell must be in at
least one community, but in some clustering methods a
cell may belong to several. In order to compare two par-
titions X and Y , we compute a confusion matrix CXY

in which each element is defined as

CXY
ij = |xi ∩ yj |, (3)

where xi and yj are communities in the partitions X and
Y , respectively, and |.| stands for the cardinal (number
of elements) of a set. An element CXY

ij can be zero if
there is no overlap between the communities, and it can
be large if the two communities coincide across the par-
titions. We reorder then the elements of the matrix CXY

to have the largest values in the pseudo-diagonal. Note
that CXY is not necessarily a squared matrix because the
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FIG. 3. Agreement between different partitions.
Partition result of the community detection methods at the
Balearic Islands using Louvain algorithm (a) and OSLOM
method (b) 1km square cells. The confusion matrix CXY of
the two partitions (c), is ordered according to the maximum
overlap. The underground map data is rendered from Open-
StreetMap, under ODbL.

number of communities in each partition may differ. This
process is essentially the identification of the communi-
ties in one partition that correspond to the communities
in the other. This is a statistical match, given that the
cells of a community in X may be distributed in several
communities in Y . As shown in Fig. 3, if the partitions
between the two methods are similar, we must observe a
strong pseudo-diagonal in the confusion matrix. The sum
of the elements of this pseudo-diagonal is the number of
cells clustered in the same way in the two partitions. To
compute a measure of the agreement between two parti-
tions, we use the fraction H(X,Y ) [42, 43] defined as

H(X,Y ) =

min(|X|,|Y |)−1∑
i=0

CXY
ii

N
, (4)

where the matrix CXY is ordered to maximize the
pseudo-diagonal, and N is the total number of cells.
H(X,Y ) is a metric commonly used in the literature
to compute the accuracy between community detection
algorithms [44–51], its value is bounded in the interval
(0, 1], but it has the downside that H(X,Y ) depends on
the size of the communities. To determine if the value
of H(X,Y ) is significant, it is necessary to compare it
with a randomized version of the partitions, H(Xr, Yr),
in which the cells are reshuffled at random across the
communities of each partition respecting the community
sizes.

Figure 4(a-c) compares the three community detec-
tion algorithms (Louvain, OSLOM, and Infomap) used
for different provinces. In all cases, the agreement be-
tween the communities detected from the real partition
is higher than that of the randomized communities. The
OSLOM-Louvain comparison exhibits the highest agree-
ment, which is significant in all provinces. In the Balearic
Islands, a robust and statistically significant agreement
is evident among all methods. However, when examining
Barcelona and Madrid, Infomap detects a large commu-

FIG. 4. Agreement across three methods and cell
sizes. Agreement across the different community detec-
tion methods for the network in Balearic Islands (a), in the
province of Barcelona (b) and of Madrid (c). The metric
used to compute the agreement between method partitions is
H(X,Y ), shown in the lower triangles for each pair of meth-
ods, denoted by X and Y . The upper triangles display the
value H(Xr, Yr), being Xr and Yr the partitions randomized
(preserving the communities size). In (d), comparison of par-
titions obtained with the Louvain method for networks gener-
ated with different cell sizes: 500 m-sided vs 1 km-sided cells
(top row), and 1 km-sided vs 2 km-sided cells (bottom row).

nity probably due to the high density of the network, and
this does not compare well with the other methods which
detect more communities. In fact, the value of H(X,Y )
approaches the one of the randomized model. This issue
is absent in the Balearic Islands, where the network has
a stronger intrinsic spatial division into different islands.

So far, we have focused on the results for the networks
built with 1 km-sided square cells. It is, nevertheless, im-
portant to check whether the results may vary depend-
ing on the scale of the unit cells. We thus recalculate
the networks taking as basis square cells of side 500 m
and 2 km and compute the communities using the Lou-
vain method with consensus clustering. The cells of the
different scales have been delimited to keep spatial co-
herence: four 500 m cells form one of the 1 km cells used
in the previous figures, and four 1 km cells aggregate to
form a 2 km cell. This hierarchical structure allows us
to compare communities at various levels because we can
identify the cells across scales. For example, if a 2 km
cell belongs to a community, then the four 1 km cells
composing it share the same community label. In par-
allel, we also run the community detection algorithm in
the network composed of 1 km cells, and then we can
use the confusion matrix and H(X,Y ) to compare the
partitions at these two scales using 1 km cells. Note that
the calculation of H(X,Y ) requires the same number of
basic units in the two partitions. Figure 4(d) shows the
results of this analysis, where we use 1 km-sided cells as
a reference for comparison with the other scales. In all
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(a)

(b)
(c)

(d)

(e)

FIG. 5. Community detection from networks using
administrative spatial units. Communities detected using
census areas (a) and municipalities (d) as spatial units to build
the network in Madrid. The clustering method employed is
the Louvain algorithm. The agreement across the different
methods for the census (b) and municipalities (e). (f) shows
the communities’ agreement between 1 km cells and admin-
istrative boundaries networks for all Spanish provinces. The
agreement in (b)-(c)-(e) is computed using H(X,Y ) (lower
triangles) compared with the value randomizing the commu-
nities (upper triangles). The underground map data is ren-
dered by OpenStreetMap, under ODbL.

cases, we notice a consistently high and statistically sig-
nificant level of agreement. This demonstrates that our
methodology generates communities that remain robust
across the three spatial scales.

B. Comparison with networks obtained from
administrative boundaries

In this section, we examine how incorporating admin-
istrative spatial boundaries to build networks impacts
the detection of communities. In many cases, the geo-
graphical information for listings is only available at the
level of existing administrative boundaries and statisti-
cal units, which are by design more heterogeneous than
square cells.

We aggregate listings into administrative and statisti-
cal spatial units to determine if the emergent submarkets
are stable and consistent when comparing with the ones
observed with the networks built with square cells. In
this case, we consider municipalities and census tracts
as they are the most common administrative divisions
applied to spatial statistics.

Fig. 5 shows the communities found in the province of
Madrid. We observe clear differences between the results
obtained using census tracts (Fig. 5(a)-(b) and using mu-
nicipalities (Fig. 5(d)-(e). The results for census tracts
are characterized by a large community that covers al-
most all the territory and the agreement between meth-
ods is not significant. In contrast, the results using mu-
nicipalities have a good and significant OSLOM-Louvain

101 102 103 104 105

Anouncements per spatial unit x

10 6

10 4

10 2

PD
F(

x)

1 km cells
Municipalities
Census
Zipf law
P(x) = 1/x

FIG. 6. Distribution of listings for different spatial
units. Each spatial unit is shown by a different color and
marker: green crosses (1 km-sided cells), blue circles (munic-
ipalities), and red triangles (census). The dashed black line
shows the slope of a Zipf law distribution.

agreement. Keeping Louvain as the reference method, we
compare the partitions of the networks originated from
1 km, census tracts, and municipalities in Fig. 5(c). The
communities in the networks using cells and municipali-
ties show significant agreement, while those based on cen-
sus tracts show non-significant values in Barcelona and
Madrid.
While the distribution of listings per spatial unit in

the other cases follows a heterogeneous distribution, well-
described by a Zipf law, the one for census tracts follows
a more homogeneous distribution (see Fig. 6). This ef-
fect is a consequence of how the census tracts are built,
forcing the population in each unit to be similar by a
heterogeneous selection of the space included in each
unit. This distribution is directly translated into the net-
work weights and thus impacts the spatial segmentation
method.

C. Recovering the submarkets from census level
data

Multiple datasets, such as our French data, are avilable
at census level. To maintain the broad applicability of
our spatial segmentation methodology, we have devised a
data aggregative method to recover the results obtained
at the cell and municipality levels. This technique en-
ables us to restore the Zipf law pattern using data gath-
ered at the census level and to find similar segmentation
results regardless of the basic spatial units.
We start with listings at a census scale, such that each

listing is associated to an agency and a census tract. The
first step is to divide the space into square cells, as we did
in Section II. The cells intersect with the census tracts.
We then associate each listing to a cell with a probabil-
ity proportional to the overlapping area between the list-
ing census tract and the cell. This process is repeated
for all the listings to reconstruct a tripartite network
of agencies-listings-cells, from which we can follow the
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FIG. 7. Stochastic aggregative method using census
level data. From a census-level listing and the spatial di-
vision of the census in square cells, we generate an ensemble
of networks. In this ensemble, each listing within a census
tract is associated to a cell with a probability based on the
overlapping area between the census and the cell. For each of
these cell networks, we run a community detection algorithm
multiple times. The next step involves combining the results
from these partitioned networks through consensus cluster-
ing, resulting in an aggregated network.

methodology explained to reach a cell-cell network and a
segmentation in submarkets (communities). We observe
that in the final networks the Zipf law distribution of
listings per cell is recovered.

Since the assignation of listings to cells is stochastic,
the projected network is different each time the process
is repeated. To avoid uncertainty, we construct an en-
semble of these networks. For each network, we run the
community detection algorithm multiple times. Once our
cells are labeled with a community, we perform consensus
clustering to aggregate all partitions from all aggregated
networks of our ensemble into a single consensus aggre-
gated network. We represented this process in detail on
Fig. 7.

To verify the results of the aggregative method, we per-
form a comparison of the submarkets obtained out of dif-
ferent networks. Starting with our Spanish data, where
the listings are geolocated using exact coordinates, we
build networks at the level of 1 km cells, census tracts and
municipalities. We then apply the method to aggregate
the census tracts to the cells. This gives us a fourth fam-
ily of networks, which we call aggregated cells network.
We then run community detection methods and compare
them across the networks, taking as a basis the partition
obtained from the network of aggregated cells (see Fig.
8). For all cases, the agreement exhibited by partitions
of the aggregated cells network and the original cells or
the municipalities is very high (and significant compared
to the randomized communities). Therefore, by recon-
structing the network with the aggregative method, we
recover the original communities at the cell and munici-
pality levels and avoid the issues caused by the natural
spatial heterogeneity of census tracts.

Census Municipalities
1 km cells

Illes Balears

Barcelona

Madrid

0.32

0.53

0.34

0.25

0.18

0.23

0.23

0.27

0.19

0.34

0.57

0.40

0.93

0.33

0.64

0.75

0.54

0.50
0.0

0.2

0.4

0.6

0.8

FIG. 8. Comparison between the communities from
aggregated cells network and other spatial units. Each
column shows the agreement between the communities of the
1 km aggregated cells networks (from census data) and the
networks obtained from the other spatial units: Census, Mu-
nicipalities, and 1 km cells from the original latitude longitude
coordinate data. Each row shows the results for each province:
Balearic Islands, Barcelona and Madrid. The agreement is
computed via the fraction of correctly detected cells H(X,Y )
(lower triangles) compared with the value randomizing the
communities (upper triangles).

D. Comparison across countries

In this section, we investigate whether the emergent
spatial segmentation revealed by our method is a unique
feature of the Spanish market, or can be understood as a
more general phenomenon across geographical contexts.
To this end, we use listing data for three major French ur-
ban areas, namely, Marseilles, Paris, and Toulouse. Since
we do not have exact coordinates for the listings, which
are only located at a census tract level, we have to em-
ploy the stochastic aggregative technique described in the
previous section to obtain the networks at the cell level
or to aggregate the data at the municipality (commune)
level (since the census tracts can be grouped within each
commune).
Communities emerge in these French urban areas at

aggregated cell level as well (see Fig. 9). The communi-
ties are contiguous in space, similar to the ones observed
in Spain, suggesting that listings (as a source of informa-
tion on listed properties and agencies) allow us to study
the spatial segmentation of the housing market through
a data-driven, bottom-up method that foregrounds the
practices of key market intermediaries.
We repeat the exercise of comparing networks built

from different spatial divisions. If France exhibits the
same structures found in the Spanish dataset, we would
expect the communities found from the aggregated cells
and municipality networks to coincide, being the ones
from the network of IRIS level very different. Fig. 10
displays the agreement between the communities using
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(a)Comm. 00
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FIG. 9. Spatial segmentation for 1 km aggregated
cells constructed from IRIS level data for France.
Communities detected at the stochastic projected network
for the 3 French FUA studied: Marseilles-Aix en Provence
(a), Paris (b), and Toulouse (c). The communities shown are
detected using the Louvain algorithm with a consensus clus-
tering of 200 clustering method realizations for each of the 100
stochastic networks generated in the IRIS to cell aggregative
process. The underground map data is rendered by Open-
StreetMap, under ODbL.

aggregated cells and administrative divisions (IRIS and
communes). All values of the agreement are signifi-
cant when compared with the randomized communities,
but the largest agreement is found between aggregated
cells and communes in all places, echoing results with
the Spanish data. This indicates that our aggregative
method is a general tool to compute a robust spatial seg-
mentation of the housing market.

IV. CONCLUSIONS

In this study, we present a new method for analyzing
the spatial segmentation of housing markets through the
activity of real estate agencies, using online listings to
extract information on the location of both the property
and the marketing agency. We apply this method to
analyze comprehensive datasets of geolocated listings in
two different countries: Spain and France.

Our methodology is based on dividing space into spa-
tial units, to construct a tripartite network between list-
ings, real estate agencies, and spatial units. We project
the network, taking into account the presence and in-
fluence of real estate agencies. To divide our projected
networks, we use different classic community detection al-
gorithms that account for network weights, such as Lou-
vain, Infomap, and OSLOM. Our methodology generates
a spatial segmentation into regions that happen to be
spatially connected and larger than municipalities. This
segmentation into submarkets remains robust across dif-
ferent community detection algorithms, scales, and ad-
ministrative boundaries across different countries.

We discovered a limitation of our method when the
spatial units exhibit a highly heterogeneous area distri-
bution, and the Zipf law of the distribution of listings per
spatial unit is not fulfilled, as in the case of census tracts.
To overcome this limitation and extend our methodology
to heterogeneous-level data, we developed a method to
create an aggregated network via stochastic reconstruc-

IRIS Communes

Marseilles

Paris

Toulouse

0.20

0.22

0.18

0.18

0.16

0.26

0.47

0.48

0.69

0.72

0.75

0.80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 10. Comparison between the 1 km aggregated
cells communities and the political units communities
in France. Each column shows the agreement between the
1 km aggregated cells and the French political spatial units:
IRIS and Communes. Each row shows the results for each
FUA: Marseilles-Aix en Provence, Paris, and Toulouse. The
agreement is computed via the fraction of correctly detected
cells (lower triangles) compared with the value randomizing
the communities (upper triangles).

tion and consensus clustering aggregation. This method-
ology exhibits good accuracy when compared with the
communities from the original high-precision data.
To summarize, we have developed a new methodology

that uses listings data to evaluate the spatial segmenta-
tion of housing markets into spatially-coherent submar-
kets. This methodology is generally applicable to differ-
ent datasets of geolocated listings to infer the submar-
kets that emerge from the uneven presence and influence
of real estate agencies across space. The market-based
supra-municipal communities that emerge from the data
are found to be robust. Future research should inves-
tigate how identifying the submarkets created by mar-
ket intermediaries can inform policymaking and improve
price modeling.
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