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We revisit the sandpile model with “sticky” grains introduced by Mohanty and Dhar �Phys. Rev. Lett. 89,
104303 �2002�� whose scaling properties were claimed to be generically in the universality class of directed
percolation for both isotropic and directed models. While for directed models this conclusion is unquestion-
able, for isotropic models we present strong evidence that the asymptotic scaling in the self-organized regime
�in which a stationary critical state exists in the limit of slow driving and vanishing dissipation rate� is, like
other stochastic sandpiles, generically in the Manna universality class. This conclusion is drawn from extensive
Monte Carlo simulations, and is strengthened by the analysis of the Langevin equations �proposed by the same
authors to account for this problem�, argued to converge upon coarse-graining to the well-established set of
Langevin equations for the Manna class.
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Toy models of sandpiles are the archetypical examples of
self-organized criticality �1–3�. Sandpiles come in many dif-
ferent flavors �deterministic or stochastic rules �4�, discrete
or continuous variables �5�, with or without height restric-
tions �6�, etc.�, but they usually consist in adding grains one
by one until a local threshold �typically a condition on some
slope or height� is reached, triggering a series of redistribu-
tion events, i.e., “avalanches,” which may lead to dissipation
of sandgrains at the open boundaries. Their numerical study
is notoriously difficult and first led to a largely unsatisfactory
situation in which “microscopic details” were believed to
influence scaling properties, in contradiction with universal-
ity principles �7,8�. Major progress in favor of universality
came when sandpiles were put into the broader context of
standard nonequilibrium absorbing-state phase transitions
�9–15�. Indeed, switching off both dissipation �open bound-
aries� and driving �slow addition of grains� the total amount
of sand or “energy” is conserved and becomes a control pa-
rameter for these “fixed energy sandpiles.” For large amounts
of sand the system is in an active phase with never-ending
relaxation events, while for small energies it gets trapped
with certainty into some absorbing state �all sites below
threshold�. Separating these two regimes there is a critical
energy which was shown �10–12� to coincide with the sta-
tionary energy-density in the corresponding original sandpile
�which corresponds to the limit of driving and dissipation
rates going to zero, with the ratio of these two rates going
also to zero �16,17��. In this way, the exponents characteriz-
ing sandpiles can be related to standard critical exponents in
an absorbing-state phase transition �18�. An alternative route,
not dicussed here, is to map sandpiles into standard pinning-
depinning interfacial phase transitions �13�.

Using this approach, it was determined that stochastic
sandpiles �20� do not belong generically to the very robust
directed percolation �DP� class, prominent among absorbing
phase transitions, but to the so-called “conserved-DP” or
Manna class �hereafter C-DP/Manna� characterized by the
coupling of activity to a static conserved field directly repre-
senting the local conservation of sandgrains �10–12,14,21�.

The field theory or mesoscopic Langevin equations describ-
ing this class reads

�t� = a� − b�2 + ��E + D�2� + ���� ,

�tE = DE�2� , �1�

where ��x , t� is the activity field �characterizing the density
of grains above threshold�, E�x , t� is the locally conserved
energy field, a, b, �, D, �, and DE are parameters, and
��x , t� is a Gaussian white noise. Equation �1� represents a
robust and well-established universality class including not
only stochastic sandpiles, but also some reaction-diffusion
systems �21,14�.

Recently, Mohanty and Dhar �MD� �22� have introduced a
new type of sandpiles where, with some probability, 1− p,
grains may remain stable even if the local threshold is
passed. Owing to this, for small values of p the average
energy grows unbounded and no stationary state is reached,
while for p larger than a critical value, pc

*, a self-organized
critical state with a finite average energy and critical ava-
lanches is reached. MD claimed that these sandpiles should
be generically in the DP class. They presented clean analyti-
cal and numerical evidence that indeed this is the case for a
directed two-dimensional system, which happens to be map-
pable into an effective one-dimensional directed site-
percolation dynamics. Also, for isotropic �undirected� mod-
els with stickiness it was shown that DP scaling holds right at
pc

*.
What is not so clear is what is the generic behavior of

these, isotropic, sandpiles in the self-organized regime. For
this case, no rigorous mapping exists, and MD presented
some Monte Carlo simulation evidence that the model could
still be in the DP class. Additionally, they justified this claim
by proposing that an adequate set of Langevin equations for
sandpiles with stickiness should include a coupling of the
form ����E−�−Ec�, where � is the Heaviside step func-
tion and Ec is the instability threshold, substituting the bilin-
ear coupling ��E in Eq. �1�. The logic behind such a term is,
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in principle, reasonable �19� and it is argued in �22� that
considering this coupling, one could leave the C-DP/Manna
universality class and return to DP. In such a case, the con-
servation law should be irrelevant in the presence of “sticki-
ness” �see the schematic diagram in Fig. 4 of �22��.

Here we present strong evidence that, even in the pres-
ence of stickiness, the generic universality class of isotropic
self-organized sandpiles remains the C-DP/Manna one. To
justify this claim we first report on extensive simulations of
the model studied in �22� in the fixed-energy ensemble, from
which we conclude that isotropic sticky sandpiles are in the
C-DP/Manna class. Afterward, we integrate the set of Lange-
vin equations with a � function coupling, which we find to
be also in the C-DP/Manna class, and we perform a numeri-
cal renormalization treatment and illustrate how, upon
coarse-graining, these Langevin equations evolve to Eq. �1�.

The model proposed in �22� is a variation of the Manna
model: a discrete sandpile, defined on a one-dimensional lat-
tice, with a height threshold hc, slow sand addition and small
dissipation, but including a �sticking� probability 1− p for
grains to remain stable even if they are above threshold. This
model self organizes to a critical state in the double limit of
vanishing driving and dissipation, with the ratio of both go-
ing also to 0. Here we consider only the limit which pos-
sesses a critical point, i.e., the bulk-dissipation rate �� in the
notation of �22�� is set to zero. Active sites �at which h�hc�
are updated in parallel with the toppling occurring with prob-
ability p. Following the strategy in �10–12�, we analyze the
“fixed energy” version of the model: we suppress grain ad-
dition and dissipation, fix the total energy E, and use p as a
control parameter. Note that, owing to the existence of a
nonvanishing sticking probability, arbitrarily large heights
are allowed; upon approaching pc

* the average height di-
verges and the fixed energy ensemble cannot even be defined
for p	 pc

*.
We have implemented two different versions in which

each toppling event redistributes two grains to the two
nearest-neighbor sites, either randomly �stochastic rule� or

regularly, with one grain onto each neighbor �deterministic
rule�. The methodology followed is standard for absorbing
phase transitions. First, we fixed a given energy, E=2, and
locate the critical point by studying the decay of activity
from some initial condition varying p in a large system: for
large p values, activity saturates �active phase�, while for
small p activity vanishes �absorbing phase�. At the critical
point, separating these two phases, pc�E�, activity decays as-
ymptotically as a power-law with an exponent 
=� /��. For
the stochastic and the deterministic rules, we find,
respectively, pc=0.849 37�2� with 
=0.120�8� and pc

=0.767 50�3� with 
=0.115�8� �Figs. 1�a� and 1�b��. These
estimates of 
 are in good agreement with the best evalua-
tions for the C-DP/Manna class in one dimension, i.e.,

=0.125�2� �23�, and clearly incompatible with the DP value

�0.159.

Next, using the critical value determined above, the varia-
tion of the stationary saturation value of activity at the
critical point for smaller system sizes is recorded. From the
expected scaling law �st�p= pc��L−�/��, we determine
� /��=0.22�1� for both the stochastic and the deterministic
rule as shown in Figs. 1�c� and 1�d�. Again, this value is in
good agreement with available estimates for the C-DP/
Manna class � /��=0.215�5� �15,24�, and incompatible with
the DP value � /���0.252.

Also, spreading experiments �not shown� fully confirm
this result. In addition, we verified that taking the previous
critical points for both the stochastic and the deterministic
rule, and performing standard simulations without fixing the
energy �i.e., with open boundaries and slow addition of
grains� the system self-organizes to an average energy E=2
with C-DP/Manna exponents.

Finally, we have considered also larger values of E as
E=3, and, even if with longer transient effects, simulation
results exclude DP behavior and support again C-DP/Manna
scaling. For all the studied values in the self-organized phase
we obtain this same conclusion.

We now turn to a study of the coupled Langevin equations

FIG. 1. �Color online� �a� and �b� Log-log plot
of the time-decay of the order parameter �activity
density� for different system sizes �from top to
bottom: L=64, 128, 256, 512, 1024, 2048, and
L=218� and for the �a� stochastic rule and �b� the
deterministic one, at their corresponding critical
points pc=0.849 37�2� and pc=0.767 50�3�.
From the slopes, we determine 
=0.120�8� and

=0.115�8�, respectively �DP slopes are plotted
for comparison�. In �c� and �d� we plot the satu-
ration values at the previously determined critical
points for the stochastic �c� and deterministic �d�
rules, respectively. From the scaling at the critical
point we determine � /��=0.22�1� for both of
them.
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proposed by MD to describe their coarse-grained dynamics.
The stochastic equations proposed in �22� is Eq. �1�, i.e.,
those of the C-DP/Manna class, except for the coupling term
��E which is replaced by ����E−�−Ec� where Ec is the
�microscopic� toppling threshold, and E−� the density of
nonactive grains. The presence of this microscopic feature
and of the step function � is surprising in so far as Langevin
equations are usually understood as resulting from some
coarse-graining of microscopic dynamics. In particular, the
step function is unlikely to be a robust mesoscopic descrip-
tion, as it will be modified �probably transformed into a
smoother function� upon coarse-graining.

Discontinuous functions are notoriously difficult to handle
in the framework of renormalization group analysis. More-
over, even the “simple” equation �1� resists standard pertur-
bative renormalization attempts �25�. The only available
strategy then is direct numerical integration. The presence of
the �square-root� multiplicative noise term makes this a pri-
ori difficult �26�, but this technical difficulty was recently
circumvented by the fast sampling method introduced in
�23�.

We have used this numerical scheme to integrate the
equations proposed by MD. The simulations yielded two sets
of results: following the protocol recalled above, we studied
the absorbing phase transition observed when varying the
linear coefficient and analyze critical properties. Also, we
introduced a local effective “mass” coefficient measuring
whether there is fostering of activity creation �site above
threshold� or not at each site,

aeff�x,t� = a + ��„E�x,t� − ��x,t� − Ec… , �2�

and studied the behavior of its average upon coarse-graining
in numerical simulations. With this, we illustrate how the
�-function evolves upon coarse-graining, and clarify the
connection between the two sets of Langevin equations.

Phase transition. Starting from a homogeneous, active,
initial condition, we studied the time decay of spatially av-
eraged activity varying the control parameter a. As expected,
algebraic decay is found at the critical value separating ex-
ponential decay �absorbing phase� from saturation �active
phase�. The estimated decay exponent 
=0.130�5� is in per-
fect agreement with the C-DP/Manna class value �Fig. 2�a��.
At the critical point, a=0.723 08�5�, the scaling of the sta-
tionary activity for finite size systems yields the estimate
� /��=0.22�1� �Fig. 2�b�� again in agreement with the C-DP/
Manna value. These estimates are thus incompatible with the
DP class values. We have also performed spreading experi-
ments �9� by following the standard procedure: we perturb a
natural absorbing state �one generated by the system dynam-
ics� to generate a small amount of localized activity and
analyze how it spreads out at the previously determined
critical point. We measured �=0.39�3�, �=0.167�5�, and
z=1.39�3� exponents for the number of active sites, surviv-
ing probability, and average square-radius critical, respec-
tively �9�. These values are in good agreement with the best
estimations for the C-DP/Manna class �14� and differ from
their corresponding DP values ���0.313, ��0.159, and
z�1.258 �18��.

Numerical coarse-graining. The above results are easily
understood when observing the behavior of the MD Lange-
vin equations coarse-grained numerically. To do this, we
build scatter plots of 	aeff
N vs the field difference 	E−�
N,
where the averages are taken on Kadanoff-blocks of length
N. For N=1 �Fig. 3�a��, we obviously observe the �-function

FIG. 2. �Color online� Direct numerical integration of the
Langevin equations proposed in �22�. Black dashed lines corre-
spond to C-DP/Manna scaling. �a� Decay experiments at the critical
point a=0.723 08 �parameters: system size L=220, 	E�x , t=0�

=0.5, b=1, hc=0.5, D=DE=0.25, �2=�2=2, integrated with time-
step dt=0.25�. �b� Finite size scaling at criticality �more details in
the text�.

FIG. 3. �Color online� Effective mass as defined by Eq. �2� as a
function of the field difference averaged in Kadanoff blocks of size
N, for a=0.723 13 in the active phase and �=�2. The vertical line
corresponds to the threshold value hc=0.9. Observe that the larger
the block size, the smoother the effective-mass dependence on the
coarse-grained field difference.
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form. For N=4 �Fig. 3�b��, the effective coupling can take
intermediate discrete values between a and a+�, depending
on the number of above-threshold microscopic sites in the
block. When the block size is larger and larger �Figs. 3�c�
and 3�d��, a smooth function gradually appears. By retaining
just the two leading terms in a Taylor expansion of such an
analytical function around the origin, we recover, at a coarse-
grained level, the Langevin equation for the C-DP/Manna
class Eq. �1�, i.e., a linear coupling term and a correction to
the linear term, a in Eq. �1�. Higher order terms in the Taylor
expansion can be argued to be irrelevant from standard naive
power counting arguments. Therefore, it is not surprising that
the set of Langevin equations including a Heaviside � func-
tion should exhibit the same asymptotic behavior as the
original C-DP/Manna class Langevin equations, Eq. �1�.

In summary, introducing “stickiness” in isotropic sandpile
models does not change their universality class, which re-
mains generically that of the Manna model for p� pc

*. This
conclusion is supported by extensive numerical simulations
of microscopic models and Langevin equations proposed in
�22� to describe these sandpiles. We showed in addition that
these Langevin equations “flow” toward those of the C-DP/
Manna class under some numerical coarse-graining proce-
dure. Fully understanding the origin of the discrepancies be-

tween our results and the claim in MD that the self-organized
regime is DP-like �which might be either due to the presence
of long crossovers or related to the way the driving and dis-
sipation rates tend to zero �17�� remains an open task.

One can also wonder what is the reason why this conclu-
sion does not hold for the directed sandpiles studied also by
Mohanty and Dhar in �22� �see also �27��, which they proved
to be in the DP class. These directed models, defined on a
two-dimensional lattice include an isotropic direction and a
fully anisotropic one, in the sense that sand goes “down-
ward” in that direction but not “upward.” This makes it pos-
sible to map the problem on DP in �1+1� dimensions, i.e.,
the anisotropic dimension can be taken as “time.” The local
conservation of energy is present also in these models, but
“local” here means in “space-time” neighborhoods, while en-
ergy is not conserved in the isotropic spatial direction.
Hence, C-DP/Manna behavior does not show up while DP
scaling, the usual one in the absence of spatial energy con-
servation, emerges, as indeed was proved in �22�.
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