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FIG. 5. Global shifts in PD risk index (rj (τ)) from 2020 to 2050. To build the maps, we have assumed a spatial
homogeneous vector distribution and a R0 = 5 scenario, except for the United States where a R0 = 8 has been used in the
model simulations.(A) North America;(B) Europe;(C) Asia; (D) South America; (E) Australia and New Zealand; and (F)
South Africa. Risk-index increases are in red and decreases in blue. Dash line represents the spatial threshold where rj (τ)
difference changes from negative to positive.

TABLE III. Shifts in risk areas for Pierce’s disease in Europe projected for 2050 under a R0 = 5 scenario. The
model was run assuming the same homogeneous spatial distribution of the vector for the whole period.

Risk 2050 2020 Difference Difference 2050 2020
km2 km2 km2 (%) (%) area (%) area

No risk 8885300.5 9334178.7 �448878.2 �4.8 87.6 92.1
Transition 381081.3 182872.6 198208.7 108.3 3.8 1.8
Very low 189025.3 179225.7 9799.6 5.5 1.9 1.8
Low 207599.4 104143.1 103456.3 99.3 2.1 1.0
Moderate 154780.5 148621.4 6159.0 4.1 1.5 1.5
High 322225.9 190971.4 131254.5 68.7 3.2 1.9

is at moderate risk (Supplementary Table S8). The areas
with the highest risk index (r(t) between 0.70 and 0.88)
are mainly located in the Mediterranean islands of Crete,
Cyprus and the Balearic Islands or at pronounced penin-
sulas like Apulia (Italy) and Peloponnese (Greece) in the
continent (Fig. 6A and Supplementary Table S8). Most
vineyards are at non-risk (42.1%) and another 35.6% are
located in transition zones with presently non-risk but
where XfPD could become established in the next decades
causing some sporadic outbreaks. All known areas where
Xf is well-established in Europe (e.g. Apulia, Corsica,
Balearic Islands, Region of Provence-Alpes Côte d’Azur
(French Riviera), Alicante) are in the 96th percentile of
the tracked sites, validating the strength of our mechanis-
tic, non-correlative PD model predictions (test in [57]).
In Supplementary Data S4 and Supplementary Table S8,
we provide full details of the total vineyard areas cur-
rently at risk for each country and region.

Our model with climate and vector distribution projec-
tions for 2050 indicates a 55.8% increase of the epidemic-
risk zone in Europe (Fig. 6B). This increment would
be mainly due to the extension of epidemic-risk zones
with very low and low-risk indexes. However, within the
epidemic-risk zones, the areas with moderate risk indexes
would decrease from (114,925 ha in 2020 to 43,114 ha in
2050, and no vineyards would be at high risk (Fig. 6B; see
Supplementary Table S9 and Supplementary Data S4).
Counterintuitively, our model indicates a substantial in-
crease of the area where PD could establish and become
endemic for 2050, but a moderate decline in those areas
where crop damage could be expected to be significant
(e.g. Balearic Islands, Crete, Cyprus, Apulia).
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FIG. 6. Intersection between Corine-land-cover vineyard distribution map and PD-risk maps for 2020 and 2050.
Data were obtained from Corine-land-cover (2018) and the layer of climatic suitability forP. spumarius in Europe from [35].
The surface of the vineyard contour has been enlarged to improve the visualisation of the risk zones and disease-incidence
growth-rate ranks. (A) PD risk map for 2019 and its projection for 2050 (B). Blue colours represent non-risk zones and
transient risk zones for chronic PD (R0 < 1). The 2050 map shows some contraction of epidemic-risk zones with moderate risk
indexes in Mediterranean islands and Apulia as the climate becomes hotter and dryer.

Discussion

We introduce an epidemic approach to assessing the
risk of establishment of PD in vines. The model includes
the dynamics of the infected-host population, which en-
ables estimating the initial exponential growth/decrease
rate of the disease incidence. Unlike SDM correlative
studies, Bayesian or, in general, machine learning black-
box approaches, our model goes beyond by providing a
mechanistic framework and thus explanatory power. In
addition, it is flexible enough to simulate different cli-
mate and transmission scenarios, allowing, for instance,
the incorporation of the information on the spatial distri-
bution of the vector. We present comprehensive maps of
the global PD risk derived from simulations of our mech-
anistic model using high-resolution climate data. A web
page is included, showing results of simulations with dif-
ferent parameters to estimate the risk of PD anywhere
[57].

Temperature rules key physiological processes in ec-
tothermic organisms involved in PD and thus determines
the ranges of thermal limitation in which they can thrive
[52]. XfPD multiplication and survival within vine xylem
vessels not only characterise PD, but also determine the
bacterial population dynamics [38]. PD symptom de-
velopment can be therefore characterised as a thermal-
dependent continuous process within the range of cardi-
nal XfPD-growth temperatures [53]. Metrics of thermal
integrals (MGDD) based on robust experimental data
provide a reliable predictor of climatic suitability and
the probability of developing PD during the summer,
whereas CDD account for the effect of cold-temperature
exposure in the recovery of the infected plant. This dual
effect of MGDD and CDD on the demography of infected
plants shapes in our model the impact of climate vari-
ability on the epidemic dynamics in the early stages of
invasion (Fig. 1D). Because the physiological basis of the
plant-Xf interaction leading to symptoms development is

poorly understood, we caution that other environmental
factors, such as drought, nutrient status or crop manage-
ment may modulate symptom expression and hence add
an error in the MGDD parameter not measured in this
work. Nonetheless, we deem the error range would be
smaller than the differences in MGDD among varieties
(i.e., regional differences) and smaller than the interan-
nual MGDD oscillations in most locations.

Knowledge of insect distribution is crucial for predict-
ing epidemic outbreaks of endemic diseases, as well as
the risk of invasion by emerging vector-borne pathogens
([56, 66], (cf. [49])). Given the great diversity of known
and potential vector species that can transmit PD [30],
it has not been possible to include in the model each
one of the particular vectors of each region. Therefore,
when evaluating the risk of PD on a global scale, we have
considered a homogeneous spatial distribution of the vec-
tor (fixed R0), except in Europe where there is informa-
tion on the main vector (Supplementary Fig. S8). As
expected, the European case shows how models that as-
sume a homogeneous spatial distribution of the vector
generally produce epidemic risk zones with higher risk
indices than models that include a heterogeneous spatial
distribution (Supplementary Table S2 vs. Supplemen-
tary Table S7). This lack of vector information is one
of the main reasons why vector-borne plant diseases are
generally overestimated in risk assessments.

Involuntary risk overestimation may stem from other
additional sources too. The use of mean data as inputs
in epidemiological models can lead to biased results when
response functions are nonlinear and climate variability
is not accounted for [53]. In this study, we present ex-
perimental evidence of a non-linear relationship between
MGDD and PD symptom development and indirect em-
pirical evidence of a non-linear relationship between CDD
and PD recovery (Supplementary Fig. S9). Such a non-
linear response consequently has a great impact on re-
ducing the risk of PD establishment and steeping the
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spatial gradients in risk maps (Figs. 4 and 6). Moreover,
MGDD and CDD might help to explain why disease pres-
sure is much higher in the southeastern United States
than in California and Europe (Figs. 2 and 4) or, for ex-
ample, earlier reports of PD outbreaks in Kosovo [67].
Cooler summer-nights in California and a shorter grow-
ing season compared to those found in the Gulf states
in the southeastern United States explain the difference
in the accumulated MGDD for both areas. In the case
of Kosovo, CDD values above certain thresholds could
have led to the extinction of incipient outbreaks driven
by several years with MGDD in the conducive range of
PD (Fig. 2).

Our PD risk map for Europe confirms earlier correl-
ative SDM-derived predictions for the subsp. fastidiosa
[45]. Both approaches make congruent predictions on PD
potential distribution, providing convergent lines of in-
dependent evidence of climate suitability. However, our
risk maps go further by incorporating in the epidemic-
risk zones information on the relative exponential growth
rates in the potential disease incidence. By considering
different scenarios, this information could be used to as-
sess intervention policies. In general terms, the epidemic-
risk map including vector’s information indicates a low
risk for chronic PD. Only ∼ 0.34% of European vineyard
surface, mainly located in Cyprus, Crete, Sardinia, part
of Sicily and the Balearic Islands, meet climatic condi-
tions for PD to become endemic and cause significant
damage (Supplementary Table S7 and Supplementary
Data S4). Other regions such as Bordeaux, Portugal,
Rhône Valley, the Veneto region, would be included in
epidemic-risk zones but with very low to low exponential
growth rates in disease incidence. By contrast, notori-
ous winegrowing regions in Spain (e.g., Rioja, Ribera del
Duero), France (e.g., Burgundy) and Italy (e.g., Pied-
mont) currently fall within areas considered as non-risk
zones, transient-epidemic zones or epidemic-risk zones
with very-low risk indexes (Fig. 6).

The dynamic nature of the simulation outputs already
points to a progressive global increase in the areal ex-
tension of PD epidemic-risk zones (r(t) > 0) in the last
decade, irrespective of vineyard distribution (see movies
on [57]). This is even more accentuated in the model
projections for 2050 which point out a global expansion
of PD epidemic-risk zones at different velocities among
continents due to climate change (Fig. 5). For example,
many important viticulture areas in western Europe in-
cluded in non-risk or transition zones prior to 1990 are
progressively shifting to hotter summers and milder win-
ters and hence would be increasingly suitable for the
disease within the extrapolated current scenario. This
is further illustrated by a 40% increase of the potential
epidemic-risk zone by 2050 with respect to 2020 for Eu-
rope and more moderate increases in the United States
and in the Southern Hemisphere (Fig. 5). Nonetheless,
our model projection for 2050 that includes spatial het-
erogeneity in the vector distribution, as in Europe, would
indicate a lower transmissibility because global change is

predicted to have negative effects on P. spumarius abun-
dance in Europe [35, 68]. At global scale, there is certain
scientific consensus that climate change will follow a gen-
eral pattern summarised in the paradigm ”dry gets drier,
wet gets wetter” [69]. In agreement, our model projection
for PD on vineyards of Majorca (Spain) suggests shifts to
slightly less favourable conditions for XfPD transmission
and an expected progressive decrease in the impact of
the disease by 2050. This example and others in Mediter-
ranean islands (see Supplementary Data S4) advocate for
certain caution when interpreting climate change projec-
tions, especially in other Mediterranean climates of the
world, where the complex interactions between humidity
and temperature can limit the presence and abundance
of vectors (Supplementary Fig. S8).

The scope of our study is constrained by scale limita-
tions, precluding the location-specific complexities sur-
rounding PD ecology. The spatial distribution of the
vector is considered only for the V. vinifera-XfPD-P.
spumarius pathosystem in Europe, so the average R0

numbers could locally differ in other wine-producing re-
gions around the world (Fig. 3), leading to broad local
variation in disease incidence where climate is conducive
to PD. Such variation is because transmission rates tend
to increase exponentially rather than linearly under envi-
ronmental conditions favouring vector abundance [43], as
has been observed at local-scale on vineyards of Majorca
[12]. Our study also does not contemplate likely changes
within the PD pathosystem. To date, PD is caused by
XfPD (i.e., ST1/ST2), but other genotypes of the subsp.
fastidiosa or other subspecies and their recombinations
could arise in the future with different ecological and
virulence traits [19]. On the other hand, new vector
species could be accidentally brought in [30], as exem-
plified with the introduction of the glassy-winged sharp-
shooter (Homalodisca vitripennis) in California, modify-
ing transmission rates and disease incidence in new ar-
eas [44]. To capture these uncertainties in relation to
the vector, we have performed simulations with R0 = 8
and R0 = 16 (Fig. 4). Remarkably, a comparison of
PD risk maps for Europe with different R0 suggests for
non-Mediterranean areas the need to stress more surveil-
lance on the introduction of alien vectors rather than
in the pathogen itself. This is because, under the cur-
rent scenario (R0 = 5) with P. spumarius as the main
vector, most of the non-Mediterranean vineyards would
not support the establishment of PD, but the introduc-
tion of new insect vectors with greater transmission ef-
ficiency (R0 = 8) could compensate the climatic layer
and increase the risk index above 0. In addition, differ-
ences in grapevine varietal response alongside virulence
variation among Xf strains may slightly modify PD ther-
mal tolerance limits and therefore locally modulate epi-
demic intensity (see details in Supplementary Informa-
tion). Such effect could be seen with cv. Tempranillo, a
widely planted variety in northern Spain (Supplementary
Table S1); the rate of symptom progress and systemic
movement is higher than the average varietal response
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to XfPD (i.e., lower MGDD), which in addition might
imply higher survival rates. This point calls for further
testing in the field.

Our model partially explains why PD has not be-
come established in continental Europe and in other
main wine-growing regions worldwide during the last
150 years, in contrast to other exotic diseases and pests
brought in with native vines from the United States [5–
8]. We suggest that the underlying causes of this low-
invasiveness risk in Europe are fundamentally two: (i)
a low climatic suitability for chronic PD and (ii) a cli-
matic mismatch between environment conditions suit-
able for both the vector and the pathogen and their in-
terplay in disease dynamics, similar to the situation re-
cently described for the V. vinifera-XfPD-P. spumarius
pathosystem in northern California [33]. Currently, suit-
able conditions for the pathogen’s invasion mostly concur
in Mediterranean islands and coastlands (Supplementary
Data S4). Likewise, similar results would be expected in
other Mediterranean climates of main winegrowing re-
gions of the Southern Hemisphere if a vector spatial dis-
tribution layer is incorporated in the model simulations
(see [57]). Finally, although increasing global warming
will extent epidemic-risk zones in all continents, some
caution is recommended to not incur in risk overestima-
tion, as we show in the PD risk projections for 2050 in
Europe when taking into account the vector spatial dis-
tribution; complex interactions between temperature and
humidity in the ecology of the vectors may have a great
effect in their distribution, abundance and thus trans-
mission capacity [35]. There is an urgent need to fill the
knowledge gap on the ecophysiology for each potential
vector to downscale PD model predictions to local and
regional situations.

Methods

Inoculation tests. We carried out an extensive Xf
inoculation test on a large number of European vine
varieties to evaluate their response to the development of
PD symptoms. Fifty-seven rootstock-scion combinations
of local, regional and international varieties were pin-
prick mechanically inoculated with two isolates of Xf.
subsp. fastidiosa (ST1) recovered from grapevines [25].
Plants were randomly distributed in 12-plant rows along
an insect-proof net tunnel exposed to air temperature
(Supplementary Table S1). Disease severity was rated
by counting the number of symptomatic leaves eight
weeks-post-inoculation (wpi) and then every two weeks
until the 16th week. Full details on the inoculation
conditions, isolates, disease score and statistical analysis
are provided in Supplementary Information.

Modified Growing Degree Days We generalised the
concept of Growing Degree Days (GDD) to account
for the specific growth rate of XfPD as a function of
temperature based on the work of Feil & Purcell [38].

A multilinear fit was performed between Xf growth
rate and temperature to redefine the classic GDD
function into a new metric: the modified growing degree
days (MGDD) (see Supplementary Section S2A). The
base, optimal and maximum temperatures defining the
MGDD metric are given by Tbase = 12 °C, Topt = 28 °C,
Tmax = 35 °C and were directly retrieved from Feil &
Purcell measures [38]. The mathematical relationship
between bacterial population growth and the accumu-
lated MGDD is shown in Supplementary Section S2B).

Disease expression associated with temperature
Hourly mean temperature data was recorded over
the 3-year trial with an automated weather station
(Quimisur, IQ2000) located outside the insect-proof net
tunnel. We transformed the cumulative temperatures
into units of MGDD to characterise the development of
PD symptoms [70]. Data of the number of symptomatic
leaves and MGDD for each plant were pooled across the
36 inoculated grapevine varieties and 57 rootstock-scion
combinations to obtain a generalised average pattern of
V. vinifera response to XfPD. We modelled by survival
analysis the likelihood of developing PD symptomatic
leaves as a function of MGDD, fitting a logistic function.
As the event of interest, we assigned the value of five or
more symptomatic leaves corresponding to the valley in
the bimodal distribution of the number of symptomatic
leaves (Supplementary Fig. S1). This valley can be
interpreted as the threshold that distinguishes infections
that remain stationary and those that accelerate at
12 wpi. A Kaplan-Meier median estimate and the
percentiles 10th, 33th, 66th and 90th were used to
scale the risk of the total MGDD in the parameterised
logistic function, F(MGDD) (Fig. 1C). In our model
F(MGDD) represents the cumulative probability of
a new infection becoming chronic due to MGDD
accumulation

Disease recovery through winter curing. To
capture the accumulation nature of the chilling pro-
cess and differences in climate zones, we determined
the global average correlation between Tmin and
CDD using 6,487,200 points distributed through-
out the planet. We found an exponential relation,
CDD ∼ 230 exp(−0.26 · Tmin), where specifically,
CDD >∼ 306 correspond to Tmin < −1.1 °C. To trans-
form this exponential relationship to a probabilistic
function analogous to F(MGDD) ranging between 0
and 1, we considered the sigmoidal family of functions

f(x) =
A

B + xC
with A = 9 · 106, B = A and C = 3

(Fig. 1C), fulfilling the limit G(CDD = 0) = 1, i.e.
no winter curing when no cold accumulated, and a
conservative 75% of the infected plants recovered at
Tmin = −1.1 °C instead of 100% to reflect uncertainties
on the effect of winter curing.

Global climate data and MGDD/CDD compu-
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tation. Worldwide temperature data were downloaded
from the ERA5-Land dataset [59] with hourly temporal
resolution and 0.1o spatial resolution using GRIB format.
To compute the annual MGDD and CDD estimates
a simple Julia [71] library was built on top of GRIB.jl
package [72]. The code can be found in [73]. Data
on the vineyard surface in Europe were obtained from
the CORINE land-cover map ([74]). For the Northern
Hemisphere, the accumulated MGDDs were computed
from the first of April to the 31st of October, whereas
(CDDs) were estimated from the first of November to
the 31st of March using a 6oC base temperature [39],
and the reverse for the Southern Hemisphere.

Philaenus spumarius species distribution mod-
elling for Europe. SDMs-derived estimation of
potential distribution of P. spumarius in Europe under
current and future (i.e. 2050) climatic conditions were
provided by Godefroid et al. [35]. Predictions were
obtained using a generalised additive model and two
bioclimatic descriptors i.e., a climatic moisture index
for the coldest 8-month period of the year and average
maximum temperature in spring (March, April and
May). Both descriptors reflect physiological constraints
acting on life stages of the meadow spittlebug, particu-
larly sensitive to spring temperature and humidity (eggs
and nymphs), and were identified as good predictors
of P. spumarius distribution ([35] and Supplementary
Fig. S8).We used the positive relationship found between
the climate suitability and abundance of P. spumarius
adults [35] to assume no climatic constraints on vector
population sizes at the optimal climatic conditions
v = 1. Climatic suitability indices, v(x), were used
to compute a spatially-dependent basic reproduction
number, R0(x) = R0 ·v(x). The assumption of the linear
dependence between the basic reproduction number and
climatic suitability is based on vector-borne epidemic
compartmental models (Supplementary Sections S2F
and S4).

Risk assessment by 2050. Climatic variables were
obtained extrapolating the computed MGDD and
CDD time series up to 2050 with annual resolution.
The observed trends of the time series were captured
using a machine learning based linear regression model
while the inter-annual fluctuations where modelled by

a Gaussian noise (Supplementary Section S3). Future
risk extrapolations were obtained as the average of 104

simulations of this process. A correlative SDM was used
to estimate vector spatial distribution in Europe using
the global circulation model MIROC5 and greenhouse
gas emission scenario rcp45, assuming moderate climate
change [35]. Afterwards, the risk was computed following
the same simulation procedure previously explained.

Data accessibility

We provide a library built in Julia to analyse the data
outputs of ERA5-Land in GRIB format in [73]. Fur-
thermore, the simulation code and a small reproducible
example is provided in [75].
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