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ABSTRACT

Entropy and time asymmetry are two intertwined aspects of a system’s dynamics, with the production of entropy marking a clear direction
in the temporal dimension. In the last few years, metrics to quantify both properties in time series have been designed around the same
concept, i.e., the use of ordinal patterns. In spite of this, the relationship between these two families of metrics is yet not well understood.
In this contribution, we study this problem by constructing an entropy–time asymmetry plane and evaluating it on a large set of synthetic
and real-world time series. We show how the two metrics can at times behave independently, the main reason being the presence of patterns
with turning points; due to this, they yield complementary information about the underlying systems, and they have different discriminating
performance.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0136471

Entropy and temporal asymmetry are two cardinal facets of any
dynamical system. Statistical physics has long been studying their
mutual relationship from a theoretical point of view; yet, the
numerical quantification of these two concepts in real-world
systems has advanced along parallel but separate paths, with
the potential interplay between them remaining largely unclear.
In this contribution, we tackle this issue by reconstructing an
entropy–time asymmetry plane, juxtaposing two metrics calcu-
lated on time series symbolized through the concept of ordinal
patterns. We show how this plane is an adequate phase space to
better comprehend and track situations in which entropy and
time asymmetry behave in independent or complementary ways;
and we evaluate it through both synthetic and real-world time
series.

I. INTRODUCTION

Among the numerous techniques developed in the last few
decades for the analysis of time series, the concept of ordinal (or

permutation) patterns has been attracting increasing attention,
starting from some initial works focusing on the analysis of ordinal
data.1 A milestone was achieved 20 years ago by Christoph Bandt
and Bernd Pompe when in a seminal paper2 they showed that the
complexity of a time series could be estimated through the statistics
of suitable defined ordinal patterns. In short, the time series under
analysis is first divided into sub-windows; elements thereof are then
reordered in an ascending order; and, last, a symbol is associated
with each sub-window, representing the permutation performed in
the previous step—a more complete description of the methodology
is provided in Sec. II A. The method, thus, allows one to synthesize a
time series into a sequence of discrete symbols, representing the rel-
ative amplitude relationships between neighboring values. Besides
its conceptual simplicity, the Bandt and Pompe approach presents
several additional advantages, such as the low sensitivity to observa-
tional noise, and the weak requirement of stationarity in the time
series under analysis. Additionally, it allows unveiling properties
of the underlying dynamical system, e.g., its stochastic vs chaotic
nature,3 in a simple way. Not surprisingly, this resulted in an ever
increasing number of research works using this methodology, both
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theoretical and applied—the interested reader can refer to multiple
reviews available in the literature.4–8

One of the simplest ways of analyzing the obtained sequence of
symbols is to calculate its entropy, e.g., through the classical Shan-
non entropy. As its classical counterpart, the permutation entropy
then describes how predictable (from an ordinal point of view)
the dynamics under analysis is. Statistical physics also provides a
complementary concept known as time irreversibility, i.e., the idea
that the dynamics of a system may be recognizable (and, hence,
significantly different) from its time reversed version. If entropy
quantifies the uncertainty about the future evolution of a system,
its irreversibility measures how much entropy it produces as time
passes9 and quantifies the degree of nonlinear dependencies (mem-
ory) in it.10 In the last few years, among the many alternative
approaches to quantify it,11 several research groups have indepen-
dently proposed ways to adapt the irreversibility concept to the
ordinal framework, with the common idea that it must appear as an
imbalance between the frequency of ordinal patterns that are pair-
wise time symmetrical.12–16 As the stationarity of the time series is
not always taken into account, the term time asymmetry is here used,
to differentiate it from a more strict definition of irreversibility.

One question that has still to be tackled in the literature is
whether these two derived metrics based on ordinal patterns, i.e.,
entropy and time asymmetry, are overlapping, or, on the contrary,
yield complementary views on the underlying dynamical system.
While these two concepts are clearly differentiated in statistical
physics, in spite of the common origin, they are here calculated as
similar aggregations of ordinal pattern frequencies. In other words,
while the permutation entropy quantifies the variability in ordinal
pattern frequencies, the time asymmetry focuses on the variabil-
ity between pairs of time-symmetric patterns. The question then
boils down to understanding whether the different aggregations of
ordinal patterns hide relevant information.

By building on the well-known concept of the entropy–
complexity plane,17 we here propose the reconstruction of an
entropy-time asymmetry (HTa) plane and study the similarities
and differences between these two metrics using a set of synthetic
and real-world time series. Results suggest that both metrics, while
related, are not the same. Specifically, some dynamical systems can
be discriminated according to one of them, but not necessarily
according to the other. Additionally, we show that, while obser-
vational noise always increases entropy, it can increase the time
asymmetry when the underlying dynamics is characterized by a large
share of ordinal patterns with turning points. We finally evaluate the
HTa plane using real data representing biological, economic, and
technological systems.

II. METHODS

The HTa plane represents, in its vertical axis, the level of ran-
domness of the output of the dynamical system under study and, in
its horizontal one, its variability when moves forward and backward
over time. In other words, the plane assumes that a dynamical sys-
tem can be characterized in terms of how much its entropy changes
as a function of its irreversibility transition when both aspects are
captured by means of order patterns. In what follows, we first intro-
duce how ordinal patterns are calculated; for then defining the

TABLE I. Graphical representation of theD!= 6 available symbolsπ of lengthD= 3.

Each symbol is defined by the different ranking of the elements of the vector under

analysis.

π 0 π 1 π 2 π 3 π 4 π 5

corresponding entropy and time asymmetry metrics; and finally
reviewing the synthetic time series that will be used in the evaluation.

A. Ordinal patterns

Ordinal patterns can be considered an alphabet to describe a
dynamical system’s output xt, which has proven to be especially
effective in the case of time series with a finite and limited number
of observations (samples) M = ‖{xt}‖. The idea behind its con-
struction is to define a D-length vector, D being usually called the
embedding dimension. The vector is composed of values of x start-
ing at a given time point t; and values can be consecutive or not
depending on the value of the lag (or delay) parameter τ . The
vector is then associated with a symbol π by comparing the rel-
ative inner amplitudes and representing the permutation required
to sort values in increasing order. In other words, π contains no
information about the absolute amplitudes of values, but instead,
it represents the relative amplitude of the elements composing the
D-vector {xt, xt+τ , . . . , xt+Dτ } by ranking them such that (xt+τπ0

≤ xt+τπ1 ≤ · · · ≤ xt+τπD−1). As a result, each permutation is a letter
of the system’s alphabet (see Table I for a graphical representation
for D = 3); and a complete time series can then be synthesized into
the discrete probability distribution p(π) of the symbols’ abundance.

Note that the extraction of ordinal patterns depends on two
parameters, the embedding dimension D and the embedding lag τ .
Regarding the former, the maximum D that can be used is closely
related to the length M of the time series, as enough instances of
each ordinal pattern have to be observed to obtain reliable statistics;
hence, a rule of thumb suggests that M � (D + 1)!18 Second, while
most research works focused on τ = 1, it has been shown that differ-
ent embedding lags can help unveil the system’s characteristic time
scale.19–21 For the sake of simplicity and without loss of generality,
we will here consider τ = 1.

B. Entropy and time asymmetry

The empirical distribution p(π) of xt is used to calculate the
Shannon entropy S = −

∑

π p(π) ∗ log(p(π)). Without loss of gen-
erality, we here compare the uncertainty as measured by S, with
the maximum uncertainty Smax that would be obtained if all π

were equally probable; i.e., p(πi) = 1/D!. This maximum is trivially
given by Smax = log(D!). The so-called permutation entropy is then
obtained following this normalization as

H[p] = S/Smax, (1)

which by construction is normalized in 0 ≤ H[p] ≤ 1.
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Parallel to this, the concept of the system time asymmetry
is based on the level of imbalance between the information con-
tent when the system evolves forward p(π) vs backward p′(π) in
time. Note that the latter is calculated by simply time-reversing the
original time series such that x′

t = xM−t+1 with t ∈ [1, M] and then
evaluating the ordinal patterns π over x′. Leveraging on this idea,
the time asymmetry can be estimated through the square root of the
Jensen–Shannon divergence,14

√

JS =
√

1

2
δ(p(π), m(π)) +

1

2
δ(p′(π), m(π)), (2)

with m(π) = 1
2 (p(π) + p′(π)) and δ(P, Q) =

∑

i P log
(

P
Q

)

being

the Kullback–Leibler divergence for the discrete probability distri-
butions P and Q. Note that, by construction, 0 ≤

√
JS ≤ 1.22

The HTa plane is, thus, constructed to easily compare
√

JS vs
H[p], with both metrics being defined in [0, 1]. This is the rationale
behind a definition of the time asymmetry different from other pro-
posals, as, e.g., Refs. 13 and 14, where Z-scores and p-values would
not easily be comparable. The larger the

√
JS, the greater the level of

temporal asymmetry; similarly, the higher the rate of H[p], the more
disordered the system dynamics is.

C. Synthetic time series

In order to test the proposed HTa plane, we here first resort to
synthetic time series obtained by the following well-known dynam-
ical models:

GLP A Gaussian linear process xt ∼ N (µ, σ 2), µ = 0,
σ = 1.

AR(2) A linear auto-regressive model of second order
driven by a white noise εt, given by

xt+2 = 0.7xt+1 + 0.2xt + εt.

STAR(1) A static nonlinear transition of a Gaussian process
of first order, given by

xt = tanh2
(yt), with yt = 0.6yt−1 + εt.

NAR Laplacian and bimodal. Two coupled nonlinear
auto-regressive systems:

xt = 0.5xt−1 − 0.3xt−2 + 0.1yt−2 + 0.1x2
t−2

+ 0.4y2
t−1 + 0.0025η′,

yt = sin(4π t) + sin(6π t) + 0.0025η′′
t .

Noises {η′, η′′} are, respectively, i.i.d. drawn from a
Laplacian,

p(η) =
1

4b
exp

(

−|η − µ|
b

)

.µ = 0, b = 1,

and a bimodal distribution,

p(η) = 0.5N (η|µ, σ) + 0.5N (η| − µ, σ).

µ = 0.63, σ = 1.

SETAR(2; 2,2) Two switched nonlinear systems of self-exciting
threshold AR (SETAR) type, characterized by

jumps between different nonlinear regimes with
different delays.23,24 This first one is a two regime
model, each one with second-order delays,

xt =



















0.62 + 1.25xt−1 − 0.43xt−2 + 0.0381εt

if xt−2 ≤ 3.25

2.25 + 1.52xt−1 − 1.24xt−2 + 0.0626εt

otherwise.

SETAR(2; 3,2) A second model with two regimens with delays of
third and second-orders,

xt =



















0.733 + 1.047xt−1 − 0.007xt−2 + 0.242xt−3

+ 0.0357εt if xt−2 ≤ 3.083

1.983 + 1.52xt−1 − 1.162xt−2 + 0.0586εt

otherwise.

Rössler The y variable in the chaotic regimen of the Rössler
system, whose dynamics is given by

ẋ = −y − z,

ẏ = x + 0.2y,

ż = 0.2 + z(x − 5.7).

The generated time series have a length of M = 104,
with an integration step of 0.01, after the first 1000
samples are removed to avoid potential transients.

Lorenz The z variable of the Lorenz dynamical system in its
chaotic regime, defined as

ẋ = 10(y − x),

ẏ = x(28 − z) − y,

ż = xy − 2.6667z.

The time series length and integration step are the
same as for the Rössler case.

III. ANALYSIS OF SYNTHETIC TIME SERIES

We start analyzing synthetic time series created with the
dynamical systems described in Sec. II C. Specifically, Fig. 1 reports
the evolution of the position in the HTa plane of such time series
by varying the embedding dimension D from 3 to 7. As is to be
expected, reducing D moves all points toward the upper left cor-
ner (i.e., H → 1 and

√
JS → 0), as the reduced resolution implies a

loss of details about the dynamics and, hence, time series resembling
more random ones. It is nevertheless interesting to note that the
two metrics are partly independent and convey different informa-
tion when different dynamical systems are compared. To illustrate,
for a given value of D, the Rossler’s Y and Lorenz’ Z time series have
very similar entropy H, but significantly different

√
JS. This is a first

confirmation that the two metrics, in spite of being calculated over
similar probability distributions, are able to independently represent
the two target properties of the underlying dynamical system—i.e.,
entropy and time asymmetry.

We further move to the analysis of another classical aspect of
time series, i.e., the presence of observational noise. Fig. 2, left panel,
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FIG. 1. Evolution on the H-
√
JS plane of time series created with the dynamical

systems listed in Sec. II C for different embedding dimensions D ∈ [3, . . . , 7].

reports the evolution in the plane of time series x′
t = xt + ε(σ ′) cre-

ated with the same dynamical system xt, for a fixed D = 5, with
an increasing amount of observational noise ε(σ ′) ∝ N (0, σ ′2)|σ ′

= nσxt , with 0 ≤ n ≤ 3, and n ∈ R. As is to be expected, also in this
case, the two metrics tend to H → 1 and

√
JS → 0; i.e., the time

series are becoming indistinguishable from a random noise—note
that such values are never achieved due to finite size effects
(M = 104). To better visualize how sensitive the models are when
changing the noise level, we compute the percentage of variation for
1H% = 100 · (H − H′)/H and 1

√
JS% = 100 · (

√
JS −

√
JS

′
)/

√
JS,

with (∗)′ computed on x′. The right panels of Fig. 2 depict how the
entropies for Lorenz and Rössler are modified even when the noise
amplitude n is low, while the same does not happen for the time
asymmetry.

Due to the above-mentioned difference, an interesting
crossover appears such that, for instance, the Lorenz’ Z time series
strongly increases its entropy before the time asymmetry is affected.
It, thus, crosses the SETAR’s trajectory in the plane, for which the
two metrics change with the same pace. In other words, this implies
that, in general, given two time series with similar Hs and

√
JSs, the

addition of the same amount of observational noise may result in
different values of these two metrics.

In order to better understand such a crossover, we first cre-
ated 104 time series composed of 200 values in the range [0, 1],
with H = 0.6 and

√
JS = 0.4 (D is here fixed to 3). This has been

achieved by starting with random time series, for then applying dual
annealing optimization,25 with the distance to these two values as
the objective function to be minimized. Afterward, a small random

noise [drawn from N (0, 0.02)] is added to each time series, and the
resulting H and

√
JS have been calculated. Panel (a) of Fig. 3 reports

the final distribution of the values (gray squares, with darker col-
ors indicating higher densities)—for reference, the starting point is
marked with a red cross; see the bottom part of the plot. It can be
appreciated that the noise always increases the entropy, as it may
be expected; at the same time, it can both increase and decrease the
time asymmetry, with values spanning from less than 0.3 to almost
0.5. Panel (b) of the same figure further reports the probability of
finding a pattern with a turning point (i.e., a pattern in which the
derivative changes sign or for which the intermediate point is a local
minimum or maximum, e.g., π = {132}) in these time series as a
function of the final

√
JS. Time series with a lower time asymmetry

after the addition of noise are characterized by a small turning point
probability and, thus, by a large number of continuously ascending
and descending patterns (i.e., 123 and 321). It can, thus, be con-
cluded that the presence of patterns with turning points is affecting
the way the time asymmetry of the time series is modified by noise.

In order to confirm this, we have considered a minimal syn-
thetic model, in which short time series (x1, x2, x3, x4) are created by
drawing random numbers from a uniform distribution U(0, 1) and
are further normalized in the interval [0, 1]. We then add a small
observational noise drawn from a normal distribution to these time
series, obtaining a new set of time series (x′

1, x
′
2, x

′
3, x

′
4). Considering

the original time series, the three initial values (x1, x2, x3) must cor-
respond to an ordinal pattern either with or without a turning point,
i.e., either π1,...,4, or π0,5. Regarding the next pattern in the sequence,
i.e., the one for (x2, x3, x4), it is worth noting that it is constrained
by the previous one; specifically, after a pattern without a turning
point, the probability of finding the same pattern is approximately
25% [see the dashed gray line in panel (c) of Fig. 3]; on the other
hand, a given pattern with a turning point can never be followed by
the same one by construction. We then calculated the probability of
finding the same pattern in (x′

1, x
′
2, x

′
3) and (x′

2, x
′
3, x

′
4) as a function

of the standard deviation of the added noise for original time series
with [blue line in panel (c) of Fig. 3] and without (magenta line in
the same panel) turning points.

An interesting conclusion can be drawn. When the original
time series starts with an ordinal pattern without turning points,
the probability of ending up with a time series with two identical
ordinal patterns is lower than the initial probability of finding such
pattern combination. On the other hand, the former probability is
always higher than the latter in the case of an initial ordinal pattern
with turning points simply because the latter is zero; i.e., a turning
point pattern cannot be repeated twice. In other words, the addition
of noise has a completely different effect in these two cases: it can
both reduce and increase the probability of finding the same pattern
twice. If the original time series has a large share of turning point
patterns, the result can be the appearance of many pairs of identical
patterns, which in turn have the effect of increasing

√
JS. Note that

this does not necessarily disagree with previous theoretical results,26

as such behavior is caused by the way time asymmetry is measured
and the limited size of the time series.

It is interesting to note that the appearance of both turning
points and repeated ordinal patterns is a function of the autocor-
relation of the time series; as such, it may be speculated that this
latter aspect may be responsible for the different evolution of the
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FIG. 2. Left panel: Evolution on the H-
√
JS plane of time series created with the dynamical systems listed in Sec. II C, for D = 5, and different levels of observational noise

ε(σ ′). Each point corresponds to the average of 50 independent realizations. The direction of increasing levels of noise is represented by the black arrow. Right panels:

Evolution of the percentage of variation of H [panel (b)] and
√
JS [panel (c)] as a function of the noise amplitude n.

time asymmetry in the presence of noise. In order to test this, we
have considered the 104 synthetic time series previously presented
and calculated the correlation coefficient between their autocorre-
lation using a lag of 1 on one hand and the difference between the√

JS before and after the addition of the noise on the other hand.
The result (ρ = −0.65, p-value <0.01) indicates that both properties
are indeed connected, with

√
JS decreasing in highly autocorre-

lated time series—even if true causality cannot be guaranteed at this
stage.

This is not the first time that the importance of such points in
the calculation of the permutation entropy has been highlighted, see,
for instance, Refs. 27–29. While they seem to have a major impact
in the time asymmetry of noisy time series, turning points have
only been studied for D = 3.28,29 Their presence cannot be defined
for higher embedding dimensions, as an ordinal pattern of order
D can contain up to D − 2 peaks—in other words, multiple local
turning points can coexist in a large pattern, thus suggesting that
a more appropriate concept would be the one of “turning point
density.” Still, multiple relationships between such density, observa-
tional noise, and the time series’ irreversibility and autocorrelation
structures may constitute an interesting open problem.

IV. ANALYSIS OF REAL-WORLD DATA

In order to provide an overview of the type of results that
may be obtained using the proposed HTa plane, we here analyze

three sets of data, respectively, representing biological, financial, and
technological real-world systems.

A. Brain dynamics in schizophrenia

Starting from a biological system, we characterize time series
of electroencephalography (EEG) data corresponding to control
(healthy) subjects and patients suffering from schizophrenia. Two
independent data sets have here been considered. The first one
(denoted as EEG I), freely available at https://doi.org/10.18150/
repod.0107441, includes data recorded in an eyes-closed rest-
ing state condition, with a 250 Hz sampling frequency, for a
length of approximately 15 min—or approximately 220 000 sam-
ples per time series.30 The second one (EEG II), made avail-
able by the Laboratory for Neurophysiology and Neuro-Computer
Interfaces of the M. V. Lomonosov Moscow State University at
http://brain.bio.msu.ru/eeg_schizophrenia.htm, has a sampling fre-
quency of 128 Hz, and the time series have a length of 1 min—note
that no additional information on the recording procedure seems to
be available. For the sake of clarity, results here reported only corre-
spond to the O2 sensor, whose dynamics was previously found to be
altered in this pathology.30–32

The results of the analysis of the raw time series of both data
sets are depicted in panels (a) and (c) of Fig. 4. Two interesting
facts can be appreciated. First of all, there is a large difference in the
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FIG. 3. Evolution of H and
√
JS with observational noise. (a) Evolution in the

entropy–asymmetry plane of 104 time series with H = 0.6 and
√
JS = 0.4 (red

cross) after applying a small amount of noise (gray scale). (b) Probability of finding
a turning point in the previous time series, before the noise is added, as a function

of the final
√
JS. (c) Probability of finding two identical consecutive permutation

patterns in a synthetic model when the original time series starts with an ordinal
pattern with (magenta line) and without (blue line) a turning point as a function of
the amplitude of the added observational noise. D = 3 in all cases. See the main
text for details on time series generation and on the synthetic model.

average H of both groups in the case of EEG I (0.853 for control sub-
jects and 0.755 for patients), which is nevertheless lost in the case
of EEG II. Note that for the sake of facilitating comparisons, pan-
els (a)–(c) have the same axes’ limits. In order to check whether this

is caused by the different frequency resolution, we downsampled the
time series of EEG I to match the frequency of EEG II using a Fourier
method. Results, reported in panel (b), suggest that the differences
in H between both groups are indeed located in higher frequencies,
not available in the case of EEG II.

As a second point, the two data sets seem to yield heteroge-
neous results even when the sampling frequency is made equal.
Specifically, by comparing panels (b) and (c), it can be appreciated
that the

√
JS is slightly larger for control subjects in the case of EEG I,

while the opposite is true for EEG II. It is difficult to pinpoint the
reasons behind those discrepancies, as they may be the results of dif-
ferences in the acquisition protocols, in data pre-processing, or even
in patients’ inclusion and exclusion criteria. To illustrate, it has pre-
viously been shown that an eyes-open resting state is characterized
by higher time irreversibility than an eyes-closed one.33 Additionally,
schizophrenia is a complex condition with many phenotypes and
potentially many etiologies, which may impact the way brain time
irreversibility is observed.34 In short, the first three panels of Fig. 4
highlight both the sensitivity of this plane representation and the
importance of providing precise methodological information when
sharing data sets, especially biomedical ones.

B. Cryptocurrencies and financial markets

We then move to the analysis of financial systems,
starting with three cryptocurrencies and the evolution of their value
through time: Bitcoin, Ethereum, and Litecoin. These three have
been chosen for representing different stages in the life of these
financial instruments, corresponding to the 1st, 2nd, and 20th cryp-
tocurrencies by market capitalization and, therefore, represent both
mature and niche assets. Time series correspond to the evolution of
prices against the US dollar with a 1-min resolution, freely avail-
able at https://www.cryptodatadownload.com/data/gemini/. These
time series correspond to years 2015–2020 for Bitcoin, 2016–2020
for Ethereum, and 2018–2020 for Litecoin.

Results for these three cryptocurrencies and by year are
reported in panel (d) of Fig. 4, with the symbol shape representing
the asset and colors the considered year. The heterogeneity of these
assets is evident, with values covering the whole plane. It is especially
noteworthy the case of Bitcoin, which has moved from extremely
high time asymmetry for year 2015 to a highly random dynamics
in 2020. The position in the plane is able to describe how the effi-
ciency (according to the efficient market hypothesis35,36) of this asset
has increased with time, in parallel with the increase in its market
capitalization. The plane also highlights the inefficient dynamics of
Litecoin, which still has high time asymmetry and low entropy after
three years of trading.

Panel (e) of Fig. 4 additionally reports the evolution of the two
considered metrics for time series of three well-known US market
indices: the Dow Jones Industrial Average (DJIA), the NASDAQ
Composite Index (NASDAQ), and the Standard and Poor’s 500
index (SP500). Data, freely available at https://firstratedata.com, cor-
respond to the time period 1–14 April 2022 and are sampled with 1,
5, 30, and 60 min time resolutions. It can be observed that the values
yielded by the three indices are comparable at high time resolutions
and that they appear to be more random for 1 and 5 min resolutions
when compared to the 60 min case.
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FIG. 4. Entropy–asymmetry plane for several real-world systems. Panels (a) and (c) reports the results for two EEG data sets, with panel (b) corresponding to the first data
set with time series being downsampled to have the same resolution as the second one. Green circles and red squares, respectively, correspond to control subjects and
patients and crosses to the median of each group. Note that axes’ limits are the same in all panels to facilitate comparisons. Panel (d): evolution of three cryptocurrencies
through time. Panel (e): Evolution of three US stock market indices as a function of the time resolution of the data. Panel (f): results for time series representing delays at
landing at 12 major European airports; blue circles correspond to the complete time series and purple squares to the time series trimmed in order to have the same length.

C. Delays in air transport

We finally analyze an example of a technological system
and specifically the evolution of delays in air transport. We
extracted time series of delays at landing for aircraft arriving at
the 12 largest European airports. Data have been obtained from
the EUROCONTROL’s R&D Data Archive, freely accessible at
https://www.eurocontrol.int/dashboard/rnd-data-archive, and cor-
respond to all operations executed throughout September 2018. The
landing delay of each flight arriving at those 12 airports has been
estimated as the difference between the actual and planned landing
times. These values have then been concatenated according to the
arrival sequence, in order to create a single time series per airport, in
which each element is the delay of a single aircraft.

The results for the raw time series are reported in panel (f)
of Fig. 4, blue circles. Two general trends can be observed: first,
all time series have large values of H and low values of

√
JS,

suggesting highly random dynamics; and second, smaller airports
(as, e.g., EIDW—Dublin Airport, LFPO—Paris Orly Airport, or

LSZH—Zurich Airport) are less random than larger ones. It has
nevertheless to be noted that these differences may be due to the
different length of each time series—larger airports operate more
aircraft, and hence, their time series contain more values. In order
to solve this, purple points in the same panel report the values of the
metrics when the same quantity of data is used for each airport—i.e.,
longer time series are trimmed to match the length of the shortest
one. A similar trend is still observed, albeit with differences between
large and small airports being less marked.

In a way similar to the efficient market hypothesis, one may
expect the delay of consecutive landing flights to be independent if
the airport is efficient. In other words, if an airport is efficient in the
sense of being able to accommodate aircraft as soon as they arrive,
delays should be random events, independent from each other, and
only due to exogenous factors. On the other hand, any departure
from complete randomness implies that delays are not independent,
that they propagate between consecutive landing operations, and,
thus, that are the result of inefficiencies at the arrival airport—e.g.,
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lack of landing capacity. The minor temporal asymmetry seen in
Fig. 4 suggests that some correlations are present between delays of
consecutive landing events, especially for smaller airports, in turn
pointing toward a lack of resources (specifically, landing capacity)
or flexibility as a potential cause.

V. DISCUSSION AND CONCLUSIONS

In this contribution, we have analyzed the relationship between
two metrics that can be extracted from time series using the well-
known paradigm of ordinal patterns, i.e., the permutation entropy H
and the time asymmetry

√
JS. The underlying physical concepts are

not independent, with the latter being defined as the rate of produc-
tion of the former; and, more importantly, both are here calculated
from different aggregations of the same ordinal pattern probabil-
ities p(π). One may, thus, expect these two metrics to be highly
correlated and eventually redundant.

By reconstructing an entropy–time asymmetry (HTa) plane,
we have shown that this is indeed not the case. Specifically, time
series generated by different dynamical systems may have similar
values in one of the metrics, yet being substantially different accord-
ing to the other one—see, for instance, the case of Rossler’s Y and
Lorenz’ Z time series in Fig. 1. We have also shown that the time
asymmetry is highly sensitive to the presence of ordinal patterns
with turning points. Consequently, this metric can evolve differ-
ently when observational noise is added, leading to the appearance
of crossovers between different dynamical systems—see Fig. 2. Yet,
turning points are ill-defined for D > 3: a generalization of the
observed phenomenon to higher pattern dimensions may constitute
an interesting open topic. Note that a consistent increase in the time
asymmetry as a result of the presence of observational noise is theo-
retically impossible26 and may, therefore, be attributed to the use of
ordinal patterns; see also Ref. 11 for a discussion.

Additionally, the analyses based on real-world data presented
in Sec. IV highlight two interesting facts. First of all, the entropy
and time asymmetry can be correlated, as shown in the case of cryp-
tocurrencies and air transport; and a higher entropy usually implies
a smaller time asymmetry. This is to be expected, especially for large
values of H, as some degree of heterogeneity between ordinal pattern
probabilities is required to have a time asymmetry; the latter neces-
sarily has to tend to 0 when H → 1. At the same time, both metrics
can also evolve in an independent way, thus highlighting different
aspects of the time series under analysis—the clearest example can
be seen in the case of the EEG data sets. Second, the plane is highly
sensitive to the characteristics of the time series. As seen in Fig. 4,
the presence of pathology can affect these metrics in opposite direc-
tions, even when the EEG time series correspond to the same sensor,
depending on how they have been recorded and pre-processed.
Such sensitivity is a positive aspect, in that it allows describing even
small differences in the data, but, at the same time, highlights the
importance of relying on homogeneous and well-described data.
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