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Abstract. Mutualistic networks are considered an example of resilience against

perturbations. Mutualistic interactions are beneficial for the two sets of species

involved. Network robustness has been usually measured in terms of extinc-
tion sequences, i.e., nodes are removed from the empirical bipartite network

one subset (primary extinctions) and the number of extinctions on the other
subset (secondary extinction) is computed. This is a first approach to study

ecosystems extinction. However, each interacting species, depicted as a node

of the mutualistic network, is really composed by certain number of individ-
uals (population) and its shortage can diminish dramatically the population

of its interacting partners, i.e. the population dynamics plays an important

role in the robustness of the ecological networks. Although different models of
population dynamics for mutualistic interacting species have been addressed,

like Type II models, only recently a new mutualistic model has been proposed

exhibiting bounded solutions and good properties for simulation. In this paper
we show that population dynamics is as important as network topology when

we are interested in the resilience of the community.

1. Introduction. The application of network theory to ecology has provided new
insights in the study of natural systems. An important effort has been focused
on their topologic properties. Links in ecological networks are defined according
to the biological interactions between species [10, 4, 5, 11, 24]. A very common
and important type of interaction is mutualism, that is beneficial for both involved
species. In terms of network theory a biological community can be depicted as
a bipartite network, in such a way that species in one subset only interact with
species in the other subset. This set of interactions may be represented by an

2010 Mathematics Subject Classification. Primary: 92D25, 92C42; Secondary: 92D40.
Key words and phrases. Population dynamics, extinction, cascade, dragging, mutualistic net-

work, nestedness, K-shell decomposition.

37

http://dx.doi.org/10.3934/nhm.2015.10.37
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adjacency matrix, A, where rows represent species of one subset, columns the species
of the other. Matrix elements aij are 1 when species i interacts with species j and
0 otherwise. Although most of ecological networks are binary, i.e., dataset only
records if the interaction exists or not, many papers have reported the importance
of getting the number of ‘visits’ as a measure of the interaction. With this kind of
dataset one can work with a weighted network [2, 14].

A special feature of the adjacency matrix of mutualistic network is the nestedness.
An interaction matrix is nested when the partners of a species is a subset of the
partners of other species with higher degree. This property can be visualized if one
rearranges rows and columns in terms of their degree. In this case one observes that
interactions come together at one corner (core of generalists) and species with few
links (specialists) have high-connected partners (in a triangle-like pattern). This
property is said to be the key of the resilience of mutualistic networks [17, 4, 5, 15].

Only few models of population dynamics have been successfully applied to mutu-
alistic networks because of the difficulties involved in the estimation of their param-
eters [15]. The first proposal of population dynamics for mutualistic communities
was proposed by May (1981). It relied on the same idea that the prey-predator
Lotka-Volverra model, that is a Verhulst equation plus an interacting term. In
May’s equation the additional term is always positive because in the mutualistic
relationships the interaction is always beneficial.

The Verhulst’s equation (also known as logistic equation) can be written as the
Malthusian growth term minus a coefficient that limits the growth when population
reaches a maximum value, K > 0, the so-called carrying capacity, i.e., the maximum
population size given by environmental conditions of water, nutrients, space, etc.:

dN

dt
= rN

(
1 − N

K

)
. (1)

The solution of this equation is, provided the intrinsic growth rate, r, is positive,
a sigmoid that asimptotically tends to K.

The simplest way of including the mutualistic interaction is adding a term pro-
portional to both interacting populations, with a positive coefficient. So, May’s
equations for two interacting mutualistic species can be written as:

dN1

dt
= r1N1

(
1 − N1

K1

)
+ r1N1 β12

N2

K1
,

dN2

dt
= r2N2

(
1 − N2

K2

)
+ r2N2 β21

N1

K2
, (2)

where N1(N2) is the species population 1(2); r1 (r2) is the intrinsic growth rate
of population 1 (2) and K1 (K2) the carrying capacity; the mutualistic strength is
driven by the coefficient β12 (β21), as a per capita benefit for species 1 (2).

According to the sign of the intrinsic growth rate of involving species mutualism
can be classified as: mandatory, when r < 0 and then the mutualistic term is neces-
sary for avoiding species extinction; or facultative, when r > 0 and the species would
survive without mutualism. We are interested in mandatory mutualism because in
this case perturbations can induce species extinctions.

Altough this simple model is considered the starting point of any mutualistic
model, it has an important drawback, as it leads to unbounded growth when r < 0
and the population is above the carrying capacity.
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In order to solve this issue, different modification have been proposed. The most
popular version is the so called type II [27], because mutualism is included as a type
II functional response:

dN1

dt
= r1N1 − α1N

2
1 +

a bN1N2

1 + aN2 TH
,

dN2

dt
= r2N2 − α2N

2
2 +

a bN1N2

1 + aN1 TH
, (3)

where a (a > 0) is the effective search rate and b (b > 0) is a coefficient that relates
encounters between individuals of species 1 and 2, and TH is a handling time.

The main disadvantage of this model is the dificulty for doing any analytical
treatment and the very limited range of valid parameters for the simulations.

2. A simple model of population dynamics with mutualism. In this work
we use a very recent population dynamics model of mutualism [12]. This model
solves the unbounded growth problem of May’s model with a cubic term that allows
analytical and numerical treatment.

The main idea of this model is to include the mutualism in both the growing and
limiting terms. Then the Verhulst-type equation for one species can be written as:

dN

dt
= N reff = N (rmeff − amN) , (4)

where the superscript m stands for mutualistic; so the growth rate and the per
capita limiting term include the populations of the interacting species.

For two species, let one subset species (for example, the plant) correspond to the
index 1 and the other subset species (for example, the animal) to the index 2. The
growth rate and the limiting terms can be written as:

rmeff,1 = r1 + b12N2,

am = α1 + c1b12N2. (5)

And then, the complete equations system for two mutualistic species is:

dN1

dt
= (r1 + b12N2) N1 − (α1 + c1 b12N2)N1

2,

dN2

dt
= (r2 + b21N1) N2 − (α2 + c2 b21N1)N2

2. (6)

In these equations the variable r is the intrinsic growth rate, α is an intra-
specific competition coefficient, b12 (b21) is the per capita benefit for species 1 (2)
from species 2(1) and c is a coefficient representing the weight of mutualism in the
limiting term.

This polynomial model allows using standard methods for nonlinear equations
system, in order to obtain the stationary solutions and their stability. The linear
stabitity analysis of this model (see [12]) shows stable nodes at population maxima
(carrying capacities that depend on the system state) and total extinction. Saddle
points are found at partial extinctions and at the condition reff,1,2 = 0. Figure
1 depicts an example of the flow diagram for two mutualistic species (simulation
parameters in the figure caption). All flow lines end at one of the two stable points
(total extinction or populationmaxima). The two attraction points are located at
carrying capacities, around (130, 130), and at total extinction (0, 0). Flow lines
close to the saddle point change direction towards one of the two stable nodes.
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Figure 1. Flow diagram for two species with parameters: r1 =
r2 = −0.15, b12 = b21 = 0.015, α1 = α2 = 0.01, c1 = 0.002, and
c2 = 0.003.

In this paper we focus on the perturbation of a mutualistic system around the
stable node at the carrying capacity. For a mutualistic system of na species of one
guild and np species of the other guild, the equations system is:

1

Na
i

dNa
i

dt
= ri +

np∑
k=1

bikN
p
k −

(
αi + ci

np∑
k=1

bikN
p
k

)
Na

i ,

1

Np
j

dNp
j

dt
= rj +

na∑
`=1

bj`N
a
` −

(
αj + cj

na∑
`=1

bj`N
a
`

)
Np

j (7)

where Na
i is the population of the i-species of subset a, bik is the per capita mutual-

ism benefit for the i-species from the k-species, αi is the intra-specific competition
coeficient for the i-species, ci is the weight of the mutualism in the limiting term,
and the same concepts apply for the j-species.

With the linear stability analysis one can find that this equations system (for
many species) has also partial extinctions as stable fixed points (see [12]), as well
as the total extinction and the carrying capacity.

2.1. Numerical simulations. In population dynamics models, the variable N
refers to discrete number of individuals and the outcome in each time step must be
an integer number. A good choice of simulation method is the Binomial Simulation,
a stochastic extension of Continuous System Simulation, because the final result for
an individual is being alive or dead [3], so it can be described by a Bernoulli process
(over finite time intervals).

Let assume that the probability of breeding over an interval ∆T is exponentially
distributed, and its average value is 1/r, where r is the intrinsic growth rate. So,
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the probability of reproduction is:

P =

∫ ∆T

0

re−r t dt = 1 − e−r ∆T . (8)

In particular, a population of N individuals at time t, with probability of repro-
duction P , at the next time step t+ ∆T will be:

N(t+ ∆T ) = N(t) + sgn (r)Binomial (N(t), P ) , (9)

where sign(x) is the sign function that extracts the sign of x and Binominal is the
result of a Binomial trial.

And now we can think of all the terms of equation (7) as an effective growth
rate, so the set of equations (7) becomes in stochastic form:

Na
j (t+ ∆T ) = Na

j (t) + sgn
(
r̂aefj

)
Binomial

(
Na

j (t), P a
j

)
,

Np
l (t+ ∆T ) = Np

l (t) + sgn
(
r̂pefl

)
Binomial (Np

l (t), P p
l ) ,

(10)

where r̂aefj is jth-species effective growth rate in the simulation period and P a
j , the

probabilities of growth according to equation (8), and the superscript a stands for
the animal and p for plant. In particular, working with one-day steps, as we do:

r̂ef = (1 + ref )1/365 − 1. (11)

Detailed numerical treatment of the equations is discussed in [12].

3. Resilience of mutualistic networks. As a general conception, mutualistic
networks seem to be robust to perturbations due to their worldwide expansion over
very different ecosystems. For example, plant-pollinator mutualism is responsible
of about the 90% reproductive mechanism in tropical forest ecosystems [4].

Studies on the resilience of mutualistic networks are usually based on topology
rather than on population evolution. Several works have studied the robustness of
mutualistic networks in terms of secondary extinctions caused by the accumulation
of primary extinctions [10, 17, 18, 13, 9, 19, 14, 21, 22]. Secondary extinctions
happen when one species loses all its mutualistic partners. The main idea of this
procedure is to observe how secondary extinctions occur on one subset (for exam-
ple, plants) when one removes species from the other subset (primary extinctions)
following predetermined specific sequence of removing nodes. The typical sequences
are: starting from the most-connected node to the less-connected node in decreas-
ing order, starting from the less-connected node to the most-connected node in
increasing order, and randomly. These extinction sequences try to simulate two ex-
treme scenarios where the extinction of primary species occurs according to species’s
degree: a gradual disturbance (e.g., meteorological anomaly) will first affect special-
ists; on the other hand epidemic propagation spreads faster among highly connected
species. The random sequence corresponds to a null model with non preferences in
the election of the species to be extincted.

On this procedure one plots the surviving plants (percentage of species) versus
percentage of pollinator extinction (sometimes called attack tolerance curve [5]).
Some assesssment indices have been proposed to quantify the robustness of this
type of bipartite networks. The R50-index represents the percentage of primary
extinction that produces a loss of ≥ 50% of species [10], obtained from the inter-
polated extinction curve. The R-value is defined as the area under the extinction
curve plotted with axes between 0 and 1 [5].
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Other works based on dynamic model of plant-pollinator communities have been
published [6]. They used a dynamic Boolean network-based model where species
interactation can be mutually beneficial or beneficial for one species and detrimental
for the other. The dynamic Boolean framework allows for a complete dynamical
analysis after removing a species that describes the resulting behavior of the whole
system [6].

However, resilience is just studied from the point of view of topology, removing
nodes, one by one, as unitary elements. From the population point of view this
represents that one removes all individuals from one species without changing the
populations of its mutualistic partners.

A new approach may be attempted if we take populations into account. Start-
ing from the stationary state at the populations maxima, we have implemented
perturbations to one or several species for a period of time in order to study the
recovery of the system. This way models the perturbation and disturbances occur-
ing in natural ecosystems, due to plagues, human effects or climate change. In this
case the population of one (o several) species decreases due to internal or external
factors and this change in the number of individuals implies changes in population
of its mutualistic parterns, and recursively, these changes will affect other connected
species, and so on. This chain of perturbations can produce a progressive declining
of populations that leads to a cascade of extinctions.

In conventional studies of mutualistic network resilience all information is con-
tained in the topology, i.e., no matter how many individuals the species have, no
matter the type of dynamic behaviour. This is the reason why mutualistic networks
are seen as robust: secondary extinctions only occur when all the mutualistic part-
ners are extinct. However, recent papers alarm about extinctions threats of many
species [16]. For example, one common criterion used to classify extinction risk
is a decline in abundance [26] (the International Union for Conservation of Nature
-IUCN- Red List classifies as critically endangered species when the decline in abun-
dance is greater than 80% over 10 years or 3 generations and the mean extinction
probability is about 15% by 2100).

In our model (Eq. 7) we have implemented external perturbations in a simple
way: perturbations cause an increase in the death rate (decreasing the intrinsic
growth rate, ri). With this change in the parameter values we resume the simulation
and observe if the system evolves towards populations maxima or if perturbations
drive it into an unstable basin of partial or total extinctions.

The main goal of this work is to observe the influence of population dynamics
when a nested mutualistic network is perturbed. For this purpose we have simulated
three mutualistic networks in 7 × 7 matrices, with different topologies, in order to
find out if the network substrate is the key in the resilience of mutualistic networks.

We have characterized the topology in terms of the nestedness. The assessment
of nestedness has been made using the NODF measure [1, 25]. This measure is
based on decreasing fill of rows and columns, when the matrix is packed in terms of
their degree, and paired overlap, i.e., percentage of links of a row (column) at the
same position that rows (columns) with higher position in the rearranged matrix.

For each adjacency matrix we have performed perturbations on two main species:
generalists and specialists. The core of generalists is identified performing a K-shell
decomposition. This procedure allows to classify nodes by the number of effective
links that one has to prune to produce its extinction.



DRAGGING IN MUTUALISTIC NETWORKS 43

3.1. K-shell decomposition. The k-shell decomposition is a centrality measure
for network analysis that identifies progressively internal ‘shells’ and decomposes
the network, layer by layer, by an effective degree in cohesion ([8, 7]). The k-shell
may be performed using the “prunning” algorithm: One starts prunning the nodes
of degree one; after all nodes of degree one have been removed one looks again for
nodes of degree one, in a recursively way, until no 1-degree node remains in the
network. The subset of all removed nodes is the 1-shell. For the 2-shell one repeats
the procedure prunning 2-degree nodes, and so on. The last subset, with the highest
degree, is the k-core. An example of a k-shell decomposition is depicted in Fig. 2.
In this case, animal species A5, A6, and A7 and plant species P6, P7, and P8 belong
to K1-shell; animal species A4 and plant species P4 and P5 belong to K2-shell, and,
finally, A1, A2, A3 and P1 P2 P3 are the generalist group or k-core. Note that
A5 and P6 and P7 have two links (P7 has one link with the core), however, in the
prunning process they behave as if they had one effective link with the network.

From this decomposition we can define the term generalist in a more precise way:
the species belonging to the kmax-core.

With this decomposition we can study perturbation spreading along the network
taking the species k-shell into account.

Figure 2. Network M1.

4. Results. Our main goal is to study the role of population dynamics in resilience
of mutualistic networks. To this purpose we have performed simulations of the
proposed equations (10), with an ad-hoc application written in Python 3 and run
on a personal computer, and then, we have perturbed the steady state (for different
mutualistic networks). Accesible empirical datasets [20] reveal that mutualistic
networks are sparse (filled around 20%) and nested, i.e., when rows and columns
are rearranged in terms of their degrees their adjacency matrix shows a triangle-type
structure.

In order to reveal the role of connectivity we have disturbed species in three
different mutualistic networks: a) M1, nestedness assessment NODF=16, with two
plant species and three animal species in the 1-shell, one plant species in the 2-shell,
and a core of generalists formed by four plant species and four animal species (see
Figure 2); b) M2, NODF=30, with one plant species and one animal species in the
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1-shell, three plant species and three animal species in the 2-shell, and a core of
generalists with three plant species and three animal species (see Figure 3); c) M3,
a perfectly nested matrix with triangular symmetry (NODF=67). This implies one
plant species and one animal species in the 1-shell, in the 2-shell and in the 3-shell,
and four plant species and four animal species in the 4-shell or k-core (Fig. 4).

In all cases, we have firstly performed simulations of the equation system 7 with
the selected parameters (listed in Table 1, Table 3, and Table 4) in order to verify the
stability of the system: populations of all species tend to their carrying capacities,
the stationary solution, and remain in this state unless the system is externally
perturbed. We have looked for the time the system reaches its steady state, and
then we have perturbed one species. In some cases the perturbed species is the most
generalist and in other cases we have perturbed a specialist to test the resilience of
the network against ‘attacks’ to a hub or to a peripherical node.

Perturbations are implemented in a simple way, just increasing the yearly death
rate during a chosen period, and the period is tunned to obtain species extinction.

Figure 3. Network M2.

In all cases we have performed simulations lasting to the stationary state (each
species reaches its carrying capacity). To test the stability of the model we have
performed some simulations with initial populations greater than their carrying
capacity to verify that population diminishes to reach the stable solution.

From this point on, we perturbed one species and let the system evolve to the
new stationary solution.

Figure 5 depicts the time evolution of a mutualistic system with the topology
of matrix M1. Note that in some cases initial population may be greater than its
carrying capacity and they decrease until they reach the stationary solution. At year
200 (when the system has reached the stationary state) the generalist animal A1
suffers a plague (large perturbation) that leads the population close to extinction.
Due to this large perturbation all populations decline, however all species recover
except the specialist plant P7 that becomes extinct (Figure 5).

However, if we increase the mutualistic benefit of plant P7 and diminish it on
animal A7 only this specialist species may become extinct (see Table 1). Figure 6
shows the perturbation of animal A1 for 8 years with a rate of 0.7: only animal
A7 goes to extinct and all the plants can recover although their populations have
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Figure 4. Network M3.
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Figure 5. Population time evolution of community M1. At year
200 disturbations on animal A1 cause extinction of the specialist
plant P7. All animal species and the rest of plant species can
recover a new stationary population.

gone down close to extinction. Note that in this case the perturbation on one
animal subset species induces an extinction of another animal species (they are
not directly linked because they belong to the same subset), but no plant species
becomes extinct. Simulation parameters are listed in Table 1.

The same mutualistic network M1, with the same beneficial matrix (see Table 1)
may lead to the extinction cascade if the perturbation is greater. Figure 7 depicts
the same system as Fig. 6 but the perturbation is of rate 0.8 lasting 10 years: the
generalist animal A1 cannot recover its population and drags all other species to
total extinction. Simulation parameters of Fig 5, Fig. 6 and Fig. 7 are detailed in
Table 1.

A cascade extinction may be triggered not only by a generalist but also by a
specialist. In Figure 8 is plotted the time evolution of the same mutualistic network
(with some changes in the beneficial matrix as shown in Table 2) under a pertur-
bation on the specialist animal A7 at time 200 lasting 20 years. Although this is a
specialist species its generalist plant partner obtains an important benefit from this
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Figure 6. Population time evolution of community M1. At time
200 disturbations on animal A1 cause extinction of animal A7. All
plants and the rest of animals can recover a new stationary popu-
lation.
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Figure 7. Population time evolution of community M1. At year
200 a perturbations on animal A1 produces a vanishing population
that drags all plants and animal species, triggering a cascade ex-
tinction.

interaction. This large decay produces a serious disminishing of the generalist plant
population that drags all species into cascade extinction. Simulation parameters
are detailed in Table 2.

In mutualistic network M2, where species in the 1-shell are connected to a species
in the 2-shell (see Fig. 3), the perturbation on the specialist animal A5 drags the
specialist plants P6 and P7, and the animals A5, A6, and A7. The core of the
network is stable and reaches a new stationary state with a bit lower carrying
capacities (see Figure 9).

However, when the perturbed species is the generalist animal species A1, be-
longing to the k-core, this species goes to extinction dragging all species except the
specialists that have strong links between them and the generalist plant species that
shares links with the three specialist animals (Figure 10). Simulation parameters
are listed in Table 3.

With minor changes in the interaction matrix, the same perturbation on the
generalist A1 only leads to its own extinction (not shown).
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Figure 8. Population time evolution of community M1. At year
200 a perturbation on the specialist animal A7 produces a vanishing
population that drags all plants and animal species, triggering a
cascade extinction.
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Figure 9. Population time evolution of community M2. At year
500 perturbations on the specialist animal A5 produce a vanishing
population that drags all plants and animal species in the 1-shell.
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Figure 10. Population time evolution of community M2. At time
1000 disturbations on the generalist animal A1 produce a vanishing
population that drags all generalist animal species and generalist
plants except P1; species in the 1-shell are minimally affected.
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Figure 11 shows population evolution of the community M3. At time 200 the
specialist animal A7 is affected by an external plague for ten years that declines
quickly its population to become extinct. Due to the minimal dependence of plants
on this animal, the remainder of the network goes towards a stationary solution
with lower carrying capacities (simulation parameters in Table 4).
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Figure 11. Population time evolution of community M3. At time
200 disturbations on animal PA cause its extinction.

In the next example of disturbation (Figure 12) we simulate a perturbation on
the generalist animal A1 in the same community M3. With the same mutualistic
parameters and with the same perturbation, now the plague affects to a generalist
(A1) with an important role in the network. The drastic decay of population of A1
draggs all its mutualistic partners, ending at an extinction cascade.
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Figure 12. Population time evolution of community M1. At time
200 disturbations on animal A1 cause total extinction.

In Figure 13 we have plotted population evolution of the same community M3
with different mutualistic dependences than in previous cases (see Table 4), a dif-
ferent perturbation at time 200. At this time the generalist animal A1 is subject
to a death rate of 80% for ten years. Now this highly connected species goes to
extinction dragging the specialist P7, while the rest of the community reaches a new
stationary state (with different carrying capacities). Table 4 contains the dynamics
parameters used in these three examples.
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Figure 13. Population time evolution of community M3. At time
200 disturbations on the generalist animal A1 cause extinction of
the specialist plant P7 and its own extinction.

5. Discussion. To our best knowledge, resilience and robustness studies on mu-
tualistic networks have been done from the topology point of view. Conclusions
about robustness of this kind of networks are extracted observing secondary extinc-
tions when species are removed (primary extinctions) from the network following a
predetermined sequence. A secondary extinction will occur only when all partners
become extinct. However, dynamically a species can go to extinction when its pop-
ulation disminishes below a “vital” threshold as it states the International Union
for Conservation of Nature (IUCN). Its Red List classifies as critically endangered
species when the decline in abundance is greater than 80% over 10 years [26]. This
opens a new approach in the resilience studies of mutualistic networks because of
functional extinctions [23]. This phenomenon can occur even if the population of
the target species recovers after the disturbance has disappeared (as it can be seen
in Figures 6 and 5).

This new perspective may change the previous results on resilience with mu-
tualistic networks. Some considerations must be taken into account: i) induced
extinctions can occur when populations of partners are low enough (primary ex-
tinction is not required to get secondary extinctions); ii) dragging can affect any
species linked, i.e. a species will become extinct when all its partners cannot supply
mutualistic benefit enough to compensate the negative growth rates (the loss of a
link can imply an extinction depending on the dynamical mutualistic parameters);
iii) cascade extinction is a dynamical process that will occur when population de-
cline of one species produces a continuous negative effective growth rate in all its
partners, and these new population declines entail the same negative effects in all
their partners, and so on.

Essentially, the resilience of this kind of network can be seen as the distance, in
the flow diagram, from the survival watershed (as it is explained in [12]). When the
system is close to one survival watershed a perturbation can move the system state
to a extinction basin, or even to the total extinction basin.

Topology is not enough to measure the resilience of a mutualistic network. In
three networks with very different topology we have found similar dragging effects
when one species is damaged. We have found similar casuistry in all three topolo-
gies, with very different parameters: nestedness and k-shell distribution should be
the relevant parameters to determine the resilience of a mutualistic network. For
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each network we have found a variety of resilience behavior, from stability to ex-
tinction cascade depending on the mutualistic parameters of the equations system.
As conclusion, one cannot predict the resilience behavior of a mutualistic networks
attending only to topological properties.

This approach may be usefully applied in other systems where extinctions are
involved and the role of dynamics on the vulnerability of the system can be assessed.
This may be the case of spatially explicit metapopulations and metacommunities
(e.g. networks of temporary ponds, islands in an archipelago, etc) where in addition
to the features of the topological network that characterize them, the vulnerability
of the system is also significantly determined by the dynamics of the populations.

Although we have studied only one model of population dynamics in mutualistic
systems, other mutualistic models will have some parameters for the species inter-
actions that could be tuned in order to produce dragging or stability as we have
done in this model.

P1 P2 P3 P4 P5 P6 P7 A1 A2 A3 A4 A5 A6 A7

bj1

(
10−5

)
3 2 2 0 1.2 5 0.7 3 2 1.5 1.2 0 0 3

bj2

(
10−5

)
1.5 1.5 0 2 0 0 0 2 2 0 1.2 0 0 0

bj3

(
10−5

)
1.5 0 1.5 1.5 1.2 0 0 2 0 1.5 1.2 0 0 0

bj4

(
10−5

)
1.2 1.5 1.5 1.2 0 0 0 0 1.5 1.5 1.2 0 0 0

bj5

(
10−5

)
0 0 0 0 0 0.1 0 1 0 1.5 0 0 5 0

bj6

(
10−5

)
0 0 0 0 1.2 0 0 1 0 0 0 4 0 0

bj7

(
10−5

)
1 0 0 0 0 0 0 1 0 0 0 0 0 0

Ninit j 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000

cj

(
10−5

)
8 8 8 8 8 8 8 8 8 8 8 8 8 8

αj

(
10−5

)
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

rbirth j 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
rdeath j 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table 1. Mutualistic coefficients and conditions for the simulation
of M1 in Fig. 5; in Fig. 6 and Fig. 7 bP7A1 = 2, bA7P1 = 0.8.

P1 P2 P3 P4 P5 P6 P7 A1 A2 A3 A4 A5 A6 A7

bj1

(
10−5

)
1.5 1.5 1.5 0 1.2 5 3 1.5 1.5 1.5 1 0 0 3

bj2

(
10−5

)
1 1 0 1.5 0 0 0 1 1 0 1 0 0 0

bj3

(
10−5

)
1 0 1 1 1.2 0 0 1 0 1 1 0 0 0

bj4

(
10−5

)
1 1 1 1 0 0 0 0 1 1 1 0 0 0

bj5

(
10−5

)
0 0 0 0 0 0.1 0 1 0 1 0 0 5 0

bj6

(
10−5

)
0 0 0 0 1.2 0 0 1 0 0 0 4 0 0

bj7

(
10−5

)
0.8 0 0 0 0 0 0 0.8 0 0 0 0 0 0

Table 2. Mutualistic coefficients for the simulation of M1 in 8.
The rest of parameters are the same as in Table 1.
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P1 P2 P3 P4 P5 P6 P7 A1 A2 A3 A4 A5 A6 A7

b1j

(
10−5

)
2 2 2 1.6 1.9 0 0 2 2 2 1 0.1 0.2 0

b2j

(
10−5

)
2 2 2 0 2.2 0 0 2 2 2 1 0 0 0

b3j

(
10−5

)
2 2 2 2 0 0 0 2 2 2 0 0 0 0

b4j

(
10−5

)
2 2 0 0 0 0 0 2 0 1 0 0 0 0

b5j

(
10−5

)
1 0 0 0 0 4 5 0.1 1 0 0 0 0 0

b6j

(
10−5

)
1 0 0 0 0 0.11 0 0 0 0 0 0.5 2 0

b7j

(
10−5

)
0 0 0 0 0 0 1 0 0 0 0 4 0 2

Ninit j 1200 1500 1200 1000 800 1500 1500 1200 1500 1300 1000 800 700 1500

cj

(
10−5

)
8 8 8 8 8 8 8 8 8 8 8 8 8 8

αj

(
10−5

)
3 3 3 3 3 3 3 3 3 3 3 3 3 3

rbirth j 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
rdeath j 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table 3. Mutualistic coefficients and conditions for the simulation
depicted in Fig. 9. In Fig. 10 all parameters are identical except
bP1A1 = bP2A1 = bP3A1 = 4, bP1A2 = bP1A3 = bP1A4 = 1, bP2A2 =
bP2A3 = bP2A4 = 1, bP3A2 = bP3A3 = 1, bA1P4 = bA2P3 = 1

P1 P2 P3 P4 P5 P6 P7 A1 A2 A3 A4 A5 A6 A7

b1j

(
10−5

)
1 1 1 1 1 1 1 1 1 1 1 1 1 1

b2j

(
10−5

)
1 1 1 1 1 1 0 1 1 1 1 1 1 0

b3j

(
10−5

)
1 1 1 1 1 0 0 1 1 1 1 1 0 0

b4j

(
10−5

)
1 1 1 1 0 0 0 1 1 1 1 0 0 0

b5j

(
10−5

)
1 1 1 0 0 0 0 1 1 1 0 0 0 0

b6j

(
10−5

)
1 1 0 0 0 0 0 1 1 0 0 0 0 0

b7j

(
10−5

)
1 0 0 0 0 0 0 1 0 0 0 0 0 0

Ninit j 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

cj

(
10−5

)
6 6 6 6 6 6 6 6 6 6 6 6 6 6

αj

(
10−5

)
3 3 3 3 3 3 3 3 3 3 3 3 3 3

rbirth j 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
rdeath j 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table 4. Mutualistic coefficients and conditions for the simulation
depicted in Fig. 11 and Fig. 12. In Fig. 13 dynamic parameters
and mutualistic coefficients are the same except bP2A1 = bA2P1 = 2,
bP3A1 = bA3P1 = 3, bP4A1 = bA4P1 = 4, bP5A1 = bA5P1 = 5,
bP6A1 = bA6P1 = 6, bP7A1 = 4, bA7P1 = 7, cP7 = 20, αP7 = 18,
rdeathP7 = 0.03.
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