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Capturing the diversity of multilingual societies
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Cultural diversity encoded within languages of the world is at risk, as many languages have become endan-
gered in the last decades in a context of growing globalization. To preserve this diversity, it is first necessary to
understand what drives language extinction, and which mechanisms might enable coexistence. Here, we study
language shift mechanisms using theoretical and data-driven perspectives. A large-scale empirical analysis of
multilingual societies using Twitter and census data yields a wide diversity of spatial patterns of language
coexistence. It ranges from a mixing of language speakers to segregation with multilinguals on the boundaries of
disjoint linguistic domains. To understand how these different states can emerge and, especially, become stable,
we propose a model in which language coexistence is reached when learning the other language is facilitated
and when bilinguals favor the use of the endangered language. Simulations carried out in a metapopulation
framework highlight the importance of spatial interactions arising from people mobility to explain the stability
of a mixed state or the presence of a boundary between two linguistic regions. Further, we find that the history
of languages is critical to understand their present state.
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I. INTRODUCTION

Language, as the basis for communication, is at the heart
of the functioning of human societies. It has thus long been
an important subject of research, as scientists sought to under-
stand its interactions with society, the internal evolution of a
language’s aspects with time or how multiple languages inter-
act with one another. The research presented here is concerned
with the latter, which emerged a few decades ago as a hot topic
when linguists realized that the world may be facing a mass
extinction of languages [1–3]. It has been pointed out that
the estimated 6000 languages of the world convey a cultural
wealth, the loss of which would be irreversible. Hence the
need to understand what drives individuals to shift from one
language to another.

Modeling language shift has been the subject of much
research in the last decades [4,5], which employed various ap-
proaches such as the formulation of evolution equations based
on ecological models [6–10], of reaction-diffusion equations
[11–14], or approaches within the framework of agent-based
modeling [14–17]. While global evolution equations deter-
mine how the proportions of each language group will evolve
in a system, agent-based models (ABMs) describe the shifting
mechanisms on an individual level, as they provide proba-
bilities to switch to another language group. These transition
probabilities depend on the linguistic environment of the in-
dividual, environment which may be defined in many ways.
Different networks of interactions can be introduced, ranging
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from the simplest (fully connected networks) to more realistic
but less tractable ones (like a real-world social network). The
former lend themselves easily to mathematical analysis as
they can be equivalently written in terms of global evolution
equations for large population sizes. As a result, models based
on global evolution equations are a subset of the more general,
agent-based ones. Moreover, ABMs allow to assess the impact
of the social structure on the dynamics. This social structure
is closely related to space, but in a nontrivial way, and as
there is no model that can claim to be the universal solution
to build spatial interaction networks [18], being able to plug
in any kind of interaction network is an interesting feature
of ABMs. It is for all these reasons that the focus of this
article will be on ABMs. The first notable model to mention
is the Abrams-Strogatz model [19]. It was the first to attract
considerable attention as the authors were able to fit their
model to the historical data of multiple languages threatened
by extinction, and subsequently predicted their death. The
model is very simple as it considers only the monolingual
states A and B. The basic principle behind this model is that
the more speakers of A, and the more prestigious A is in
society, the more B speakers will want to switch to A, and
inversely.

However, the existence of around 6000 spoken languages
in 200 nations implies that multilingualism is a pervasive
phenomenon worldwide. In almost every country, the pres-
ence of more than one language naturally leads to speech
communities of different sizes. A common situation is that
many individuals belonging to these communities use two or
more languages independently of the official status and the
educational prevalence of those languages. The extent and role
of bilingualism is hence a difficult subject. Multiple modeling
attempts have been made in that direction [12,15,20,21]. In
these models, agents can be in a third state AB through which
they have to pass to switch from being monolingual in a
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language to another. Apart from Ref. [14], which relied on
census data, none of the aforementioned models have been
iterated over real-world spatial distributions of speakers, as
they were rather implemented in fully connected populations
or in toy models, like lattices or random networks. This is a
shortcoming we will address here.

Indeed, speech communities are distributed in regions
which are heterogeneous and even discontinuous when their
boundaries cannot be arranged into a single closed curve.
This spatial component cannot be neglected in the study
of language dynamics, as the sociolinguistic environment in
which individuals interact is of paramount importance for
the dynamics. That is why this work also seeks to obtain
and analyze the spatial distribution of languages in order to
evaluate the models. But despite the ubiquity of language,
data on language use have historically been hard to come
by. Linguists have mainly relied on data from censuses or
surveys which have a limited scope, especially in terms of
spatial resolution and sample size. Thus Ref. [22] argued
for large-scale data-driven approaches to complement exist-
ing sociolinguists’ works, in a complementary framework
of “computational sociolinguistics.” In addition to new tools
for speech and text analysis, technological advancements
have brought with them the ability to collect unprecedented
amounts of data from online communications.

In this work, we combine a large-scale empirical study of
the spatial distribution of languages with agent-based model-
ing. In Sec. II, we show empirically that multilingual societies
are characterized by different spatial patterns in the popu-
lations of monolinguals and bilinguals, encompassing fully
mixed states and segregated distributions with a clear linguis-
tic boundary. As the existing ABMs are not able to explain
the range of spatial mixing observed, we introduce in Sec. III a
model able to capture the diversity seen in the data. The model
also shows how the behavior of bilinguals and the ease of
learning a language have their importance for the coexistence
of languages. Finally, Sec. IV contains our conclusions.

II. A DIVERSITY OF MULTILINGUAL SOCIETIES?

As said above, multilingual societies are numerous and
thus susceptible to display distinct features. These differences,
however, need to be observed and, ideally, quantified, to truly
describe the diversity of these societies. Given the very few
regions and countries where censuses gather data on language
use at a fine enough spatial scale, we choose here to turn to
Twitter as an alternative data source. Nonetheless, our analysis
can equally be applied to data from surveys and census where
available, as shown in Sec. II and Figs. S13 and S14 for
Quebec [23].

A. Twitter data analysis

Twitter is a social networking and microblogging service
used worldwide by hundreds of millions of users, who post
short messages, called tweets, which can be geolocated. It has
thus good potential as a data source to extract spatial distribu-
tions of language use, as shown in Refs. [24–29]. Here, we
are not so much interested in language distributions fitting
perfectly what exists in the offline world, but rather in the

kind of distributions we may encounter. Despite all the biases
introduced by the differences of usage of Twitter across the
population, it could hence still provide valuable insights for
regions in which close to no other data are available. Then
to obtain spatial distributions of languages, we selected 16
countries and regions in which there was potential to gather
sufficient statistics for multilingual communities (see the list
in the Table S1 of Ref. [23]), and analyzed geolocated tweets
sent from them from early 2015 to the end of 2019. A regular
grid was laid over each area of interest, dividing them in
square cells (see for instance the grids laid over Belgium
and Catalonia in Fig. 1). The cell size has to be adapted for
each studied region, as explained in Sec. I C of Ref. [23].
We have checked the effect of modifying the cell size and
made sure that our results are robust (see Figs. S10– S12 [23]).
The language of the messages is detected using Chromium’s
Compact Language Detector (CLD) [30] that provides the
most likely language of a text from the messages along with
a confidence (see Sec. I C of Ref. [23] for details). After
thoroughly cleaning and analyzing the collected tweets, we
obtained a sample of local Twitter users to which a cell of
residence and a set of languages were attributed. Information
about data access and code availability can be found in the
Appendix.

B. Metrics

Before introducing any metric, we specify our definition of
language groups. First, we focus only on the languages con-
sidered local. For instance, the use of English is widespread
on Twitter, but we do not register those tweets unless English
is one of the local languages (e.g., in Canada or Malaysia). A
user is classified as a speaker of a language if at least 10% or
5 of their tweets are detected in that language. One individual
can thus be naturally in a monolingual or in a multilingual
group if they fulfill the condition in more than one language.
The groups defined here are mutually exclusive: each user
must be in one of the monolingual and multilingual groups
that are possible to form with the given set of local languages.
For the purposes of our work, we consider language as a social
phenomenon. Thus, we do not take into account the individ-
ual proficiency, which is indeed interesting in other fields of
study [31], but instead observe the language production of a
speech community defined inside every cell, based on their
use of one or more languages. Thereafter, we will talk of L
speakers instead of “individuals who belong to the L group”
for simplicity.

Starting from the counts NL,i of L speakers residing in cell i
obtained from the data, we wish to gain insights on the spatial
distributions of language use. To do so we need to define a few
basic metrics:

(1) concentration in cell i of L speakers:

cL,i = NL,i

NL
, (1)

(2) proportion of L speakers in i’s population:

pL,i = NL,i

Ni
, (2)

043146-2



CAPTURING THE DIVERSITY OF MULTILINGUAL … PHYSICAL REVIEW RESEARCH 3, 043146 (2021)

(a) (b) (g)

(c) (d)

(e) (f)

(h)

FIG. 1. Visualization of the diversity of multilingual societies. For each cell of 10 × 10 km2, the proportions pL,i of monolinguals in
(a) French, (b) Catalan, (c) Dutch, and (d) Spanish in Belgium (left) and Catalonia (right) are shown. The maps (e) and (f) show the proportion
of bilinguals [note the different scale needed in (e)]. In the case of Belgium, the border between Flanders (North) and Wallonia (South) is
drawn, and the Brussels region too. In black are cells in which fewer than ten Twitter users speaking a local language were found to reside,
consequently discarded for the insufficient statistics. A clear separation of language groups is visible in Belgium following the linguistic
regions, displaying mixing mainly around the border and in Brussels, while mixing in Catalonia is much more widespread, with a slight
difference between the countryside and the large cities of the coast (East). [(g) and (h)] Earth mover’s ratios of respectively the monolingual
and multilingual groups of multilingual regions of interest, ranked left to right by increasing average of the y-axis values. In (h), the point for
trilinguals in Switzerland is not displayed because its value was deemed unreliable (for more details see Sec. I F [23]). A rich diversity of
mixing patterns is shown, beyond the two paradigmatic cases of Catalonia and Belgium.

where NL are all the users classified as L speakers in the coun-
try or region considered, and Ni is the population of Twitter
users residing in cell i speaking any of the local languages. As
in Ref. [24], we can define the polarization of a language A
for every cell i in a bilingual system with languages A and B
as

θA,i = 1
2 (1 + pA,i − pB,i ). (3)

The polarization vanishes when there are only B monolin-
guals, takes the neutral value of 0.5 when there are as many A
speakers as B speakers, and goes to 1 when there are only A
monolinguals. We will use this metric in bilingual regions as
an indication of the mixing at the cell level.

Building further upon proportions and concentrations, we
want to be able to measure the spatial mixing of language
groups, or inversely, their spatial segregation. We define seg-
regation as the difference in how individuals of a given group
are spatially distributed compared to the whole population.
Segregation is thus conceptualized as the departure from a

baseline, the unsegregated scenario, in which regardless of the
group an individual belongs to, they would be distributed ac-
cording to the whole population’s distribution. Explicitly, the
concentrations corresponding to this baseline, or null model,
are ci = Ni/N . To quantify language mixing, we would then
like to measure a distance between the spatial distribution of
a given language group and that of the whole population.

To this end, at a full country or region scale, we define
the so-called Earth mover’s distance (EMD). This metric al-
lows us to quantify the discrepancy between two distributions
embedded in a metric space of any number of dimensions.
It has mainly been used within the field of computer vision
[32], and it was shown to be a proper distance (in the metric
sense) between probability distributions [33]. Here, we con-
sider the distributions defined by the signatures P = {(i, ci )}
and QL = {(i, cL,i )}. We then define EMDL as

EMDL ≡ EMD(P, QL ) =
∑
i, j

f̂i jdi j, (4)
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with di j the distances between cells i and j, and f̂i j the optimal
flows to reshape P into QL, obtained by minimizing

∑
i, j fi jdi j

under the following constraints:⎧⎪⎪⎨
⎪⎪⎩

fi j � 0,∀ i, j∑
j fi j = cL,i,∀ i∑
i fi j = c j,∀ j∑
i

∑
j fi j = ∑

i cL,i = ∑
j c j = 1,

(5)

where ci and cL,i are the concentrations of the population and
L speakers in every cell i, as defined above. EMDL quanti-
fies thus the distance between the concentration distributions
of L speakers and of the whole population, as needed. The
computation of the EMD was implemented with Ref. [34],
which uses the method of Ref. [35]. However, in its raw form,
it is dependent on the spatial scale of the system considered.
Hence the need for a normalization factor kEMD in order to
enable comparisons between regions of different sizes. The
first, obvious choice for kEMD would be the maximum distance
between two cells of the region. However, such a choice would
neglect the disparities of population density existing between
different regions. The factor would be very high in Quebec, for
instance, since the geographical scales are large even though
its northern part is scarcely populated. This is why we choose
instead the average distance between individuals:

kEMD =
∑

i

∑
j NiNjdi j

(
∑

k Nk )2 . (6)

Our final metric is then the normalized version of the EMD,
the EMR (Earth mover’s ratio), defined as

EMRL = EMDL

kEMD
. (7)

The EMR is a global parameter. The higher it is, the more
segregated a linguistic community. On the contrary, if the
EMR is close to zero this community is distributed according
to the total population and the mixing is complete. As shown
in Fig. S13 and Sec. S14 [23], the EMR is cell size invariant
and, quite generally, a reliable metric when a careful statistical
analysis is made.

C. Empirical results

We propose a first visualization of the collected data in
Figs. 1(a)–1(d), where the proportions of monolinguals in
Dutch and French, Catalan and Spanish, are displayed for
Belgium and Catalonia, respectively. The cell size is here of
10 × 10 km2 (see Figs. S10 and S11 [23] for equivalent maps
with cells of 5 × 5 and 15 × 15 km2). The maps already show
two configurations that frequently appear across the world
in multilingual societies: either a marked boundary between
mostly monolingual domains (Belgium) or high mixing in
every cell with local coexistence (Catalonia). The population
of bilingual users concentrate in the border in the first case
(especially in the region around Brussels and in the southern
border with Luxembourg), and it is widespread in the second
[Figs. 1(e) and 1(f)]. Results for the other multilingual regions
listed in Table S1 are shown in Figs. S1– S14 [23]. These
findings are summarized in Figs. 1(g) and 1(h), which presents
the ranges of values reached by the EMR of respectively the
monolingual and multilingual groups in 14 of our 16 regions

of interest. We filtered out regions where we deemed not
sufficient the statistics gathered from Twitter (see Table S2
for all measured metrics and cell sizes used [23]). A wide
diversity of situations can be observed. Multilingual societies
may have rather balanced monolingual groups separated by
a clear-cut border, which have thus high but quite similar
EMR values, like in Belgium and Switzerland. One can also
see unbalanced situations where one language is majoritarian,
and has thus a much lower EMR than the monolinguals and
multilinguals of other smaller, isolated languages. This is for
example the case on the island of Java, where Indonesian is
widespread, and Javanese and Sundanese are more localized.
Multilinguals may also be mixing well in the whole popula-
tion, like the bilinguals in Galicia and Catalonia. These groups
can thus be of completely different natures from one region
to another, from sustaining a minority language while being
spatially mixed or isolated, to standing at the border between
monolingual communities.

The metrics introduced to evaluate the spatial mixing of
languages can be calculated using similar data taken from
other sources. Although data on language use on a fine enough
spatial scale are difficult to find, it can, for instance, be ob-
tained for Quebec from the Canadian census of 2016. Maps
equivalent to the ones of Fig. 1 are shown using both data
from the census and from Twitter for Quebec in Figs. S13 and
S14 [23]. Similar mixing patterns can be observed from both
data sources.

III. MODELS CAPTURING DIVERSITY

As language use in a society only sees significant changes
on a time scale of generations [36], the maps obtained from
Twitter are only snapshots of the situation around the years
2015 to 2019 (synchronic viewpoint). We do not have ac-
cess to data providing the longitudinal evolution (diachronic
framework), but the models at hand do describe the dynamics
of the system. Since some of the multilingual societies we
study have had the same kind of spatial pattern of language
coexistence for generations (Belgium with a separation and
Catalonia with mixing), it is natural to ask whether these
states are stable solutions of a model describing language
competition. We will check, in the first place, if the existing
models meet the basic requirement of reaching the observed
stable states. Crucially, if they do not fulfill it, the underlying
mechanisms of language shift are not therein fully captured,
missing a significant element that could be key to language
preservation.

A. Previous models

The individuals in a population can be in states repre-
senting their use of one or several languages. Under this
framework, the dynamics are governed by the permitted tran-
sitions between states and their corresponding probabilities
of occurring. Figure 2 displays the states: monolingual in
A and B, and bilingual AB, with the associated transition
probabilities in two previous models and in our proposal. We
denote pA and pB the proportions of monolinguals in A and
B, respectively, and pAB the proportion of bilinguals. Within a
mean-field approximation, and all the population being mixed,
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(a)

(b)

(c)

FIG. 2. Diagrams of the models presented in the text, showing
the transition probabilities from one state to another. (a) Abrams-
Strogatz model from [19]. (b) Bilinguals model from [15]. (c) Our
model of bilinguals including both their preference and the ease to
learn the other language [see Eq. (10)].

all equations can be written in terms of the proportions, which
satisfy the equality pA + pB + pAB = 1. Within this notation,
a state of coexistence is a state in which the two languages re-
main spoken, which corresponds to either pAB > 0, or pA > 0
and pB > 0. Extinction of A (B), for instance, corresponds to
pA = pAB = 0 (pB = pAB = 0).

The first model to mention is the one introduced in
Ref. [19] by Abrams and Strogatz [Fig. 2(a)]. The model
only contains monolinguals, who can change their languages
with a probability that depends on the proportion of speakers
of the other language to an exponent a (called volatility),
which controls if the dependence on the proportion of the
other language group is linear (a = 1), sublinear (a < 1) or
superlinear (a > 1). Besides, they also include a parameter s
between zero and one, which stands for the prestige of the
language A. If s is close to one, all the individuals will forget
B and start to speak A alone. Set in a single population and in
mean field, this model was shown to fit historical data of the
decline of minority languages in Ref. [19]. It was thoroughly
analyzed in Ref. [21], where it was first shown that its stable
state is extinction of one language for a � 1, and coexistence
for a < 1, independently of the prestige. In complex contact
networks, the coexistence region in the (s, a) space shrinks,
as not all values of prestige enable coexistence for a < 1. It is
important to note that the linear version of the model does not
predict coexistence.

Later, an extended model with bilinguals was proposed by
Castelló et al. [15] [see Fig. 2(b)]. The transitions to lose a lan-
guage are there related to the proportion of bilinguals besides
the monolinguals of the other side. The idea is that since A can
be spoken to both A and AB individuals, the utility to retain B
decreases with an increasing proportion of these two types of
individuals. An analysis of the stable states of this bilinguals
model performed in Ref. [21] shows that the coexistence only
occurs if a < 1 and that the area of parameters allowing it
is reduced compared to the Abrams-Strogatz model. Again,

the linear (a = 1) version of the model does not allow for
language coexistence.

Several concerns may be raised about these models. The
first one is that for languages with equal prestige (s = 1/2)
and with equal social pressure (same proportion terms), learn-
ing and forgetting a language is equiprobable, while they
result from two completely different processes. People may
inherit a language from their parents, use it for endogenous
communication, and they could be driven to learn a new one
for work or education purposes, which corresponds to ex-
ogenous communication. This is a typical diglossic situation
[37] with a linguistic functional specialization. A difference in
prestige favors this process, but losing a language, especially
in the presence of cultural attachment, can be more difficult.
In the case of bilingualism, once someone masters a new
language to a bilingual level they will not forget their first.
Besides, it seems reasonable to assume that most of the time,
a language is lost when it is not passed from one generation
to the next [3,38]. A second concern we raise here is that both
models only find stable coexistence in a nonlinear configura-
tion, when a < 1. These values of a imply easier transitions
overall, and thus that coexistence is favored when speakers
are more loosely attached to their spoken languages. This
nonlinearity is hence hard to explain from a practical point
of view and it has the effect of making the transitions less
dependent on the actual proportions of speakers. Thirdly, it
is important to note that the bilingual model of Fig. 2(b) is
not able to produce a stable solution in which the bilinguals
coexist with monolinguals of a single language.

B. Our model

Our proposal stems from the realization of this last point:
there are several bilingual societies where the monolinguals
of one language, e.g., B, are virtually extinct (e.g., Catalonia,
Quebec, or the Basque Country). However, the bilinguals con-
tinue to use B and keep it alive for decades if not centuries
due to cultural attachment. This “reservoir effect” must be
incorporated in models of language shift. The other ingredient
that we will include concerns demographics, in relation with
the first concern raised above: language loss mostly occurs
between generations. For this, we get inspiration from the
work of Ref. [16] that sets a rather generic framework for
models differentiating horizontal and vertical transmission.

We thus first distinguish generational, or vertical, transmis-
sion, which corresponds to the death of a speaker replaced by
their offspring. If the speaker was monolingual, their single
language is transmitted. If they were bilingual, one of their
two languages might get lost in the process of transmis-
sion. This loss occurs according to the following transition
probability:

P(AB → X) = μ sX [pX + qX pAB], (8)

where, as in the other models, sX refers to the prestige of
language X, which can be either A or B. The other parameters
are μ ∈ [0, 1], that is the fixed probability for an agent to die
at each step; and, qX ∈ [0, 1] that reflects the preference of
bilinguals to speak X. So bilingual speakers may be more in-
clined to transmit only language X when it is more prestigious,
preferred by other bilinguals, and more spoken around them.
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The second kind of transition is horizontal, it is related to
the learning of a new language by a monolingual in the course
of their lives. This transition occurs according to the following
transition probability:

P(X → AB) = c (1 − μ) sY [pY + qY pAB], (9)

where Y is the language other than X, and, critically, c ∈ [0, 1]
is a factor adjusting the learning rate. The timescales of the
learning process and of a generational change are completely
different, hence the need to adjust (1 − μ) by this factor c
here. It depends on the similarity between the two languages
and on the implemented teaching policies. For the sake of
simplicity and to avoid the inclusion of more parameters, we
assume that the process is symmetric between learning A
when B is spoken and vice versa. This is not necessarily true
in all cases, but it can easily be solved by splitting c in more
parameters for each transition. To translate this expression
of the transition probability into words, a monolingual in X
will be more willing to learn Y as it is easier to learn, more
prestigious, preferred by bilinguals, and more spoken around
them.

We define s and q as symmetric around 1/2, and thus define
s = sA = 1 − sB and q = qA = 1 − qB. The transitions in our
model are illustrated in Fig. 2(c) and we explicit here below
the transition probabilities that define it:
⎧⎪⎨
⎪⎩

P(A → AB) = c (1 − μ) (1 − s) [pB + (1 − q) pAB]
P(B → AB) = c (1 − μ) s [pA + q pAB]
P(AB → A) = μ s [pA + q pAB]
P(AB → B) = μ (1 − s) [pB + (1 − q) pAB]

.

(10)
An important aspect of the model is that the use of a lan-
guage by bilinguals contributes potentially unequally to the
sizes of each language community. The neutral case occurs
when q = 1/2 and bilinguals on average contribute equally to
both groups. It is however natural that even if bilinguals are
fluent in both languages, individually they may have a certain
preference for one of them and their language use is not
necessarily balanced [39]. Even if one of the two languages
is in a minority or suffers from a lack of prestige, appropriate
values of q may maintain it alive. The most extreme example
occurs when the monolinguals of B, for example, are extinct
(pB = 0). Still, the use of B by the bilinguals keeps attracting
monolinguals of the group A proportionally to (1 − q) pAB.

Finally, we chose not to include nonlinearities in the model
(a = 1), as it turned out not to be necessary to capture the
diversity we observed, and it would only add unnecessary
complexity.

C. A single population

We first analyze the model in the simplest setting of a
single well-mixed population to determine the typology of
possible solutions. Given the normalization condition pA +
pB + pAB = 1, the system dynamics can be described by a
set of two coupled equations, let us say, for pA and pB

(see Sec. III [23]). Fixed points are the solutions for which
∂ pA/∂t = ∂ pB/∂t = 0. The stability of these points is studied
by performing a linear perturbation analysis around them,
which requires the calculation of the Jacobian of the linearized
equations and of its eigenvalues. Points for which all the

eigenvalues have strictly negative real parts are stable, while
if any eigenvalue’s real part is zero or positive the fixed point
is unstable. Stream plots in Fig. 3 show where the model
converges to in three characteristic examples, depending on
the model parameters. In the first one [Fig. 3(a)], the stable
(blue) points lie over the axis at values 1 and the system has
as only solution the extinction of one of the two languages.
In Fig. 3(b), the stable fixed point falls in the middle of the
diagram and, therefore, the solution is symmetric coexistence
with a majority (∼1/2) of bilinguals. Finally, in Fig. 3(c),
we find a stable fixed point over the x axis that represents
the extinction of monolinguals B but coexistence between A
monolinguals and bilinguals. Surprisingly enough, this rep-
resents the survival of a less prestigious language within a
relatively small bilingual community. These results show al-
ready the flexibility of the model even in a single population.

We change now the viewpoint from the phase space to the
parameter space. In Fig. 4, we plot the region of parameters
where the model converges to stable coexistence. Since c
and μ act over the stability only in a combined form, their
contributions can be merged into a new variable r defined
as r = μ/(c (1 − μ)), which stands for the ratio between the
mortality and learning rates. The other two parameters, s and
q, are considered independently. We observe that the coex-
istence region expands when r decreases. This means that
increasing the ease to learn one language when knowing the
other (with a fixed mortality rate) makes coexistence more
likely. Additionally, coexistence occurs more frequently when
both prestige and bilingual preference are neutral, s = q =
1/2, which is expected. When the prestige of language A
is lower than that of B, we find that there exists an optimal
value of q making possible the coexistence, qopt > 1 − s. For
q < qopt, A is more at risk of extinction whereas for q > qopt,
the endangered language is B. There is thus a balance between
prestige and bilingual preference that enables coexistence.

This model opens up unique classes of stable solutions:
from the extinction of a language to coexistence when prestige
is neutral, but also when it favors one of the two languages,
and even only through a community of bilinguals. However,
these analytic results in a fully-connected population do not
suffice, as they do not show if the model is able to repro-
duce a case such as Belgium, where in the majority of cells
there remains almost exclusively one language, except on the
boundary between the two large communities. Consequently,
we now analyze the model in a metapopulation framework to
uncover the effect of including space and check whether this
pattern can arise.

D. The model in space

The idea of introducing a metapopulation framework in
order to study interaction dynamics in space has been exten-
sively exploited in ecology [40] and epidemiology [41,42].
In our context, we would need some information to build the
extended model. The basic ingredients are a spatial division,
the population in each division, the mobility between them
and the characteristics of the populations in terms of language
groups. Since we are interested in the phase space of the
model, it is possible to use a completely abstract setting.
However, this would require the generation of reasonable data
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(a) (b) (c)

FIG. 3. Flow diagrams for the dynamics of two languages according to our model described in Eq. (10) set in a well-mixed population. pA

and pB denote the proportions of monolinguals in A and B, respectively, and the proportion of bilinguals pAB is such that pA + pB + pAB = 1.
The mortality rate is fixed at μ = 0.02. (a) For s = q = 1/2 and c = 0.02, the stable outcome is extinction of one of the two languages. (b) For
s = q = 1/2 and c = 0.05, the higher learning rate leads to a solution featuring stable coexistence. (c) For s = 0.57, q = 0.45 and c = 0.05,
despite the lower prestige, B survives in a small community of bilinguals as it is the preferred language among them.

in terms of population and mobility, while this information is
easily accessible from census data in many countries. Since
we wish here to study the stability of the present, observed
state, to make metapopulations interact with one another we
use readily available commuting data from the census, as com-
muting is the backbone of everyday mobility. Some further
work could include other kinds of mobility, like migrations, in
order to investigate long-term time evolutions. We have thus
chosen to use census data in Catalonia and Belgium as bench-
marks, although it is important to stress that the intention is
not to produce accurate predictions. Alternatively, the spatial
interactions could be estimated from the population data us-

FIG. 4. Region of the parameter space where the dynamics of
our model in a single population converge to stable coexistence of
languages. We show two 2D cuts of the coexistence region in the
(q, r) space for fixed values of s = 0.5, 0.4, with r = μ/(c (1 − μ)).
Lower values of r favor coexistence, as well as a neutral prestige and
bilingual preference q. When s < 0.5, coexistence is favored for an
optimal value qopt > 1 − s.

ing a model of human mobility, such as gravity, radiation or
distance-kernel-based models [18,43,44].

The populations and commuting are thus obtained from
the national census at municipality scale (see Methods for
how to access them). We implement a mapping process from
municipalities to our cells based on area overlap (details in
Sec. IV A [23]). Regarding the language groups, Twitter data
may suffer from different sociodemographic biases [45,46],
and besides tweets reflect language use online, not necessarily
the offline practices in the full population. Since in the census
we found information on the total number of persons per
language group and of residents per municipality, we have
scaled the L speakers that we find on Twitter to match these
two sets of marginal sums via iterative proportional fitting
(IPF) [47,48].

Once the metapopulation has been initialized, the model
can be simulated. As in Ref. [49], the day is divided in two
parts: the individuals first start in their residence cells and
interact with the local agents following the rates of Eq. (10),
and then move to their work cells where again they interact
with the local population. The agents encounter thus different
environments characterized by diverse proportions pL,i in the
two parts of the day. Even if they live and work in the same
cell, the local population changes from one part of the day to
the next.

In order to analyze the stability of the steady states reached
by the extended model, we derive an approximate master
equation for the full metapopulation setting. To this end, we
adapt the methodology described in Refs. [41,42] for epi-
demiological models (see Sec. IV B for details [23]). The
equations obtained are only approximated but since they are
analytic we can integrate them and calculate the Jacobian at
their fixed points. To check the consistency of both approaches
and that the fixed points of the dynamics are the same, we
also introduce the initial conditions in the master equation,
to then integrate it numerically using a standard Runge-Kutta
algorithm. The fixed points reached by the simulations turn
out to be fixed points as well for the equations. Not only that,
all the eigenvalues of the Jacobian at these states have negative
real parts and they are thus stable fixed points.

To explore the parameter space systematically, we per-
form a number of simulations until convergence to a stable
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(a)

(b) (c)

(d) (e)

FIG. 5. Types of stable states of convergence of our model in a
metapopulation set for Belgium. (a) Diagram illustrating the effect of
adding metapopulations in the stable states of a single population: the
former extinction state bifurcates in full extinction and in a boundary-
like state with monolinguals separated in space. Larger values of r
favor homogeneity, either by full extinction or by separation states
(see Fig. S16 for more r values [23]). Below are the regions of the
parameter space (s, q) where these stable solutions emerge, (b) with
r = 1 and (c) with r = 0.45. Finally, two polarization maps show
examples of states the model converges to, (d) a boundary-like state
for r = 1, s = 0.467, q = 0.667, and (e) complete mixing for r =
0.45, s = 0.45, q = 0.592.

state. We show the results for the metapopulation setting of
Belgium in Fig. 5. Remarkably, a new kind of stable state
emerges. While in a single population we had only two stable
configurations: extinction or mixing, here we can find full
mixing [Fig. 5(e)], global extinction and local extinction of a
language in part of the territory leading to a boundarylike state
[Fig. 5(d)]. This state of convergence is similar to the initial
conditions, corresponding to the language border we observe
today. We have thus checked that our model, in these condi-
tions, is able to obtain the present state as a stable solution. A
surprising aspect of the results is that increasing r, or in other
words making it easier or more common to learn the other
language, does not necessarily favor coexistence. Indeed, as r
increases, at one point boundary states become unstable and
this may not necessarily lead to fully mixed states. When r
grows bilinguals become more numerous on the boundary,
until they expand beyond the boundary and spread bilingual-
ism across the region. Still, if this happens when r is not high
enough, the two languages cannot coexist and one ends up
extinct, as the coexistence region of the parameter space in a
single population shown in Fig. 4 may not have been reached.

We also wished to explore the possibility of having a hybrid
state, consisting in an area where a minority language survives
through bilinguals within an otherwise monolingual region.
This is the case of Sundanese and Javanese in Java for instance
(see Fig. S7 [23]). We initialized a hypothetical population in
Belgium, with only monolinguals in Dutch, except in a pocket
of cells in the South of the country, where there are only
bilinguals. The latter were attached a q = 0.62, while q = 0.5
for the rest. Iterating the model yields a stable solution sim-
ilar to this initial state, with a mix of bilinguals and Dutch
monolinguals in the pocket, and only Dutch monolinguals
elsewhere (see Fig. S15 [23]).

E. Dynamics in the parameters

The effect of multilingual education or, in general, policies
favoring the use of one or several languages can alter the
values of our model parameters. For example, c represents
how monolinguals learn the other language. This process can
be facilitated by the similarity between the languages or by
teaching in both languages at school, for instance. Next, we
investigate whether a parameter changing in time can perturb
the system out of a stable state, and how the transition to a
completely different configuration occurs. To this end, we run
a simulation for 23 000 steps and present the results in Fig. 6.
To explore the effects of the c parameter evolution alone, we
fix the other parameters s = q = 1/2 and μ = 0.02. We start
from our initial conditions with c = 0.005, which converges
to a stable state with a boundary [see the first map of Fig. 6(c)].
After 2200 steps, we then increase c by 0.005 every 400 steps
until we reach c = 0.055. The system converges quickly to a
state of mixed coexistence, with a majority of bilinguals and
equal proportions of monolinguals, like in Fig. 5(e). c is then
decreased at the same rate as before to reach its initial value of
0.005. The system eventually converges to a state displaying
a boundary, but displaced compared to its initial position.
A visualization of this evolution is proposed in movie S1.
Also, the resulting trajectory in the EMR space in Fig. 6(b)
shows that the final stable state exhibits more segregation for
both monolinguals and bilinguals, since the boundary between
communities lies in the countryside, and not around Brussels
as in the original scenario. The importance of the history of
languages is hence clearly shown by this experiment.

The seemingly random placement of the boundary may be
owed to the absence of constraints on the system, which is
completely closed. In reality a country is an open system with
exterior influences, notably from its direct neighbors. Thus
we ran the same simulation with trans-border proportions
pTB equal to 0.5% and 0.2% of the population of the bor-
der municipalities of France and the Netherlands commuting
to Belgium. These commuters act as a fixed population of
monolinguals interacting only during the workday with the
local population (for more details, see Sec. IV D [23]). These
boundary conditions stabilize the final state of convergence, as
the linguistic boundary resulting from the process of varying
c is similar for the two values of pTB, following the orienta-
tion of the two opposite borders (see Figs. 6(d)–6(e)). This
positioning is a clear improvement over the closed-system
simulation, albeit still not quite the one we observed in Fig. 1.
In Fig. 6(b), the positions of these two states in the EMR space

043146-8



CAPTURING THE DIVERSITY OF MULTILINGUAL … PHYSICAL REVIEW RESEARCH 3, 043146 (2021)

(a) (b)
(c)

(d) (e)

(d)

(c)

(e)

FIG. 6. Evolution of the state of the metapopulation model in
Belgium when c varies, first slowly increased and then decreased
to recover the original value. We fixed s = q = 1/2 and μ = 0.02.
(a) Evolution of the global proportions pL of individuals belonging
to each L group. The blue curve corresponds to French monolinguals,
light green to Dutch monolinguals and dark green to bilinguals.
(b) Trajectory of the system in the EMR space: on the x axis the
average of the EMR between each monolingual community and the
whole population, and on the y axis the one between bilinguals
an the whole population. The initial state and the stable states the
system went through are marked by colored circles, while black
ones mark additional points where the EMR was calculated, and the
dashed line the interpolation between them. (c) Polarization maps
of French in the initial and final states, both featuring a boundary
but located in different areas, thus showing the irreversibility of the
dynamics. [(d) and (e)] Polarization maps of French in the final states
of simulations including trans-border commuters from France and
the Netherlands, respectively with proportions pTB equal to 0.5%
and 0.2% of the population of the border municipalities of these two
countries. The points in the EMR space corresponding to these final
states are also represented in (b).

are also shown to be much closer to the original state than the
final state of the first trajectory.

More complex settings could be envisaged to get closer
to a realistic solution. A space-dependent prestige could be
introduced, taking different values in Flanders, Wallonia, and
Brussels, for instance. Also, we here considered only the com-
muting part of human mobility, but other kinds of mobility
like migrations may have their importance. This is especially
true for attractive metropolises like Brussels, which are typ-
ically places of intense language contact [50]. However, in
this simulation the aim was to check the irreversibility of a
change when increasing the ease to learn the other language

and subsequently decreasing it to its original value, which was
indeed confirmed.

IV. DISCUSSION

In summary, we have explored the spatial distribution pat-
terns of language competition and coexistence in multilingual
societies. We first did so by introducing the Earth mover’s
ratio, a metric capable of measuring the spatial segregation of
a group in a given society, starting from a distance between its
distribution and that of the whole population. Two main con-
figurations have thus been observed: either spatial mixing with
multilinguals widespread or separate linguistic groups with a
clear boundary between them and multilinguals concentrating
around it.

Despite the ubiquity of these two configurations and their
apparent temporal stability, the models introduced in the liter-
ature were not able to offer clear solutions capturing them. As
we show, the main difficulty comes from the role of bilinguals
in keeping languages alive. In many occasions, the monolin-
gual community of one of the languages may become virtually
extinct and its use relies only on the bilingual group. We have
introduced a model taking this into account and have shown
that it is able to produce naturally both configurations as
stable solutions without the need for artificial nonlinearities.
The model features a parameter considering the preference
of bilinguals for one of the two languages. This preference
actually acts as a kind of defense mechanism since the use
by bilinguals of the endangered language may be enough to
save it, countering a possibly lower prestige of the language
within society as a whole. The ease to learn the other lan-
guage also has a role in the model. It may be influenced by
both the similarity between languages, which can hardly be
controlled, but also by the policies put into place to facilitate
its learning. We have shown that this parameter is critical to
determine whether languages can coexist. The parameters of
the model could be estimated using longitudinal data. The
scope of this work was not predictive, but rather to study
stable solutions of the model, so we leave it here for future
work.

When spatial interactions are taken into account via the
commuting patterns of individuals, the model is able to reach a
stable state where two language communities are separated by
a boundary around which they coexist. In this case, however,
we have shown that, quite counter-intuitively, increasing this
ease to learn the other language may break the existing bound-
ary and lead to extinction, and not to the desired coexistence
with mixing of the languages. This calls for caution when
designing policies since the final state is strongly history-
dependent.

Overall, our findings shed light on the role of heteroge-
neous speech communities in multilingual societies, and they
may help shape the objectives and nature of language plan-
ning [51] in many countries where accelerated changes are
threatening cultural diversity.
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APPENDIX

1. Data access

The geolocated tweets used to map language use were
collected through the streaming API of Twitter, and more
specifically using the “statuses/filter” endpoint Ref. [52]. This
endpoint provides a sample of tweets in real time matching
some provided filters. For the purpose of this work, bounding
box filters were set to collect tweets from a set of countries
of interest. Before reproducing this method of data collection,
one should bear in mind that the current form and even the
availability of this endpoint is subject to future changes intro-

duced by the Twitter Developer’s team. The aggregated data
giving the counts of local users by language group by cell
have been deposited on figshare [53]. The data on commuting
patterns at the municipality level in Belgium were obtained
from the 2011 census [54]. The population per municipality
in France and in the Netherlands were obtained respectively,
see Refs. [55,56]. The data about the knowledge of official
languages (English or French or both) by census subdivisions
in Quebec were obtained from the 2016 Canadian census, and
can be downloaded directly from [57].

2. Code availability

The data processing, the plotting of results and the simula-
tions were carried out in Python with the help of open-source
libraries. All of the Python code used for this work is hosted
on GitHub [58]. Mathematica was used to carry out part of the
analytic work on the models and to generate the associated
Figs. 3 and 4. The corresponding code is also hosted on
GitHub, available at [59].
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