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Uncovering the spatial structure of mobility
networks
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Enrique Frias-Martinez5, José J. Ramasco3 & Marc Barthelemy1,6

The extraction of a clear and simple footprint of the structure of large, weighted and directed

networks is a general problem that has relevance for many applications. An important

example is seen in origin-destination matrices, which contain the complete information on

commuting flows, but are difficult to analyze and compare. We propose here a versatile

method, which extracts a coarse-grained signature of mobility networks, under the form of a

2� 2 matrix that separates the flows into four categories. We apply this method to origin-

destination matrices extracted from mobile phone data recorded in 31 Spanish cities. We

show that these cities essentially differ by their proportion of two types of flows: integrated

(between residential and employment hotspots) and random flows, whose importance

increases with city size. Finally, the method allows the determination of categories of net-

works, and in the mobility case, the classification of cities according to their commuting

structure.
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T
he increasing availability of pervasive data in various fields
has opened up exciting possibilities of renewed quantitative
approaches to many phenomena. This is particularly true

for cities and urban systems for which different devices at
different scales produce a very large amount of data potentially
useful to construct a ‘new science of cities’1.

A new problem we have to solve is to then extract useful
information from these huge data sets. In particular, we are
interested in extracting coarse-grained information and stylized
facts that encode the essence of a phenomenon, and that any
reasonable model should reproduce. Such meso-scale information
helps us to understand the system, to compare different systems
and also to propose models. This issue is particularly striking in
the study of commuting in urban systems. In transportation
research and urban planning, individuals’ daily mobility is usually
captured in origin-destination (OD) matrices, which contain the
flows of individuals going from a point to another (see refs 2,3).
An OD matrix thus encapsulates the complete information about
the flow of individuals in a city, at a given spatial scale and for a
specific purpose. It is a large network, and as such does not
provide clear, synthetic and useful information about the structure
of the mobility in the city. More generally, it is very difficult to
extract high-level, synthetic information from large networks and
methods such as community detection4 and stochastic block
modelling (see for example, refs 5–7) were recently proposed. Both
these methods group nodes in clusters according to certain
criteria, and nodes in a given cluster have similar properties (for
example, in the stochastic block modelling nodes in a given group
have similar neighbourhood). These methods are very interesting
when one wants to extract meso-scale information from a
network, but they are unable to construct expressive categories
of links and propose a classification of weighted (directed)
networks. This is particularly true in the case of commuting
networks in cities, where edges represent flows of individuals that
travel daily from their residential neighbourhood to their main
activity area. Several types of links can be distinguished in these
mobility networks; some constitute the backbone of the city by
connecting major residential neighbourhoods to employment
centres, while other flows converge from smaller residential areas
to important employment centres, or diverge from major
residential neighbourhoods to smaller activity areas. In addition,
the spatial properties of these commuting flows are fundamental
in cities and a relevant method should be able to take this aspect
into account.

There is important literature in quantitative geography and
transportation research that focuses on the morphological
comparison of cities8–11 and notably on multiple aspects of
polycentrism, ranging from schematic pictures proposed by
urban planners and architects12 to quantitative case studies and
contextualized comparisons of cities13–15. So far, most
comparisons of large sets of cities have been based on
morphological indicators8,9 (built-up areas, residential density,
number of sub-centres and so on) and aggregated mobility
indicators10,11 (motorization rate, average number of trips per
day, energy consumption per capita per transport mode and
so on), and have focused on the spatial organization of residences
and employment centres. But these previous studies did not
propose generic methods to take into account the
spatial structure of commuting trips, which consist of both an
origin and a destination. Such comparisons based on aggregated
indicators thus fail to give an idea of the morphology of the city in
terms of daily commuting flows. We still need some generic
methods that are expressive in a urban context, and that could
constitute the quantitative equivalent of the schematic pictures
of city forms that have been pictured for so long by urban
planners12.

In this paper, we propose a simple and versatile method
designed to compare the structure of large, weighted and directed
networks. In the next section, we describe this method in detail.
The guiding idea is that a simple and clear picture can be
provided by considering the distribution of flows between
different types of nodes. We then apply the method to
commuting (journey to work) OD matrices of 31 cities extracted
from a large mobile phone data set. We discuss the urban spatial
patterns that our method reveals, and we compare these patterns
observed in empirical data to those obtained with a reasonable
null model that generates random commuting networks. Finally,
the method allows determining categories of networks with
respect to their structure, and here to classify cities according to
their commuting structure. This classification highlights a clear
relation between commuting structure and city size.

Results
Extracting coarse-grained information from OD matrices. For
the sake of clarity, we will use here the language of OD matrices,
but the method could easily be applied to any weighted and
directed network from which we want to extract high-level
information.

We assume that for a given city, we have the n� n matrix Fij

where n is the number of spatial units that compose the city at
the spatial aggregation level considered (for example, a grid
composed of square cells of size a, see Methods). This OD matrix
Fij represents the number of individuals living in location i and
commuting to location j where they have their main, regular
activity (work or school for most people). By convention, when
computing the number of inhabitants and workers in each cell,
we do not consider the diagonal of the OD matrix. This means
that we omit the individuals who live and work in the same cell
(considered as ‘immobile’ at this spatial scale).

To extract a simple signature of the OD matrix, we proceed in
two steps. We first extract both the residential and the work
locations with a large density—the so called ‘hotspots’ (see ref.
16). The number of residents of cell i is given by

P
jaiFij and its

number of workers is given by
P

jaiFji. The hotspots then
correspond to local maxima of these quantities. It is important to
note that the method is general, and does not depend on how we
determine these hotspots.

Once we have determined the cells that are the residential and
the work hotspots (some cells can possibly be both), we proceed
to the second and main step of the method. We reorder the rows
and columns of the OD matrix to separate hotspots from non-
hotspots. We put the m residential hotspots on the top lines, and
do the same for columns by putting the p work hotspots on the
left columns. The OD matrix then becomes a four-quadrant
matrix, where the flows Fij are spatially positioned in the matrix
with respect to their nature: on the top left the individuals that
live in hotspots and work in hotspots; at the top right the
individuals that live in hotspots and do not work in hotspots; at
the bottom left individuals that do not live in hotspots but work
in hotspots and finally in the bottom right corner the individuals
that neither live or work in hotspots. For each quadrant we sum
the number of commuters and normalize it by the total number
of commuters in the OD matrix, which gives the proportion of
individuals in each of the four categories of flows. In other words,
for a given city, we reduce the OD matrix to a 2� 2 matrix

L ¼ I D
C R

� �
ð1Þ

where

I ¼
X

i21::m;j21::p

Fij=
X

i;j21::n

Fij
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is the proportion of integrated flows that go from residential
hotspots to work hotspots;

C ¼
X

i2mþ 1::n;j21::p

Fij=
X

i;j21::n

Fij

is the proportion of convergent flows that go from random
residential places to work hotspots;

D ¼
X

i21::m;j2pþ 1::n

Fij=
X

i;j21::n

Fij

is the proportion of divergent flows that go from residential
hotspots to random activity places;

R ¼
X

i2mþ 1::n;j2pþ 1::n

Fij=
X

i;j21::n

Fij

is the proportion of random flows that occur ‘at random’ in the
city, that is, that are going from and to places that are not
hotspots.

By construction, we have I, C, D, RA[0,1] and IþCþDþ
R¼ 1. This matrix L is thus a very simple footprint of the OD
matrix that gives an expressive picture of the structure of
commuting in the city, as illustrated by Fig. 1.

Commuting data, hotspots and ICDR values. Large scale indi-
vidual mobility networks are nowadays extracted from pervasive
geolocated data, such as mobile phone, GPS, public transport
cards or social apps data17–21. In particular, if an individual’s
mobile phone geolocated activity is available during a sufficiently
long period of time, it is possible—under certain regularity
conditions—to infer the most likely locations of her home and
her workplace, and by aggregation to construct OD matrices22–24.
Several parameters, however, impact the construction of OD
matrices such as the nature of the data source (survey or user-
generated geolocated data), or the spatial scale at which the OD
matrix is built, which can be dictated by administrative units
(divisions in wards, counties, municipalities and so on) or by
technical reasons such as the density of antennas in the case of
mobile phone data. Given this variety of data collection protocols,

it is thus particularly remarkable that when considering the
commuting flows at a city scale, various sources of pervasive data
provide a very similar mobility information when compared with
the OD matrices built from surveys24. This result needs to be
confirmed for other cities and countries, but it already opens the
door to a systematic use of pervasive, geolocated data as a relevant
substitute to traditional transport surveys.

In the following, we apply our ICDR method to OD matrices
that have been extracted from mobile phone records in 31
Spanish urban areas during a 5-week period (see the Methods
section for details on the data set and the calculation of the OD
matrices).

As described above, the first step consists in determining the
hotspots. Several possible methods have been proposed in the
literature15,25,26, and we use here a parameter-free method based
on the Lorenz curve of the densities that we have proposed in a
recent study (see ref. 16 and the Methods section). Once we have
determined both the origin (residential) hotspots and the
destination (work) hotspots in each city, we first observe how
their number scale with the population size of the city. Both these
numbers for residential and employment hotspots scale
sublinearly with the population size (see Supplementary Figs 4
and 5). The number of work hotspots grows significantly slower
than the number of residential hotspots, showing that residential
areas are (i) more dispersed in the city, and (ii) are more
numerous than activity centres, as intuitively expected (see
Supplementary Fig. 6 that displays the locations of home and
work hotspots in four cities that exhibit different spatial
organizations). We also note here that the sublinear scaling of
the work hotspots confirms previous results obtained with a
totally different data set (the number of employment centres in
US cities)27.

We now apply the second part of the method to calculate the I,
C, D and R values for each OD matrix. For the 31 Spanish urban
areas under study (see Supplementary Fig. 1), we obtain the
values shown in Fig. 2. In Fig. 2a, we plot these values versus the
population size of these cities. For this sample of cities, we see that
globally the proportion I of individuals that commute from
hotspot to hotspot decreases as the population size increases,
while the proportion R of ‘random’ flows increases and the
proportions C and D of convergent and divergent flows,
respectively, seem surprisingly constant whatever the city size.
In Fig. 2b we plot the same values but sorted by decreasing values
of I, which shows clearly that the I and R values are the relevant
parameters for distinguishing cities from each other.

We also notice that the values obtained for another spatial scale
of data aggregation confirm this trend (see Supplementary Fig. 7).
The decay of I flows (‘integrated’) flows in favour of R flows
(‘random’) when P increases shows that the population growth
among Spanish cities goes with a decentralization of both activity
places and residences. As cities get bigger, their numbers of
residential and employment hotspots grow (sublinearly), but
these hotspots catch a smaller part of the commuting flows.

A null model. To evaluate to what extent the ICDR signatures of
cities are characteristic of their commuting structure, we compare
these values to the ones returned by a null model of commuting
flows. For each city, we generate random OD matrices of the
same size than the reference OD matrix but with random flows of
individuals that preserve the in and out degree of each node (see
Supplementary Note 5). Figure 2c shows the average values and
s.d. obtained for 100 replications. In Fig. 2d, we plot the Z-scores
of the I, C, D, and R values of each city when compared with the
values I*, C*, D* and R* returned by our null model (for example,
for the quantity R of the city i, the Z-score is given by
ZðRiÞ ¼ ðRi�R�i Þ=sðR�i Þ). Essentially, we observe that the

Home Work

Work
hotspots

Residential
hotspots

Other Other

I

C

R

D

Figure 1 | Illustration of the ICDR method. The method decomposes the

commuting flows in the city in four categories: the integrated flows (I) from

hotspot to hotspot, the convergent flows (C) to hotspots, the divergent

flows (D) originating at hotspots and finally the random flows (R) which are

neither starting nor ending at hotspots. For each city with its origin-

destination matrix, we can compute the importance of each commuting

flow category and get a simple picture of the mobility structure in the city.
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Z-scores of I and R are positive and large, while those of C and D
are negative (and large in absolute value). Also as cities grow, the
Z-scores of I and R increase while those of C and D decrease.
These results demonstrate that the larger a city, and the less
random it appears. This is in contrast with the naive expectation
that the larger a city, the more disordered is the structure of
individuals’ mobility. For large cities, there seems to be a com-
muting backbone, which cannot result from purely random
movements of individuals. This backbone is the footprint of the
city’s structure and history, and probably results from strong
constraints and efficiency considerations.

Robustness. Since our method first requires to determine origin
and destination hotspots, one could argue that the interpretation
of the I, C, D and R values will crucially depend on the particular
method chosen to define these hotspots. The identification of
hotspots is a problem that has been broadly discussed in urban
economics (see Supplementary Note 3). Roughly speaking,
starting from a spatial distribution of densities, the goal is to
identify the local maxima and amounts to choose a threshold r*
for the density r of individuals: a cell i is a hotspot if the local
density of people is such that r(i)4r*. To test the impact of the
choice of a particular threshold r* on the resulting ICDR values,
we measure the sensitivity of these values to the density threshold

r* (see Supplementary Fig. 8). As expected, the lower the density
threshold, the larger the number of origin and destination hot-
spots, and consequently the larger I and the smaller R. In con-
trast, changing the density threshold has little impact on the C
and D terms. More importantly, the conclusions drawn from the
comparison of the ICDR values across cities remain the same;
whatever the density threshold r* chosen to define residential/
employment hotspots, we still observe the same qualitative
behaviour: a decay of integrated flows (I) in favour of ‘random’
flows (R), when the population size increases.

Distance of each type of flows. We now want to characterize
spatially these different flows and the relation between city size
and the commuting distances travelled by individuals. In each
city, we compute the average distance travelled by individuals per
type of flows I, C, D and R. The resulting average distances
measured in data are plotted in red on Fig. 3a. We observe that
the average distance for all categories of flows increases with
population size, an expected effect as the city’s area also grows
with population size. We also observe that the average distance of
convergent flows C increases faster than for other types of flows
(we note that the average distance associated to convergent flows
increases more than the distance associated to divergent flows D,
showing that these flows are not symmetric as one could have
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Figure 2 | Results for 31 Spanish cities. (a) I (integrated), C (convergent), D (divergent) and R (random) values versus population size for 31 Spanish

urban areas. (b) Same ICDR values as in a but sorted by decreasing order of I (note that by definition, we have for each city IþCþDþ R¼ 1). It is

remarkable that I and R dominate and seem almost sufficient to distinguish cities, while C and D are almost constant whatever the city size (see

Supplementary Fig. 7 for the values obtained with another size a of grid cells). (c) I, C, D and R average values and s.d. obtained for 100 replications of a null

model, where the inflow and outflow at each node are kept constant while flows are randomly distributed at random between nodes. (d) Z-scores obtained

by comparing the empirical data and the values returned by the null model. Large values of Z-scores show that the actual commuting networks cannot be

considered as resulting from connecting the nodes at random. The I, C, D and R values of a specific city are then a signature of its structure.
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naively expected). This result means that for this set of Spanish
cities, commuters from small residential areas to important
activity centres travel on average a longer distance than all other
individuals. This observation could be an indication that for our
set of cities, residential areas have expanded while activity centres
remained at their location, leading to longer commuting
distances.

Another interesting information is provided by the comparison
of distances measured in the data with average distances
measured from the random OD matrices generated by the null
model. The average distances associated to the null model are
plotted in blue in Fig. 3a. We see that for all types of flows the
distances measured in the empirical data are shorter than those
generated by the null model. This is another clear indication of

the spatial organization of individual flows in cities. It also
highlights the importance of the travel time budget in the
residential locations choice. Remarkably enough, the distance of
convergent flows (C) is both the largest and the one that increases
the fastest with population, indicating a low degree of efficiency.

The comparison of this behaviour with the null model leads to
interesting results. In Fig. 3b, we plot the ratio DNull=DData for the
four types of flow. Values o1 indicate that the average
commuting distance generated by the null model is shorter than
the distance observed in the city. Surprisingly, we observe that
small cities display a value o1, indicating the lesser importance
of space at this short scale. We also see that this ratio increases
faster for random flows (R) than for the others (D, C, I),
suggesting a remarkable spatial structure of these R flows.

We also consider the fraction of total commuting distance by
type of flow (Fig. 4). We see that for each type of flows, their
respective fraction is constant and independent of city size. With
the LouBar hotspots detection method16 (see Supplementary Fig.
3) and with a grid of 1 km2 cells, we measure that roughly 40% of
the total commuting distance is made on random flows while the
other types represent each about 20%. This result shows that the
method is able to identify where most of the commuting distance
is travelled. In particular, we see that the natural, obvious flows (I)
from residential centres to activity centres are not the most
important ones, and that the decentralization of commuting flows
seems to be the rule for the Spanish cities in our sample (see
Supplementary Figs 10 and 11 for various aggregation scales).

Classification of cities. Finally, the ICDR signature of their OD
matrix allows to cluster cities with respect to the structure of their
commuting patterns. We measure the euclidian distance between
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the cities’ ICDR signatures and we then perform a hierarchical
cluster analysis. Figure 5 shows the dendrogram resulting from
the classification. Four well-separated clusters are identified on
this dendrogram, and Table 1 gives the average value of each term
along with the average population of the cities composing the
cluster. Remarkably these summary statistics show that largest
cities are clustered together and are characterized by a larger
proportion of ‘random’ flows (R) of individuals both living and
working in parts of the city that are not the dominant residential
and activity centres. This can be interpreted as an increased
facility in bigger urban areas to commute from any part of the city
to any other part. Further studies on other cities and countries are
needed at this stage to discuss the relevance of the proposed
classification.

It is also important to test the robustness of this classification
and we show that introducing a reasonable amount of noise in the
OD matrices does not change the classification (see Methods and
Supplementary Fig. 12). This sensitivity test confirms that the
clustering is robust against possible errors in the data source and
in the extraction of the mobility networks. The classification of
cities based on their ICDR values is also robust to a change of the
method used to define residential and employment hotspots (see
Supplementary Fig. 13).

Discussion
We have proposed a method to extract high-level information
from large, weighted and directed networks, such as OD matrices.
This method relies on the identification of origin and destination
hotspots, and this first step can be performed with any reasonable
criterion. The important second step consists of aggregating flows
of four different types, depending whether they start and end
from/to a hotspot or not.

We have applied this method to commuting networks
extracted from mobile phone data available in 31 Spanish cities.
The method has allowed us to highlight several remarkable
patterns in the data:

� Independently of the density threshold chosen to determine
hotspots, the proportion of integrated flows (I) decreases
with city size, while the proportion of random flows (R)
increases;

� On average and for all cities considered here, individuals who
live in residential main hubs and who work in employment
main hubs (I flows) travel shorter distances than the others (C,
D, R flows);

� When the city size increases, the largest impact is on
convergent flows (C) of individuals living in smaller residential
areas (typically in the suburbs) and commuting to important
employment centres;

� The classification of cities based on the ICDR values leads to
groups with consistent population size, highlighting a clear
relationship between the population size of cities and their
commuting structure.

In addition, the comparison with a null model led to
interesting conclusions. Flows in cities display a high level of
spatial organization and as the population size of the city grows,
the increase of the Z-scores of I, C, D, R shows that the structure
of the mobility is more and more specific, and far from a random
organization. We note that an interesting direction for future
research would be to find some analytical arguments using simple
models of city organization for estimating these flows, and how
they vary with population size.

Our coarse-graining method provides a large scale picture of
individual flows in the city. In this respect it could be particularly
useful for validating synthetic results of urban mobility models
(such as ref. 28), and for comparing different models. An accurate
modelling of mobility is indeed crucial in a large number of
applications, including the important case of epidemic spreading,
which needs to be better understood, in particular at the intra-
urban level29,30.

It would also be interesting to apply the proposed method to
other mobility data sets, with different time and spatial scales, to
test the robustness of these commuting patterns. Another
direction for future studies could be to inspect the time evolution
of the I, C, D and R values for data sets describing travel to work
journeys over several decades (such as national travel surveys).
The method could also be applied at larger spatial scales, for
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Figure 5 | Classification of cities. Dendrogram resulting from the

hierarchical clustering on cities based on their ICDR values. In front of each

city name, we indicate its rank in the hierarchy of population sizes. The

largest cities are clustered together. As cities get bigger, the ‘random’

component (R) of their commuting flows increases, which signals that it is

easier to commute from any place to any other in large cities.

Table 1 | Classification of cities.

Cluster Cities �P �I �R �D �C

Orange Salamanca, Gijon, Cordoba,y 255,330 0.43 0.27 0.16 0.14
Dark blue La Coruña, Zaragoza, Santander, Elche,y 392,970 0.37 0.36 0.15 0.13
Green Cartagena, Palma, Granada,y 732,992 0.31 0.41 0.16 0.13
Light blue Murcia, Barcelona, Bilbao, Madrid,y 2,463,551 0.25 0.46 0.17 0.12

Average ICDR values and average population sizes of the cities composing each of the four clusters represented in Fig. 5. As the population grows the proportion of random flows increases while the
proportion of integrated decreases. The weights of convergent and divergent flows stay constant among the groups.
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example, to capture dominant effects in international migration
flows. More generally, we believe that an important feature of the
ICDR method is its versatility, as it could be applied to any type
of data that is naturally represented by a weighted and directed
network.

Methods
Data. The data set used for our analysis comprises 55 days of aggregated and
anonymized records for 31 urban areas of more than 200,000 inhabitants. No
individual information or records were available for this study. The records
included the set of base transceiver stations (communication antennas, BTS) used
for the communications as presented in the call detail records (CDR). A CDR is
produced for each active phone event, including call/sms sending or reception. The
number of anonymized users represents on average 2% of the total population and
at most 5% of the total population. These percentages are almost the same for all
the urban areas. From the CDR data obtained for 20 weekdays (from mondays to
thursdays only), we extracted home and work places for all the anonymized mobile
phone users in the data set. The output of this processing phase is an OD com-
muting matrix for each urban area, at the scale of the BTS point pattern. To
facilitate the calculations and the comparison of the results between different cities,
the OD matrices are then transposed on regular square-cell grids of varying size a
(see Supplementary Note 2).

Extraction of OD matrices from mobile phone data. In order to extract OD
matrices from phone calls, we select a subset of users with a mobility displaying a
sufficient level of statistical regularity. For this analysis, we considered commuting
patterns during workdays only. The users’ home and work locations are identified
as the Voronoi cells, which are the most frequently visited on weekdays by each
user between 2000 and 0700 h (home) and between 0900 and 1700 h (work). We
assume that there must be a daily travel between the home and work locations of
each individual. Users with a call activity 440% of the days under study at home
or work are considered as valid. We then aggregate the complete flow of users and
construct the OD matrix with the flows between a Voronoi cell classified as home
and another cell classified as a workplace. Since the Voronoi areas do not exactly
match the grid cells (see for example Supplementary Fig. 2), we use a transition
matrix to change the spatial scale of the OD matrix, that is to transform the Fij

values of the OD matrix where i and j are Voronoi cells into F0i0 values where i0 and
j0 are the cells of a regular grid (see Supplementary Note 2).

Spatial scale of the OD matrix. The OD matrix is the standard object in mobility
studies and transport planning2, and contains information about movement of
individuals in a given area. More precisely, an OD matrix is a n�m matrix, where
n is the number of different ‘origin’ zones, m is the number of ‘destination’ zones
and Fij is the number of people commuting from place i to place j during a given
period of time. In transport surveys, the size of the OD matrix depends on the
spatial scale at which the mobility data has been collected. Traditionally, the zones
that are used to partition the city are the administrative units, whose size can vary
from census and electoral units to whole departments or states, depending on the
purpose for building the OD matrix.

In this study, we applied our ICDR method to cities divided in square cells that
are smaller than administrative units, allowing for a better spatial resolution. In the
case of OD matrices extracted from CDR mobile phone data, the maximal
resolution corresponds to the BTS (antennas) point pattern. The ICDR method
proposed in this paper does, however, depend on a particular spatial scale and can
be applied on OD matrices available at coarser spatial resolutions as well. For a
given territory, the results obtained with the ICDR method—the I, C, D and R
values in the first place—will obviously depend on the spatial resolution and will
also depend on the method used to define hotspots. It is important to note that
when the ICDR method is used for comparing cities, the spatial resolution and the
hotspots identification method should be the same for all cities (see Supplementary
Notes 4 and 6 and Supplementary Figs 8 and 9 for results obtained with another
hotspots delimitation method, and see Supplementary Fig. 7 for results obtained
when considering another spatial scale of aggregation).

Robustness of the classification of cities. To ensure that the classification of
cities based on their ICDR matrices is robust, we introduce a noise in the flows Fij

(for all the 31 cities). We focus on the case where the workplace of an individual
can be modified and where the number of individuals living in each cell i is kept
constant. More precisely, the noise is introduced as follows:

1. We pick up a uniform random positive integer g, the number of individuals
whose workplace is reshuffled. This number g varies from 1 to N¼

P
Fij the

total number of commuters in the city.
2. We repeat g times the following operation: we pick up randomly a residence

and a workplace (a couple of values (i, j)) and move one individual from
her workplace j to put another randomly chosen workplace j0 : Fij-Fij� 1 and
Fij0-Fij0 þ 1

The parameter of this workplace reshuffling is then f¼ g/N. To evaluate how
much the classification of cities is affected by this noise, we compute the Jaccard
index JI between the reference classification of cities in k groups and the
classification in k groups obtained for the noisy OD matrices. The Jaccard index
measures the similarity of two partitions P and P0 of same size:

JI ¼
a

aþ bþ c
ð2Þ

where

� a: number of city pairs that are in the same group for both P and P0

� b: number of city pairs that are in different groups in P but in the same one in P0

� c: number of city pairs that are in the same group in P but not in P0 (or
conversely)

The Jaccard index JI is in the range [0, 1] and the closest it is to 1, the larger the
similarity between P and P0.

We generate 100 noisy matrices for each value of f and compute the average
value �JI of the Jaccard index. This average value encodes the distance between the
reference partition P of cities in k groups and the partitions of cities in k groups
obtained for the noisy OD matrices. Supplementary Fig. 12 shows the values of �JI

versus the proportion f of reshuffled individuals, for different number of groups k.
The red shaded rectangle on each panel corresponds to the mean value±s.d.
obtained for 1,000 replications of a null model, in which permutations of cities
among the k groups are randomly performed. We observe here that for up to 20%
of reshuffled individuals, the average value �JI obtained is always significantly larger
than the one obtained for the null model, indicating that the classification is robust
even for important values of noise.
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