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Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral
data but also provide information about the structure of cities and their dynamical properties. In this article,
we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish cities. We first
define an urban dilatation index which measures how the average distance between individuals evolves
during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most
crowded places in the city. We propose a parameter free method to detect them and to test the robustness of
our results. The number of these hotspots scales sublinearly with the population size, a result in agreement
with previous theoretical arguments and measures on employment datasets. We study the lifetime of these
hotspots and show in particular that the hierarchy of permanent ones, which constitute the ‘heart’ of the city,
is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows
us to distinguish different categories of cities, from monocentric and ‘‘segregated’’ where the spatial
distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is
much more important. These results point towards the possibility of a new, quantitative classification of
cities using high resolution spatio-temporal data.

P
ervasive, geolocalized data generated by individuals have recently triggered a renewed interest for the study
of cities and urban dynamics, and in particular individual mobility patterns1. Various data sources have been
used such as car GPS2, RFIDs for collective transportation3, and also data from social networking applica-

tions such as Twitter4 or Foursquare5. A recent, very important source of data is given by individual mobile phone
data6,7. These data have allowed to study the individual mobility patterns with a high spatial and temporal
resolution8–10, the automatic detection of urban land uses11, or the detection of communities based on human
interactions12.

Morphological aspects, such as the quantitative characterization and comparison of cities through their density
landscape, their space consumption, their degree of polycentrism, or the clustering degree of their activity centers,
have meanwhile been studied for a long time in quantitative geography and spatial economy13–21. Until the late
2000, these quantitative comparisons of urban forms were based on census data, transport surveys or remote
sensing data, all giving an estimation of the density of individuals and land uses in the city at a fine spatial
granularity but at a much more coarse grain when considering the temporal evolution. We note here that early
studies in quantitative urban geography22,23 estimated the density of individuals at various hours of the day in city
centers using transport surveys and handmade cord counts and could follow the morphological and socio-
economic evolution of cities during a typical weekday. Additionaly many traffic surveys in cities worldwide have
long provided a general knowledge of the timing of urban mobility. However, given their temporal resolution and
the lack of adequate data, these studies could not investigate some interesting questions related to some dynamical
properties of the spatial structure of cities: how much does the city shape change through the course of the day?
Where are the city’s hotspots located at different hours of the day? How are these hotspots spatially organized? Is
the hierarchy and the spatial organization of hotspots robust through time? Is there some kind of typical
distance(s) characterizing the permanent core, or ‘backbone’, of each city? Mobile phone data contain the spatial
information about individuals and how it evolves during the day. These datasets thus give us the opportunity to
answer such questions and to characterize quantitatively the spatial structure of cities24. In this article, we address
some of these questions using mobile phone data for a set of 31 Spanish cities shown on Figure 1. We focus on the
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spatio-temporal properties of cities and, defining new metrics, study
their structural properties and exhibit interesting patterns of urban
systems.

Results
Our analysis is based on aggregated and anonymized mobile phone
data and concerns 31 Spanish urban areas studied during weekdays.
These urban areas are very diverse in terms of geographical location,
area, population size and density, as illustrated in Figure 2. In par-
ticular, the wide range of population sizes will allow us to test some
scaling relations and also to identify various behaviors. We will first
describe the dataset and then present the results obtained about
several aspects of cities.

Data description. Our analysis is based on a mobile phone dataset
provided by a Spanish telecommunications operator. The aggregated
records represent the number of unique individuals using a given
antenna for each hour of the day. No individual information or
records were available for this study. These data provide some
snapshots of the spatial distribution of people in the city at
successive points in time. We have this information for the 31
Spanish urban areas of more than 200,000 inhabitants, and for 55
days. The number of users (per hour) represents in average 2% of the
total population and at most 5% of the total population. These
percentages are almost the same for all the urban areas. Given the
irregularity of the spatial distribution of the antennas in each city and
from one city to another, we spatially aggregated the number/
densities of users recorded each hour in each mobile phone
antenna on a regular square grid of varying cell size a, in order to
simplify comparisons of indicators between cities, as shown on

Figure 3. The choice of the spatial scale of data aggregation is
known to be an important source of bias in spatial analysis25,
hence we tested the robustness of our results on three different
sizes of grid cells (see section Methods for details).

General features. In order to get a preliminary grasp of the data we
plot the time evolution of the number of users along the day and see if
it follows the same pattern in every city. Figure 4 shows the average
number of mobile phone users per hour according to the day of the
week for six of them. Globally, the number of phone users is signifi-
cantly higher during the weekdays than during the weekends, except
at night time. From 11pm to 8am, the number of users is relatively
low, it reaches a minimum at 5am during weekdays and at 7am
during the weekend. For all cities we observe two activity peaks,
one at 12am during weekdays (1pm during the weekend) and
another one at 6pm during weekdays (and at 8pm during the
weekend).

In order to compare these values obtained for different cities, we
rescale the values by the total number of users for an average week-
day. We show the results in Figure 5. The rescaled plot suggests the
existence of a single ‘urban rhythm’ common to all cities. The data
collapse is very good in the morning, while in the afternoon we
observe a little more variability from one city to another. It is inter-
esting to note that in four cities located in the western part of
Andalusia (Sevilla, Granada, Cordoba and Jerez de la Frontera) the
activity restarts later in the afternoon, around 5pm one hour later
than in the other cities.

Global weighted indicators versus hotspots analysis. Essentially, the
mobile phone data give access to the local density r(i, t) of users at a
location i and at a time t. The difficulty is then to study this complex

Figure 1 | The 31 Spanish urban areas with more than 200,000 inhabitants in 2011. Map of their locations and spatial extensions. The set of cities

analyzed in this article includes very different types of very different types: central cities, port cities and cities on islands. (NB: the municipalities included

in each urban area are those included in the AUDES database. This map was generated using standard packages of the R statistical software for handling

spatial data. The vector layer of the Spanish municipalities boundaries is available under free licence on multiple websites, e.g. gadm.org.).

www.nature.com/scientificreports
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object which displays variation in time and space. We will consider
here two main directions to tackle this problem. The first one is to
define global indicators that consider all points and weight them by
the user density. The second approach consists in identifying local
maxima of the function r(i, t), or in other words, the hotspots. There
are pros and cons in each method. Looking at hotspots is convenient
since it provides a clear picture of the important locations in the city,
but contains some arbitrariness in their determination. On the other
hand, working with weighted indices does not require to identify
hotspots but at the cost of producing results more difficult to inter-
pret. These two approaches can however be seen as complementary
since they highlight different properties of the city: weighted indices
inform us about the global properties of a given city, while the hot-
spots give us a more local look and allow us to concentrate on the
‘heart’ of the city. This is why in the following we will successively
apply the two methods.

Global analysis. Urban dilatation index. The average weighted dis-
tance DV (t) between individuals in the city (see section Methods for
the precise definition) and its evolution during the course of an
average weekday provides a first interesting indicator about the
organization of the city. Figure 6 (a) shows the evolution of this
normalized average, weighted distance during a typical weekday.
We can essentially distinguish two broad categories according to
the spatial organization of residences and activities:

. In the case of the simple picture of a typical monocentric city with
predominant Central Business District (CBD), the city collapses
in the morning when people living in the suburbs commute to
their workplaces, and expands in the evening when they get back
home. We then expect in this case a large variation (at the city
scale) of the average distance DV. In this case, activity and res-
idential places are spatially ‘‘segregated’’.

Figure 2 | Population sizes, areas and densities of 31 Spanish cities (urban areas) with more than 200,000 inhabitants in 2011. (a) Population size vs.

area. The set of cities under study displays a large variety of sizes. We also note that there is no general statistical relation between the population

size of Spanish urban areas and their spatial extension. (b) Rank-size distribution of their residential density and phone activity density (rescaled by a

constant factor given by the inverse of the fraction of phone users in the denser urban area, rBarcelona,residential/rBarcelona,phoneusers). The distribution shows

that the fraction of phone users is almost constant in all cities. This figure was created with R and LibreOffice Draw.

Figure 3 | Map of the metropolitan area of Barcelona. The white area represents the metropolitan area (administrative delimitation), the brown area

represents territories surrounding the metropolitan area and the blue area the sea. (a) Voronoi cells of the mobile phone antennas point pattern.

(b) Intersection between the Voronoi cells and the metropolitan area. (c) Grid composed of 1 km2 square cells on which we aggregated the number/

density of unique phone users associated to each phone antenna (NB: these maps were created with R standard packages for handling spatial data and

freely available layers).

www.nature.com/scientificreports
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. For more polycentric cities, where residential and work places are
spatially less separated, we expect a smaller variation of DV than
the one observed for monocentric cities. Here activity places and
residential areas are more ‘‘mixed’’.

For all cities we observe the same typical pattern: we see two peaks,
one around 7 am, when people switch on their mobile phones, prob-
ably at home or when they are in transportation system’s entry points
(see Figure 6(a)). We then see a decrease of the distance (the city

Figure 4 | Number of mobile phone users according to the hour of the day, for each day of the week, in six Spanish metropolitan areas. This figure was

created with R.

Figure 5 | Time evolution of the number of mobile phone users per hour during an average weekday (a) Total number of unique mobile phone users per

hour (shown here for the eight biggest Spanish cities). (b) Rescaled numbers of unique users per hour for 31 cities. Each value Ui(t) is equal to the number

of phone users in city i at time t, Ni(t), divided by the total number of phone users in i during the entire day: Ui tð Þ~Ni tð Þ
.Xt~24

t~1
Ni tð Þ. The good

collapse suggests the existence of an urban rhythm common to all cities. This figure was created with R and LibreOffice Draw.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5276 | DOI: 10.1038/srep05276 4



‘collapses’), displaying spatial concentration of individuals during
the middle of the day, mainly corresponding to the activity period
for most individuals (workers/students). During the afternoon we see
a second, smaller peak dispersed over 4–5pm, when people start
going back home. This afternoon peak is less pronounced, suggesting
a higher variety of mobility behaviors at the end of the day. The
interesting feature of theses curves is the variation amplitude that
informs us about the importance of this collapse phenomenon.
Despite the fact that several factors such as phone use or behavioral
factors affect these variations, we observe a common pattern: a pro-
nounced peak at the beginning of the day and a minimum usually
observed at the middle of the day. From this curve it is then natural to
calculate for each city a ‘dilatation coefficient’ defined as

m~
maxt DV tð Þð Þ
mint DV tð Þð Þ ð1Þ

We show in Figure 6(b) the rank plot of this dilatation index obtained
for the 31 cities where we can distinguish roughly three groups of
cities. For the first group with a value of m around one, the average
distance stays approximately constant throughout the day. This
means that whatever the hour of the day, the spatial spread of the
high density locations does not change significantly. High density
locations correspond to different activities depending on the
moment of the day, and a small value of the dilatation coefficient
implies that daytime activity places (work places, schools, leisure
places) are not more spatially concentrated than residences.
Homes and activity places are more entangled, supporting the pic-
ture of more ‘mixed’ cities, such as Madrid for example. In the
opposite case of large values, the spatial organization of the different
high-density locations changes significantly along the day. A typical
example would be a monocentric city where individuals are localized
in the CBD during the day and where residences are spread all
around the center. In our set, Zaragoza for example is representative
of this type of cities. For the intermediate group the cities display a
less marked behavior, probably resulting of a combination of mono-
centric and polycentric features.

Hotspots analysis. Identifying the hotspots. This problem corre-
sponds to identify local maxima in the surface of density of users.
A simple method amounts to choose a threshold d and to consider
that every point i with a density larger than this threshold r(i, t) . d
is a hotspot at time t. Most of the methods so far rely on this simple
argument but there is obviously some arbitrariness in the choice of d.
In contrast here (all technical details can be found in the Methods
section), we discuss two extreme choices for the threshold value. The
lower threshold dmin corresponds to the average value of the density,
which is indeed a reasonable, minimal requirement to be a local
maxima. Based on considerations about the Lorenz curve of the
density, we are also able to determine another value dmax which can
be considered as the maximal, reasonable value for d. In the following
we will distinguish the ‘Average’ method from the ‘Loubar’ method
which correspond to the two values dmin and dmax, respectively. The
most important point here, is that once the lower and upper bounds
for the threshold are determined and allow for the identification of
hotspots, all the results obtained should be robust with respect to the
choice of d. In other words, if a given result is qualitatively the same
when considering the lower and upper bounds for d, the result can
safely be considered as an intrinsic feature of the system.

Number of hotspots. We first focus on the number of hotspots. Using
both methods, ‘Average’ and ‘Loubar’, for each city we count the
number of hotspots at each hour of the day, compute the average
over the day and see how this average number scales with the popu-
lation size of the city. This measure is motivated by recent theoretical
and empirical work29 that has highlighted a clear sub-linear relation
between the population size of cities and their number of activity
centers (defined as employment hotspots). For the U.S., it has been
shown that the number of activity centers Na (determined from
employment data) scales as

Na*Pb ð2Þ

with b , 0.64. Figure 7 displays the number H of hotspots versus the
population for the set of the 31 biggest Spanish cities considered here.

Figure 6 | Time evolution of the average distance DV (t) between phone users in the city, and the values of the dilatation index m 5 max DV (t)/min DV (t)
for the 31 Spanish metropolitan areas studied. (a) Illustration of the time evolution of DV in three urban areas: Madrid, Sevilla and Zaragoza.

This distance DV is equal to the average of the distances between each pair of cells weighted by the density of each of the cells. The resulting distance is

then divided by the typical spatial size of the city (given by
ffiffiffiffi
A
p

the square root of the city’s area) in order to compare the curves across cities. (b) Rank-size

distribution of the dilatation index m in the 31 metropolitan areas. This figure was created with R and LibreOffice Draw.

www.nature.com/scientificreports
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The power law fit confirms the result obtained in29 that there is a
sublinear relation and, remarkably enough, that the value of the
exponent is of the same order. We note here that this result is robust
against the thresholding criteria used to define hotspots (see also
section Methods for aggregation grids with different cell sizes). We
also note here that recent empirical work30 has highlighted the sens-
itivity of the values of scaling laws exponents to the choice of city
boundaries. This result underlines the crucial role of city definition
when attempting to identify patterns of behavior across cities, and
the need for consistency in defining the spatial boundaries of cities

for such comparisons26. That is the reason that has led us to rely on
the spatial delimitations of urban areas, which are harmonized deli-
mitations based on the ratio of home-work commuting journeys (see
Methods for details).

Stability of the hotspots hierarchy. Another interesting feature to
inspect in cities is the stability of their hotspots and the evolution
of their relative importance in the city according to the hour of the
day, which is related to the evolution of the hierarchy of places in the
city. In order to capture the behavior of cities about these aspects, we
plot various indicators. We start with the histogram of the persist-
ence of hotspots: for each city we count the number of one-hour time
bins during which each cell has been a hotspot. We then plot the
distribution of the hotspots ‘lifetime’ (measured in number of one-
hour bins), as shown in Figure 8 for the eight largest Spanish cities.
Figure 8 highlights the importance of ‘permanent’ hotspots, i.e. loca-
tions which are hotspots during the whole day. Each city has its
number of important locations, those that form the ‘heart’ of the city.
In addition to the permanent hotspots we also observe two other
main groups: a set of intermediate hotspots (with lifetime of the order
half a day) and ‘intermittent’ hotspots that are present only a few
hours per day. We note that these groups are robust with respect to
the hotspot definition, that is when defined with the ‘Average’ cri-
terion (top line of each histogram) and with the ‘LouBar’ criterion
(bottom line).

The permanent hotspots are the most important locations in the
city in terms of individuals density. An interesting question is
whether their rank (according to the density) is constant or changes
during the day. In order to test the stability in time of the hierarchy of
permanent hotspots, we compute the Kendall tau value t (t) of the set
of permanent hotspots (see the Methods section for definition and
for the plots). Our results show that the heart of the cities is indeed
very stable both in space and in time, whatever their size.

Spatial structure of the hotspots. Another important question about
hotspots concerns their spatial organization. We start with the spe-
cific group formed by the permanent hotspots, as defined by our
more restrictive criteria ‘LouBar’ (see Methods section). We compute
how distant they are from each other, compared to the typical size of
the city given by

ffiffiffiffi
A
p

, where A is the city’s area. We show in Figure 9
the rank-plot of our ‘compacity coefficient’ defined as

C ið Þ~
Dper ið Þ
� �

ffiffiffiffiffi
Ai
p ð3Þ

Figure 7 | Scatter plot and fit of the number of hotspots H vs. the
population size P for the 31 cities studied. Each point in the scatterplot

corresponds to the average number of hotspots determined for each one-

hour time bin of a weekday (for five weekdays considered here). The power

law fit is consistent, for both hotspots identification methods, with a

sublinear behavior characterized by an exponent of order 0.6, a value in

agreement with theoretical predictions and empirical observations on

employment data29. This figure was created with R.

Figure 8 | Histogram of lifetime duration of hotstpots for eight cities and for the two hotspots identification methods (top: ‘Average’ method and
bottom: ‘Loubar’ method). In the case of the ‘Loubar’ hotspots, we can essentially distinguish three groups: the permanent (24 h hotspots), intermittent

(from 1 up to 7 hours) and intermediary (all the others) hotspots. This figure was created with R.

www.nature.com/scientificreports
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where ÆDper(i)æ is the average distance between permanent, week-
day hotspots in city i, and Ai is the area of the city i. This indicator
informs us how the permanent hotspots are sprawled all over the
city’s space, and it is thus a measure of the compacity of the city
core: for cities with values around 0, the permanent hotspots are
very close to one another, when compared to the spatial extension
of the urban area. On the contrary, a value close to one indicates
that these always-crowded places are spread all over the whole city
space (see figure 9). It is interesting to note in Figure 9(b) that the

compacity of a city seems to increase with the population size. At
least for a large subset of cities, we indeed observe this trend,
which is consistent with the idea that the larger the city, the more
spread are the hotspots (and the more polycentric it tends to be).

For each city, once we have determined the hotspots and have
classified them into permanent, intermediary and intermittent, we
measure the average distance between hotspots within each group.
For example we can look at ÆDper hotspotsæ/ÆDint hotspotsæ, the ratio
between the typical distance separating intermittent hotspots and

Figure 9 | Different spatial structure of hotspots in cities. Rank plot of the compacity coefficient C~ Dper
� �. ffiffiffiffi

A
p

among the 31 metropolitan areas.

(b) Compacity versus population size. We observe a trend (at least for a large subset of cities, the corresponding fit is shown as a guide to the eye).

(c) and (d) The spatial organization of the 1 km2 permanent hotspots determined by the Loubar method, in the urban areas of Bilbao (950, 000

inhabitants) and Vigo (385,000 inhabitants). These figures reveal two types of spatial organization: polycentric in the case of Bilbao (c), whose permanent

hotspots are not contiguous and more spread over the space of the urban area, and clearly compact and monocentric in the case of Vigo (d) (The maps (c)

and (d) were generated with R standard packages for handling spatial data and make use of freely available vector layers). This figure was created with R

and LibreOffice Draw.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5276 | DOI: 10.1038/srep05276 7



the typical distance separating permanent hotspots. Since the inter-
mittent hotspots are those with a lifespan of six hours at most, they
are more inclined to capture the residential locations, while the per-
manent hotspots represent the dominant places of the city, that is,
zones that are very dense both during daytime and nightime. On
Figure 10 (a) we plot the histogram of this ratio for all cities, for the
two hotspots delimitation criteria (see section Methods for these
plots with different sizes of the aggregation grid). We can see in this
plot that the distribution is centered around 0.6 (with similar results
for the more restrictive Loubar criterion). We also computed the
ratio of the average distance between intermittent hotspots and the
average distance between intermediary hotspots (i.e. those that are
not intermittent or permanent, so those who are present between 7
and 23 hours per day). We plot the histogram of this ratio for all 31
cities in Figure 10 (b). The distribution is peaked around 0.95-1, with
lower values of standard deviation, which means that intermittent
and intermediate hotspots are, on average, as much dispersed and
that the significative differences lie in the spatial organization of
permanent hotspots vs. non permanent hotspots.

Discussion
We have shown in this study that it is possible to extract relevant
information from mobile phone data, not only about the mobility
behavior of individuals, but also about the structure of the city itself.
We have defined various indices that allow us to characterize some
dynamical morphological properties of cities, including the evolving
average distance between individuals in the city through the course of
the day. Such dynamical properties can serve as a basis to propose
new classifications of cities. We have also presented a generic method
to determine the dominant centers, the hotspots, and we have con-
firmed recent results -obtained on completely different data- show-
ing that the number of activity centers in cities scales sublinearly with
the population size of the city. We have also highlighted some prop-
erties of hotspots in Spanish cities, such as the strong stability of the
hierarchy of the hotspots along the day, whatever the city size. These
results constitute a step towards a quantitative typology of cities and
their spatial structure, an important ingredient in the construction of
a science of cities.

They also raise questions that could be adressed in future studies.
In particular, we could ask if these morphological patterns are uni-
versal, and to what extent they are specific to Spanish cities. More
generally, they might be specific to european cities whose urbaniza-
tion history is older than in other continents, resulting in urban
systems with specific morphological properties14,26. Also, it would
be interesting to investigate if the time dynamics observed here are
similar in cities of recently urbanized and fast growing regions. In
this respect, repeating the measures proposed in this paper on cities
worldwide where mobile phone datasets are available, would bring
invaluable information on the spatial organization of urban systems.

Figure 10 | Histograms of the coefficients , Dper ./, Dint . (a) and , Dmed ./, Dint . (b). While the spatial features of intermittent and

intermediary hotspots are similar, the main difference between cities lies in how the permanent hotspots are distributed in space. This figure was created

with R and LibreOffice Draw.

Figure 11 | Illustration of the criteria selection on the Lorenz curve. This

figure was created with R and LibreOffice Draw.

www.nature.com/scientificreports
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Finally, an inevitable direction for further studies will be to bridge
the existing knowledge about centrality patterns in cities with those
revealed by new sources of geolocalized data. This could for example
include the comparison of recent results based on pervasive geolo-
calized data with morphological properties of cities extracted from
mobility surveys and remote censing data (see for example17,21 for
recent international comparisons). The centrality extracted from the
road network structure has also been shown recently to be correlated
with economical activity27,28 and it would interesting to understand
how these network properties compare with patterns extracted from
pervasive geolocalized data.

Methods
Spatial delimitation of cities. Comparing the spatial structure of cities of very
different population sizes and areas requires to rely on a harmonized definition of
cities that goes beyond the arbitrariness of the administrative boundaries26,31. To this
end we have chosen to rely on the urban areas defined by the AUDES initiative (Areas
Urbanas De ESpaña)36 which capture some coherent delimitations of cities regarding
the home-work commuting patterns of individuals living in the core city of the
metropolitan areas and in their surrounding municipalities. These delimitations are
built upon statistical criteria based on the proportion of residents of surrounding
municipalities that commute to the main city to work.

Average distance between individuals and dilatation index. We started with the
Venables index16, defined as:

V~
X
i=j

sisjdi,j ð4Þ

with si(t) 5 ni(t)/N(t) the share of individuals present in cell i at time t, and dij the
distance between i and j. When all activity is concentrated in one spatial unit only, the
minimum value zero of V is reached. An important point of this dilatation index is
that one doesn’t need to determine hotspots to compute it. By normalizing V by the
densities, we can compute a weighted average distance, the ‘Venables distance’

DV tð Þ~
P

ivj si tð Þsj tð ÞdijP
ivj si tð Þsj tð Þ ð5Þ

with si(t) 5 ni(t)/N(t) the share of individuals present in cell i at time t. In order to

compare the value of DV across cities, we compute DV tð Þ
. ffiffiffiffi

A
p

with A the area of the

city. By considering all pairs of cells and weighting their distance by the densities of
individuals in each of them, DV (t) signals how much the important places of the city
at time t are distant from each other.

Identification of the hotspots. The data gives access to the spatial density r(i, t) of
users at different moments. The full density is a complex object and we have to extract
relevant and useful information. The locations that display a density much larger than
the others - the hotspots - give a good picture of the city by showing where most of the
people are. The hotspots thus contain important information about points of interest
and activities in the city.

The determination of centres and subcentres is a problem which has been broadly
tackled in urban economics32–34. Starting from a spatial distribution of densities, we
have to identify the local maxima. This is in principle a simple problem solved by the
choice of a threshold d for the density r: a cell i is a hotspot at time t if the instant-
aneous density of users r(i, t) . d. This is for example what was done in32 to
determine employment centres in Los Angeles. It is however clear that this method
introduces some arbitrariness due to the choice of d, and also requires prior know-
ledge of the city to which it is applied to choose a relevant value of d. Nonparametric
methods have also been applied to determine the number of centres, some based on
the regression of the natural logarithm of employment density on distance from the
centre33, some on the exponent of the negative exponential fit of the density distri-
bution35. Limits of these methods stand in the fact that they return a unique number of
centres that could be biased when the actual density distribution is not properly fitted
by an exponential law. Here we will propose an alternative method that allows us to
control the impact of this choice.

A first simple criterion is to choose the point that corresponds to the average
m tð Þ~r i,tð Þ of the distribution at time t: all the cells whose density is larger than m
are hotspots. This is indeed a weak definition of what can be considered as a hotspot,
and we propose here to use it as a ‘lower’ bound dmin 5 m.

In order to understand how the various properties of hotspots will depend on
this definition, we introduce a more restrictive definition which will be consid-
ered as an upper bound of what can be considered as a hotspot. In the following
we discuss how to find this upper bound. In order to characterize the disparity of
the activity in the city and to isolate the dominant places, we first plot the Lorenz
curve of the density distribution in the city at each hour. The Lorenz curve, a
standard object in economics, is a graphical representation of the cumulative
distribution function of an empirical probability distribution. For a given hour,
we have the distribution of densities r(i, t) and we sort them in increasing rank,
and denote them by r(1, t) , r(2, t) , … , r(n, t) where n is the number of
cells. The Lorenz curve is constructed by plotting on the x-axis the proportion of
cells F 5 i/n and on the y-axis the corresponding proportion of users density L
with:

L i,tð Þ~
Pi

j~1 r j,tð ÞPn
j~1 r j,tð Þ ð6Þ

If all the densities were of the same order the Lorenz curve would be the diagonal
from (0, 0) to (1, 1). In general we observe a concave curve with a more or less
strong curvature, and the area between the diagonal and the actual curve is
related to the Gini coefficient, an important indicator of inequality used in
economics.

Figure 12 | Location of the hotspots in the metropolitan area of Barcelona, selected with two different criteria: the Average criterion and our more
restrictive criterion (‘LouBar’). Here density data are aggregated on a grid composed of 1 km2 square cells. This figure was created with R and LibreOffice

Draw. It makes use of a vector layer of the boundaries of Spanish municipalities that is available under free licence.
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In the Lorenz curve, the stronger the curvature the stronger the inequality and,
intuitively, the smaller the number of hotspots. This remark allows us to construct a
new criterion by relating the number of dominant hotspots (i.e. those that have a very
high value compared to the other cells) to the slope of the Lorenz curve at point F 5 1:
the larger the slope, the smaller the number of dominant individuals in the statistical
distribution. The natural way to identify the typical scale of the number of hotspots is
to take the intersection point F* between the tangent of L(F) at point F 5 1 and the
horizontal axis L 5 0 (see Figure 11). This method is inspired from the classical scale
determination for an exponential decay: if the decay from F 5 1 were an exponential
of the form exp 2(1 2 F)/a where a is the typical scale we want to extract, this method
would give 1 2 F* 5 a. We note here that the average criterion corresponds to the
point of the Lorenz curve with slope equal to 1. Indeed, the general expression of the
Lorenz curve for the set of densities r(i, t) whose cumulative function is F(r) is:

L Fð Þ~ 1
m

ðF

0
r Fð ÞdF ð7Þ

where r(F) is the inverse function of the cumulative. This point thus satisfies

dL
dF

~1 ð8Þ

which gives m 5 r(FAvg) or in other words, the hotspots will be those with densities
larger than the average. In contrast, our more restrictive criterion based on the slope at
F 5 1 gives

F�~1{
m

rM
ð9Þ

where rM is the maximum value of r(i, t) (for a given time t). We thus see that in
general FAvg , F* and that this new criterion, more restrictive, does not only depend
on the average value of the density but also on the dispersion: as rM increases, the
value of F* increases and therefore the number of detected hotspots decreases.

All other possible and reasonable methods will then give a value comprised in the
interval [FAvg, F*] between the average criterion and our criterion (also denoted by
‘LouBar’). Instead of choosing a particular point, we will thus study most of the
properties computed for hotspots with the two methods, giving us both a lower and
upper bounds. In particular, we will be able to test the robustness of our results against
the arbitrariness of the hotspot identification method. Figure 12 shows the location of
the hotspots selected according to the two methods/criteria at different moments of
the day, in the metropolitan area of Barcelona. These maps can be regarded as the
extremes of hotspots maps that reasonable hotspots definition methods could pro-
duce (i.e. with a number of hotspots comprised between FAvg and F*).

Figure 13 | Time evolution of the ratio
#hotspots

#cells
for two hotspots definitions and different sizes of grid cells, for eight different cities of very different

sizes. The cities chosen cover the full range of the poulation size distribtion of the set of the 31 cities studied. Every reasonable method for defining

hotspots would give a value between the two lines of each plot. One can see that qualitatively pattern stays identical whatever the grid size for couple (city,

method). This figure was created with R.

Figure 14 | Scatter plot and model fit line of the number of hotspots H vs. the population size P for the 31 cities studied. Each point in the scatterplot

corresponds to the average number of hotspots determined for each one-hour time bin of a weekday time period considered for the five weekdays. The

linear relationship on a log-log plot indicates a power-law relationship between the two quantities, with an exponent value b , 1, indicating that the

number of activity centers in a city grows sublinearly with its population size. This figure was created with R.
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Influence of the spatial scale of aggregation. Hotspots. In the hotspots
identification process, the size of the grid cells on which we aggregate the
numbers/densities of users is another arbitrary parameter (cf. section Methods).
Since we don’t want to determine this value separately for each city, we consider
that several sizes should be tested for each city and that it is reasonable to consider
that this cell size a can vary from 500 meters to 2 km. Figure 13 gives an idea of
how much the proportion of hotspots change from one cell size to another. The
cell size a should primarily be chosen based on what is considered as a reasonable
size for an urban hotspot. From the pedestrian point of view, every size between
500 metres and 2 kilometres seems a priori acceptable. Below 500 m, it would
clearly be necessary to aggregate contiguous hotspots: for example, for a 5 100 m
(1022 km2 cells), two contiguous hotspots could not as easily be distinguished as
two different ones from a pedestrian point of view. In contrast, a size of 2000 m
can be considered as an upper bound for the same reasons: if two contiguous cells
are classified as hotspots, it is reasonable to identify them as two distincts
neighbourhoods. It is however a question of perception and should be discussed
carefully. In the hypothesis of a 5 1000 m (1 km2 cells), we chose to consider that
two adjacent hotspots are two different hotspots. For reasonable sizes of grid, the
values of the indicators should be robust with a change of the cell size. We then
tested the sensitivity of our results with respect to different resolutions.

Number of hotspots. In Figure 14 we show the scaling relation between the number of
hotspots with the population and the effect of the grid size. Here we see that the
scaling results and the value of the exponent are robust against a change in (i) the
threshold used for identifying the hotspots and (ii) the size of the grid cells.

Kendall’s t. Definition. The Kendall rank coefficient is used as a test statistic to
establish whether two lists of random variables may be regarded as statistically
dependent. To each cell i we associate its rank ri(t) in the ordered density distribution
at time t. Kendalls t value indicates how much the hierarchy changed between t 2 1
and t. For a set of pairs (i, j), it is equal to the difference between the number of
converging pairs (i.e. ri was larger (resp. smaller) than rj at (t 2 1) and is still larger
(resp. smaller) at t) and the number of diverging pairs (ri was smaller (resp. larger)
than rj at (t 2 1) and is larger (resp. smaller) at t). The Kendall values t(t) are plotted
on Figure 15.

Under the null hypothesis of independence of two lists, the distribution of t has an
expected value of zero and for larger samples, the variance is given by

t2~
2 2nz5ð Þ
9n n{1ð Þ ð10Þ

Any value of t larger than this null-value signals the existence of relevant correlations.

Hierarchy stability. We show in Figure 15 the evolution of Kendall t values calculated
for the set of permament hotspots during daytime in an average weekday, for 31
Spanish urban areas with more than 200,000 inhabitants. The curves are ranged by
decreasing order of population size (the biggest city in the top left corner, the smallest
in the bottom right). The red curves correspond to the daytime evolution of the
Kendall t for the hotspots selected with the ‘LouBar’ more restrictive criterion, the
blue ones to the Kendall t of the hotspots selected with the ‘Average’ criterion. These
results indicate that the hierarchy of permanent hotspots is indeed very stable in time.

Figure 15 | Evolution of Kendall t values for permament hotspots during daytime for an average weekday. This figure was created with R.
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