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Spatial immunization to abate disease
spreading in transportation hubs

Mattia Mazzoli 1,2 , Riccardo Gallotti 3, Filippo Privitera4, Pere Colet 1 &
José J. Ramasco 1

Proximity social interactions are crucial for infectious diseases transmission.
Crowded agglomerations pose serious risk of triggering superspreading
events. Locations like transportation hubs (airports and stations) are designed
to optimize logistic efficiency, not to reduce crowding, and are characterized
by a constant in and out flow of people. Here, we analyze the paradigmatic
example of LondonHeathrow, one of the busiest European airports. Thanks to
a dataset of anonymized individuals’ trajectories, we can model the spreading
of different diseases to localize the contagion hotspots and to propose a
spatial immunization policy targeting them to reduce disease spreading risk.
Wealso detect themost vulnerable destinations tocontagions produced at the
airport and quantify the benefits of the spatial immunization technique to
prevent regional and global disease diffusion. This method is immediately
generalizable to train, metro and bus stations and to other facilities such as
commercial or convention centers.

People density, and its translation into contacts, is a crucial factor in
the propagation of contact diseases1–3. Although hygienic measures
can decrease contagion probabilities4, airborne diseases pose a special
challenge since they spread via droplets and aerosols, affecting the
local environment, including surfaces where they deposit and the
pathogen can continue to be infectious for a certain time period5.
While crowdingmight be averted inoccasions such asdemonstrations,
sport events, theaters, etc, it is much harder to avoid in public trans-
portation networks. These systems have been designed with trans-
portation efficiency in mind and crowding, especially in large hubs, is
an inherent consequence. There are several works dealing with con-
tagion events on buses, cruise ships6, trains7–11, and airplanes12–15, which
in general depend on the infectivity of the disease, the ventilation
system, the duration of the trip and the occupation of the vehicle.
Beyond the proposal of screening systems such as fever (temperature)
detectors16–20, much less attention has been devoted to infectious
events in transportation hubs themselves as in airports.

The fast spread of viral diseases worldwide is due to long-range
aerial trips connecting countries everyday21–24. For this reason airports
are very sensitive places25,26, where not only infected passengers can

depart and seed their final destination regions, but they can also infect
other passengers along the terminal corridors going to many other
destinations and, thus, amplifying both the geographical variety of the
epidemic and its spreading velocity. Promptly controlling contagion
events in airports can lead to a non-negligible effect on the global
containment of the virus19,20,26,27, even though as shown in the
literature28–32 travel bans (if not issued on a wide scale) only lead to
delays since alternative pathways are available for the spreading.

In order to study this process at an individual scale, where the unit
of measurement is human contact, we need high-resolution proximity
sensors to detect human movements in public spaces in detail. This
allows us to better study human mobility patterns in everyday life
environments and understand where to strategically intervene. Lead-
ing the research in this sector, the SocioPatterns project allowedmany
recent studies by using wearable RFID proximity sensors in different
contexts33–37 as scientific conferences38, hospitals39,40, offices41,
museums42 and schools43–45. The most important issue addressed by
these works is the study of human contact networks, which has been
analyzed from many points of view and for different purposes, like
data reconstruction, data cleaning and sampling biases46–54. This
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branch of network science led to answer open questions such as the
definition of contacts and especially the effect of using different types
of networks to mimic human contacts in epidemic models55,56.

In this work, we use GPS mobility data of anonymized and opted-
in individuals in Heathrow Airport, London UK, to build a contact
network based on copresence in 10 × 10m2 cells. Over this network, we
run compartmental epidemic models representing different diseases,
which allows us to assess the risk of local contagions of passengers
with intercontinental, European, UK destinations and those arriving in
the city of London. The models are intended to explore the effect of
spatial immunization in which policies or devices are implemented to
reduce the probability of contagion in certain cells, an example of
which is the useof UV-C lights. Our spatial immunization is intended to
run as a background silent policy, whose importance comes at play at
the moment of having completely undetected first imported cases.
This is why in our models we do not introduce any other intervention
protocols, which typically are introduced once the outbreak is identi-
fied. The most effective areas to place these devices coincide with the
locations with the largest number of contagions. Interestingly, these
places can be already identified with a simple SIR (Susceptible -
Infected - Recovered) model and they are not necessarily those
through which pass the largest number of individuals, since the
probability of contagion also depends on the type of individuals
(workers versus passengers to/from different destinations/origins)
and the time they spend in the cell.We quantify the effects of different
coverage levels in terms of the amount of space immunized on the
spread of the diseases. Our methodology is general, since the same
technique can be applied to any public building.

Results
Copresence dynamic network
Trajectories in the airport of sixmoths are supersampled to generate a
standard day (see Methods). A contact network for each 15 mins time
slot is built based on copresence patterns of every pair of individuals: a
link is established if they coincide in the same spatial cell at a given

time slot. A sketch illustrating the process is displayed in Fig. 1a. A
network isbuilt for each time slot, and the set of networks isused in the
epidemic spreading simulations. To have a first glimpse on the struc-
ture, Fig. 1b shows the result of aggregating the copresence networks
over amonth. The colors represent the type of individuals: passengers
in red and workers in blue. Note that on this aggregated network
connections can be multiple (links are weighted) if individuals exhibit
cell copresence at more than one-time slot. We also display the
aggregated subnetworks between passengers (Fig. 1c) and workers
(Fig. 1d) alone. The subnetwork of workers is highly connected since
they spend long periods of time at the airport, whereas the same
cannot be said for travelers. In fact, workers sustain the connectivity of
the aggregated contact network. On the other hand, passengers just
come and go continuously, making contacts with some workers at the
control, commercial areas and may coincide with other passengers
sporadically at duty-free zones, bars and restaurants and board-
ing gates.

The copresence dynamic network is used as the skeleton to run
the epidemic models. These models are based on a compartmental
approach, in which individuals have a variable of status associated to
the disease (susceptible S, infected I, exposed E, recovered R, etc) and
they transition from one to the other following the disease clinical
progression. Themodels have been adapted to several known airborne
diseases as illustrative examples: influenza (SEIR model), SARS (SIR)
andCOVID-19 (SEIIRmodel).However, as shown later, ourmethods are
general enough to cover multiple diseases. In fact, we consider the
scenario of the arrival of an undetected pathogen and how spatial
immunization techniques can help to mitigate its global propagation.
Details on the building of the models and their parameters are pro-
vided in the Methods section below.

Spatial immunization
We run a SIR epidemic model on the temporal co-presence net-
work (seeMethods below for details in themodel). Infection events are
registered at the level of cells for each realization. This allows us to
classify the areas according to the risk of developing contagions in
them. Figure 2 shows an example obtained for the first two days of the
SIR model simulations. The heatmap shows the density of cumulative
contagions occurring after one and two days in each cell. One can
observe the main terminals in themap: terminal 5 and satellites on the
left with their access road in the top of the image, terminals 1-2-3 in the
center and terminal 4 on the bottom. Terminal 1 was closed in 2015,
and terminal 2 was expanded over it. We keep the terminology term-
inal 1-2-3 to refer to them. In the terminals, it is possible to identify the
fraction of flights linked to specific destinations (intercontinental, UK
or European). There are some areas whose access is restricted to air-
port staff in the terminals, across the runaways, on the bottom left, and
on the right-side and top of the maps. As the time goes by, the picture
in terms of the density of contagions in Fig. 2 becomes sharper, with
more peripheral cells in the terminals starting to showmore contagion
events. This is important because these cells are the obvious candi-
dates to be immunized to hinder disease spreading. Interestingly, such
cells are not necessarily the most crowded ones. The probability of
contagion is driven by a balance between the number of people pre-
sent in a place and the time that they spend there. In the interior of the
terminals, some of these cells match with security control, service and
retailing zones.

We rank cells by number of contagion events on the first day, and
select a certain number of them from top to down to be immunized.
The impact of an increasing number of immunized cells over the dis-
ease spreading is themain focus of Fig. 3. Given that the infectivity per
contact pβ is sensibly smaller in treated areas, the number of realiza-
tions that display contagion events in the airport, pR, decreases as
more cells are immunized (see Fig. 3a). Already with 400 immunized
cells (1.1% of all available cells) the number of realizations with

Fig. 1 | London Heathrow Airport aggregated copresence network of one-
month data. a Sketch of the contact network construction: two individuals are
linked if they coincide in a cell within a time slot.bCumulative copresence network
of 1 month. In blue the workers, in red the passengers. User type assortativity
ai =0.45. c Travelers copresence network is a fragmented graph since there is an
incoming and outgoing flow and they spend a relatively short period in the term-
inals. d Workers copresence network is a connected graph: they interact recur-
rently with each other.
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outbreaks is reduced by 20% of the one without immunization. The
effect of the immunization on the amount of initial infections can also
be seen in the boxplot with the number of contagions on the first
24 hours since the arrival of the first case as shown in Fig. 3b.

Additionally, for realizationswith outbreaks, the time evolution of
contagions at the airport facilities changes notably as well. Contagions
of the second and later days are mainly due to infected workers who
return to work everyday. While this may not be a fully realistic
assumption for diseases as SARS, in which infected individuals nor-
mally develop severe symptoms, the parameters used in the SIRmodel
are quite similar to those for other coronavirus-induced diseases such
as common colds that produce mild symptoms and would allow
infected individuals to keep working. Figure 3c shows the number of
infections averaged over realizations with outbreaks as a function of
time for different numbers of immunized cells. The light blue line
corresponds to the case without spatial immunization and is taken as
baseline. Infections occur mostly during the day, when most passen-
gers and workers are present at the airport. The largest peak takes
placeon the thirdand fourthdays resulting from theworkerswhohave
been infectedon thefirst day. Thispeak is over 4 times higher than that
of the first day. Infection rates remain high on subsequent days.

The introduction of spatial immunization has two relevant effects
on the evolution of contagions during the first week: On one side, it
lowers the curve of new infections for all days. On the other, it delays

the peak of contagions, providing time, for instance, for contact tra-
cing once the outbreak is detected. These two effects can be seen
already with 100 immunized cells (green line in Fig. 3c), where the
contagions peak takes place now on the fourth day and is even more
manifest for 400 (1.1%) cells for which most of the contagions on the
initial two days are prevented, the contagion peak is delayed practi-
cally until the last day and its height is smaller than half that of the
baseline case. Increasing the number of cells leads to further lower the
infections curve.

We now consider the overall number of infections over the 7 days
period of analysis, but dis-aggregating affected individuals in five
categories: workers, passengers arriving to London, passengers tra-
veling to UK, EU and other international destinations. Figure 3d shows
for eachof these categories the number of infected individualsNiwhen
implementing i immunizing cells normalized to the baseline case
without spatial immunization N0. Reduction of contagions takes place
systematically for passengers to any destination as well as for workers,
albeit for this last ones is less marked. Finally, in Fig. 3e we plot the
distribution of infected individuals by category normalized to the total
number of infections in each configuration, namely Iji =N

j
i=
P

kN
k
i

where index j, k refer to the 5 categories considered and i to the
number of immunized cells. This last plot confirms what we already
saw in Fig. 3d, where workers and, to less extent, intercontinental
passengers are less protected than others by the spatial immunization,

Fig. 2 | Density of contagions in space. Heatmap showing the cells in the airport area in which contagions occur when running the SIR model. In a, after one day of
simulation and in b after two days. Color code normalized for each period considered.
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while UK passengers are the least affected even with no policies
implemented.

As a robustness check, we have run simulations with this basic SIR
model changing the time period considered to build the contact

network, hence with a different definition of contact. Longer times
naturally lead to more contacts since it is easier for people passing by
an area to interact with other individuals who have been present there
longer before. Insteadof 15minutes, wehave built the contact network
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Fig. 3 | Spatial immunization effect onSIRpropagation. aNumber of realizations
with secondary infections in the airport facilities pR as a function of the number of
immunized cells, normalized to the baseline case without spatial immunization
pR(0) (each cell extension is 100m2). b Boxplot of the distribution of contagions in
the first 24 hours. Medians are shown as red lines, boxes represent the IQR, whis-
kers extend to 1.5 × IQR above and below the 75 and 25 percentile respectively.
c New infections per time slot as a function of time and for different spatial

immunization configurations. d Infections over the 7 day simulation period dis-
aggregated in 5 categories: workers, passengers arriving in London, traveling to the
UK destinations, to EU destinations and to other international destinations. For
each category, Ni/N0 stands for the ratio between the number of infections with i
cells immunized over the baseline without spatial immunization. e Relative com-
position of the infected population (see text). For each scenario we run
n = 1000 simulations. See Methods and Table 1 for acronyms definitions.
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taking the double of time, 30 minutes, as a basic time unit. The results
are shown in Supplementary Figs. S10 and S11. The number of contacts
and of infections increase, but the dynamics of new infections shows a
similar pattern as the 15 min definition of contact (Supplementary
Fig. S10) and,most importantly, the cells wheremost of the contagions
occur are highly correlated (Supplementary Fig. S11).

Spatial immunization performance
In order to prove the performance of this policy when infected indi-
viduals undergo a latency period of the disease, hence for diseases
with longer generation times, we run simulations for the SEIR family
models taking as reference the cases of H1N1 Influenza and COVID-19.
As for the SIR model, we first discuss the early stages of the spreading
process since passengers, the ones prone to spread the disease
worldwide, spend short periods of time in the airport. For the first day
after the first case arrival, SIR and SEIR models yield similar results in
terms of where the contagions occur. Thus, the ranking of the cells
obtained from the SIR model with the parameters considered in the
previous section can be taken as a good proxy to determine contagion
hotspots to be immunized regardless of the specific disease. This can
beobserved in Fig. 4a,where thenumber of contagions on thefirst-day
pR obtained for the SEIR model with the H1N1 Influenza parameters is
displayed as function of the number of immunized cells taken
accordingly to the SIR ranking (circles joined by solid black lines) and
the SEIR ranking (circles joined by grey dashed lines). The results are
almost equivalent and, being simpler, from a computational perspec-
tive, SIR simulations are more efficient for the estimation of the con-
tagion hotspots. In any case, spatial immunization systematically
reduces infection spreading: already 400 (1.1%) immunized cells
reduce the number of realizations with H1N1 secondary contagions
by 30%.

We now focus on the spreading dynamics over a week. As for the
SIR model infections occur mostly during the day and infections

occurring beyond the first day are mainly sustained by workers. At a
difference for the SIR model, for the baseline case without spatial
immunization the slower progress of the disease brought by the
introduction of the exposed phase delays the peak of contagions until
the last day as shown in Fig. 4b. Introduction of spatial immunization
lowers the curves and delays them, albeit this last effect is now much
less noticeable since the contagion curve was already delayed by the
exposed phase.

Finally, Fig. 4c shows the infected individuals over the 7 days
period of the simulation disaggregated in the same categories as
before: workers, passengers arriving at London, traveling to UK des-
tinations, traveling to EU destinations and passengers traveling to
other international destinations. Spatial immunization reduces con-
tagions systematically for all categories although to a lesser degree for
workers. See Supplementary Figs. S12-S14 for sensitivity analyses
including lower immunization efficacy and slightly altered mobility.

In the case of a COVID-19 importation in the airport, in Fig. 4d, we
plot the number of realizations with local contagions in the airport as
function of the number of immunized cells where, as for the previous
cases, the cells to be immunized has been determined using the
ranking from the SIR model (circles joined by solid black lines) and
from the SEIIR model (circles joined by dashed gray lines). The SIR
model is a convenient and efficient proxy to rank the cells to be
immunized. Looking at the effect of immunizing a progressive number
of cells, a 35% reduction in the number of realizations with secondary
infections can be achieved with 400 (1.1%) cells.

Considering now the evolution over a week, Fig. 4e shows that the
introduction of spatial immunization reduces the number of con-
tagions per time slot by a factor of 3 already with 400 (1.1%) cells.
Further reductions can be achieved with a larger number of
immunized cells.

Similarly to the other diseases discussed before, workers are the
most infecting category, as Fig. 4f shows and they are the least affected
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Fig. 4 | Spatial immunization applied to the spreading of diseases described by
SEIR models. Panels a, b and c refer to results of simulations for H1N1 Influenza;
And panels d, e and f to those for COVID-19. In terms of columns, panels a and
d show the number of realizations with secondary contagions pR normalized by
pR(0) (without spatial immunization) as function of the number of immunized cells.
The cells to immunize are selected following the contagion ranking according to
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model ranking (circles joined by grey dashed lines). Panels b and e show the
average number of new infections per time slot. Panels c and f, infections over the
full simulation period disaggregated by workers and passenger destinations. For
panels b, c, e and f immunized cells have been selected according to SIR ranking.
For each scenario we run n = 1000 simulations. See Methods and Table 1 for
acronyms definitions.
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by the implemented policy, which seems to have a comparable effect
on all the other categories. Due to the observed increase of transmis-
sibility of new COVID-19 variants and a lack of a clear estimation of the
wild-type reproductive number, we reproduced our simulations with
other values of R0 in Supplementary Figure S15. The plot shows how
the immunization policy is still effective in the reduction of outbreak
intensity.

Discussion
In this work, we have shown how to reduce the complexity of the
spatial trajectories of individuals in Heathrow airport by encoding
them in a temporal contact networkgenerated by copresences in small
cells among different categories of individuals. The trajectories fol-
lowed by passengers and workers are extracted from GPS mobility
data of application records over a 6 months period and we super-
sampled them creating a synthetic day with a number of trajectories
similar to that of a standard day at the airport, which in our simulations
we repeat multiple subsequent times. A key ingredient in our metho-
dology is the classification of individuals in passengers, present at the
airport for a much shorter time than that characteristic of epidemics,
and workers, returning to the airport daily. On top of the synthetic
copresence network, we consider three different compartment mod-
els from the literature to analyze the spreading of SARS, influenza and
COVID-19. Numerical simulations show that workers play a key role in
the spreading dynamics independently of the virus under study. This is
due to the fact that employees are the agentsmore often infected: they
recurrently return to the airport dayafter day and they come in contact
with many passengers and with their colleagues, whereas passengers
generally remain at the airportonly for a fewhoursbeforedeparture or
after arrival. Second in this rank by infectiousness, there are connect-
ing passengers since they are the travelerswho spendmore time inside
the airport. Restaurants, bars and in general relax areas are the places
where most of the copresences (and contagions) happen and this is
where indeed connecting travelers use to rest and stop for a long time
waiting and interacting with airport workers.

The application of spatial immunization policies based on meth-
ods such as the use of non-harmful UV lights, frequent cleaning and
disinfection of surfaces, air filters, ozone, etc, to hygienize specific
terminal areas sensibly reduces both the number of realizations with
secondary contagions at the airport and the intensity of the local
outbreaks. Contagions within the airport facilities taking place at the
very initial stages are key for a world-wide spreading of diseases.
Contagion reduction can be efficiently achieved by prioritizing the
areas to immunize according to the infection hotspots predicted by a
SIR epidemicmodel. The SIRmodel, despite its simplicity, seems to be
enough to capture the essence of transmission dynamics. We have
shown that even this model, which does not necessarily suits a real
disease progression, can be used to design targeted interventions in
case of first importations of various diseases. This result is particularly
relevant in practice, since it implies that a single hotspot configuration
is very effective for many diseases regardless of the disease-specific
epidemiological parameters. Note that these hotspots are not only
characterized by the density of people but also by the combination of
time spent, recurrence of contacts and individuals density: places as
cafeterias, access points, etc, are the most obvious areas to immunize,
although ourmethod is able to capture less obvious locations as some
particular gates, shops or locations representing bottlenecks in the
airport mobility. Given the uncertainty in the transmission probability
of an emerging disease, we have checked the robustness of our spatial
immunization policy to reduce contagions by varying the transmissi-
bility of a disease (see Supplementary Sec. Generalizability of the
method in the SI).

By further disaggregating individuals into workers, passengers
arriving to London and those traveling to UK, European and inter-
continental destinations, we estimate the average threat represented

by the development of an outbreak in the airport for different desti-
nations.We find an important decrease in the amount of infections for
all categories of individuals when spatial immunization is imple-
mented. Therefore, this method is helpful in containing the menace of
and potentially delaying the seeding of emerging diseases from an
airport hub to the rest of the world.

This method seems to be less effective on workers, who exhibit a
longer exposure to the virus with respect to passengers. This suggests
that for them it becomes necessary to complement spatial immuni-
zationwith other procedures, such as targeted vaccinations in order to
reduce the probability and even the intensity of an outbreak within
every scenario. Still, in the early pandemic stages, when vaccination is
not available, spatial immunization is an important tool to decrease the
risk of global propagation.

Finally, we would like to remark that the methodology presented
here can be directly applied to other communication hubs, including
train, metro and bus stations as well as to crowded facilities such as
commercial centers, department stores or convention centers in order
to reduce the probability of new and uncontrolled outbreaks. All these
places share the common feature of having a large in and outflow of
visitors and a set of workers that are recurrently present in specific
areas of the infrastructure. This leads to strong heterogeneities in the
location and duration of the contacts among visitors and between
visitors and workers, which allows us to define a successful spatial
immunization strategy based on a hotspot analysis.

Methods
Building the copresence dynamic network
A first question to address is how to determine the copresence
contact structure. To this end, we use GPS mobility data from
smartphone application records collected by Cuebiq on anon-
ymized individuals who have opted-in to the service through an
European Union General Data Protection Regulation (GDPR)
compliant framework. The data includes individuals’ trajectories
inside the airport from February to August 2017. In order to pre-
serve the privacy of individuals living in the neighboring areas, we
do not analyze information outside of the airport perimeter. Also,
users with less than 10 location points in the dataset are discarded.
The number of individuals recorded inside the airport on an
average day in the dataset is not sufficient to reproduce a realistic
traffic scenario, hence we have to supersample our records. In
order to do so, we consider all trajectories observed in the
6-months period as taking place in a single day. This allows us to
build a synthetic population of 206,043 individuals, including
143,588 passengers and 62,639 workers, a size similar to that of the
standard day at Heathrow airport57 (see Supplementary Informa-
tion Subsec. Supersampling for details). This standard day covers
trajectories of 24 hours, without losing continuity on night-time
trajectories, to take into account individuals (mostly workers)
spending the night at the airport facilities.

Given that the mobility data is not continuously collected, some
individuals are observed consecutively indistant cells, hencewedonot
always know the precise actual path. This lack of information would
produce a sensible subestimation of contacts in the airport, hence we
need to apply a trajectory reconstruction process.

As a first step, we discretize time and space to facilitate the
computation, dividing the airport in small cells of 10 × 10 m2 and
considering time slots of 15 minutes. These values are a balance
between having sufficient fine information within the terminals
and the dataset resolution limitations (spatial and statistical) that
may introduce artificial noise58. We filter out all those cells with a
number of visitors below a given threshold, under the assumption
that they are associated with nonaccessible areas. These cells are
not used in the trajectory reconstruction. Although the main
results of the paper are for a threshold of 30 visits, we have
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checked that similar results are obtained using different thresh-
olds: 10, 20, 30, 40 and 50 visits per cell (see Supplementary
Information Subsec. Trajectories reconstruction and Supple-
mentary Figs. S1-S2). Users’ trajectories are completed with cells
belonging to the shortest path, compatible with the infra-
structure geometry, between two consecutive observation points,
provided that they are not farther than 50 m. By this process, we
reconstruct approximately 4 millions intermediate location
points, finally reaching a total of 10 millions data points.

Users are classified as passengers and workers according to the
spatio-temporal patterns of their presence. The users identified as
workers include staff of the airport, the airlines or the stores and res-
taurants placed across the terminals. Essentially, to identifyworkerswe
are capturing features that are unlikely for travellers: workers are
defined as individuals who are either observed in the airport for three
or more consecutive days with long visits (>4.5 h) or those entering
staff-only permitted areas out of the terminals. On the other hand, for
passengers, we can have a hint of their destination/origin using a
semantic analysis of their trajectories. If they start at the entrance,
metro or bus area, and end at the gates, they are departing passengers.
The other way around, trajectories going from gates to exit identify
arrival passengers. And, finally, if the initial and final points are at the
gates they are connecting passengers (see Supplementary Information
Subsec. Travelers classification, Supplementary Figure S3). Further-
more, by using the destinations of flights departing from each
terminal59 it is possible to assess the risk of transmission to other UK
cities, to Europe or to intercontinental destinations.

Once the users are divided in the two main categories of workers
and passengers, the “standard" day can be repeated to simulate longer
time periods. We consider that users associated with workers remain
the same through the simulation period, while those associated with
passengers are renewed every day.

Epidemic models
The temporal contact network informs the epidemic models for
simulating the contagion process independently from the disease
considered, although every disease exhibits its own epidemiological
parameters and clinical progression. We adopt a compartmental fra-
mework where individuals assume different states (compartments)
representing the disease progression. The simplest model of this
family is the so-called SIR, in which individuals can be Susceptible to
the disease, Infected-Infectious, or Recovered-Removed (which is
equivalent to being immune). The model dynamics in a continuous
time context can be represented as follows

S+ I�!βt
2 I,

I�!μ R:
ð1Þ

The first reaction equation states that when in contact, an infectious
individual I can infect a susceptible one Swith a transmission rate βt. In
the simulations, where the time is discretized to 15 min slots, this pro-
cess is implemented with a probability pβ of contagion per contact. The
second equation captures how an infectious individual I can recover to
become R with a probability rate μ, where μ−1 is the characteristic
recovery time. While constant rates are a good approximation to a
population level, at individual level we need to take into account het-
erogeneity in the infectious period and, therefore, we use Gamma dis-
tributed recovery times trwith average μ−160. Formally, for each infected
individual we extract tr = Γ(μ−1, 1) from a Gamma distribution with shape
μ−1 and scale 1. In this model, the interplay between these two para-
meters and the contact network is captured by one important control
parameter that is the Reproductive Number R0 (see Supplementary
Section Modeling epidemics in open systems for details on the para-
metrization of the model). More intricate models can be easily built

under this framework as, for instance, the SEIRmodel, in which the new
infected individuals go through a latent or exposed E phase before
becoming infectious. The reaction equations are

S+ I�!βt I + E,

E�!γ I,

I�!μ R,

ð2Þ

whereβt andμplay the same role asbefore, and γ is the probability rate
at which exposed individuals become infectious.

Depending on the values of the parameters, these models can
represent the spreading of different diseases. For instance, SIR has
been used to simulate SARS propagation61, while slightly more elabo-
rated versions of SEIR have been used for influenza62 and COVID-1963.
Table 1 lists themodels employed in this work and the references from
which we have obtained the estimations for the parameter values. It is
important to mention here that, since we have a continuous flow of
people, we are mostly interested in the contagions at the early stages
of anoutbreak. These are the ones that can propagate the disease in an
airport and from there to other world destinations, given that further
development of the disease would lead to airport closure. Further
details on each model are provided below on a case by case basis. In
Table 2 we list the main parameters for the models implemented in
this study.

Simplest model: SIR. Based on previous works modeling and analys-
ing the SARS (SARS-CoV-1) outbreak of 2002-200461,64, we inform an
SIR (Susceptible - Infected - Recovered) model with a Gamma dis-
tributed infectious period and mean μ−1 = 10.6 days (see Eq. (1)). We
also fix the probability pβ = 0.92 × 10−3 of infection per contact, so that
we would recover R0 = 2.7 with our rate of contact per time unit for a
well-mixed system (estimated for SARS in ref. 64) see Supplementary
Subsec. Modeling epidemic spreading in open systems, Supplemen-
tary Figs. S4-S6. As a way to perform a risk analysis, the model is run
over 1000 stochastic realizations. In our simulations, the first infected
individual (seed) lands at the airport at 13:30 local timeon the first day.
The origin of the flight, as the corresponding arrival gate, are selected

Table 1 | List of abbreviation for the epidemic models here
considered and respective reference to the literature for the
choice of the epidemic parameters

Name Explanation Reference

SIR SIR model for SARS-CoV-1 61,64

SIRR3 SIR double infectivity 61,64

SIR30 SIR with 30’ time scale 61,64

SEIR SEIR for H1N1 62

COVID-19 SEIIR for SARS-CoV-2 63

SIR stands for Susceptible - Infected - Recovered, SEIR stands for Susceptible - Exposed
-Infected - Recovered, SEIIR stands for Susceptible - Exposed -Infected - Recovered where the
Infected compartment is split in asymptomatic and symptomatic.

Table 2 | List of parameters for the epidemic models here
considered

Name pβ μ−1(d) ϵ�1ðdÞ μ�1
p ðdÞ

SIR (Sars) 0.92 × 10−3 10.6 – –

SEIR (H1N1 Flu) 3.06 × 10−3 2.5 1.1 –

SEIIR (COVID-19) 4.31 × 10−3 2.3 3.7 1.5

d stands for days, pβ is the probability of infection per contact, μ−1 is the infecitous period, ϵ−1 the
latency period, μ�1

p is the prodromic period.
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at random between the options available. Then the simulation con-
tinues for seven consecutive days (clones, in terms of contact
sequence, of the standard day, as discussed above). The presence of
the seed in the airport may or may not lead to the emergence of
contagions.

SEIR family. The nextmodel considered is a littlemore involved, since
now the individuals after contagion undergo a latent phase (E for
Exposed) before becoming infectious. Such SEIR (Susceptible -
Exposed - Infected - Recovered) frameworks have been employed to
model the evolution of a number of diseases as, for instance, influenza
and COVID-19.

H1N1 Influenza. To have another concrete example, we focus on
the case of the H1N1 Influenza that was behind the 2009 pan-
demic. The model parameters are recovered from62, which with
our contact rates translates into an infection probability
pβ = 3.06 × 10−3 per contact. Once infected, individuals enter in the
exposed phase with an average duration of ε−1 = 1.1 days and,
after, in an infectious period of μ−1 = 2.5 days on average. In this
phase, individuals have a probability pa = 0.33 of being asympto-
matic, a situation in which they are infectious but with an infec-
tivity rate re-scaled by a factor rβ = 0.5. The rest of exposed
individuals will become symptomatic infected. These parameters
correspond to a basic reproduction number R0 = 1.7523 with our
contact rate (see Supplementary Subsec. Modeling epidemic
spread in open systems, Supplementary Figs. S4-S6). The simu-
lation setting is the same as for the SIR model, with a single seed
arriving at 13:30 the first day.

SEIIR for COVID-19. Finally, we analyze the effect of spatial immu-
nization on SARS-Cov-2 spreading. We consider a model based on
that proposed in a recent study63. This is a SEIR model where the I
(infected) compartment is split in two: Ip (prodromic infected) and I
(infected), which is further split into Ia (asymptomatic), Im (mild
symptomatic) and Is (severe symptomatic). The model of63 includes
also several compartments regarding hospitalization and ICU treat-
ments, states that are severe enough as to be incompatible with
being in an airport. We merge all these compartments in a single R
state. We have no specific information on the age of individuals,
hence we treat them as the literature model treats adults. The model
parameters are as follows: probability of infection per contact,
pβ = 4.31 × 10−3, which leads to a reproduction rate R0 = 2.365, the
mean latency period of exposure ε−1 = 3.7 days, the average pro-
dromic period before recovering μ�1

p = 1:5 days, and the mean infec-
tious period before becoming recovered is μ−1 = 2.3 days.

Spatial immunization implementation
The mentioned diseases have as common feature a contact (air-
borne) spreading. The main assumption in the models is that people
staying in the same cell with oneor several infected individuals have a
certain probability of contagion. The idea behind spatial immuniza-
tion is to reduce such probability in the most vulnerable cells. There
are different non-exclusivemethods leading to an effective reduction
of the contagion probability, just to name a few: frequent cleaning
and disinfection of surfaces, air filters, ozone and ultraviolet UV-C
lights.

The use of ultraviolet (UV) light to sanitize spaces, for example,
was first theorized in 194466 and experimented in 1981 in the Soviet
Unionby irradiatingwithUV lights of λ = 254nmwavelength samples of
various influenza viruses to study their photosensitivity. However, long
human exposition to this spectrum of UV rays can be harmful. Hence,
new studies proved the photosensitivity of airborne viruses to non-
harmful UV lights in-vitro67 and in-vivo68, this timewith awavelength of
the range λ = 207 − 222nm (see, for instance12, for a review and69,70 for a

discussion on the use of UV-C to disinfect in the context of the SARS-
CoV-2 pandemic). These lights proved to inactivate up to 95% of air-
borne viruses71,72. For the sakeof simplicity, in simulationswe reducepβ
in 95% per contact, even though the relation between the local viral
load and the contagion probability can be more intricate.

Regardless of the specific technology used for spatial immuniza-
tion, the broader question addressed in this work is whether there
exists an optimal spatial arrangement to minimize contagions given a
certain number of cells to be immunized. This naturally deals with
measuring the impact of each spatial immunization configuration in
terms of the number of contagions in the airport, outbreak probability
and destinations affected.

The areas to immunize are selected by the number of contagions
predicted by the epidemic models. For each model configuration, we
run 1000 realizations and rank the cells by the number of contagions
occurring in themduring the first day (see Supplementary Figs. S7-S9).
The top ranking cells go under the name of infection hotspots, and
their number canbe varieddependingon the amountof space that one
is capable of covering with spatial immunization methods. There are
34792 cells in the model, we test the immunization of 50, 100, 200,
400 and 800cells, corresponding respectively to 0.1%, 0.3%, 0.6%, 1.1%
and 2.3% of the available space.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Researchers may request access to Cuebiq data by submitting pro-
posals through Cuebiq’s “Spectus Social Impact” program (https://
spectus.ai/social-impact/). Projects are considered on a case-by-case
basis with priority given to projects that generate positive social
impact and explore novel use cases and methodological lines of
inquiry. Projects are subject to review byCuebiq’s PrivacyCouncil, and
may require additional review by Researcher institutions. Heathrow
airport boundaries are available at https://www.openstreetmap.org/
way/185882029#map=14/51.4693/-0.4537 under the licenseOpenData
Commons Open Database Licence (ODbL).

Code availability
Python2 was used for the analysis and models performed in this
work. Codes employed in this work are publicly accessible on the
Figshare repository at the link https://figshare.com/s/
fe0a276da2cbca6d599d with https://doi.org/10.6084/m9.figshare.
1978019273.
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