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Many systems in nature, society, and technology can be described as networks, where the vertices are the
system’s elements, and edges between vertices indicate the interactions between the corresponding elements.
Edges may be weighted if the interaction strength is measurable. However, the full network information is
often redundant because tools and techniques from network analysis do not work or become very inefficient if
the network is too dense, and some weights may just reflect measurement errors and need to be be discarded.
Moreover, since weight distributions in many complex weighted networks are broad, most of the weight is
concentrated among a small fraction of all edges. It is then crucial to properly detect relevant edges. Simple
thresholding would leave only the largest weights, disrupting the multiscale structure of the system, which is at
the basis of the structure of complex networks and ought to be kept. In this paper we propose a weight-filtering
technique based on a global null model [Global Statistical Significance (GloSS) filter], keeping both the weight
distribution and the full topological structure of the network. The method correctly quantifies the statistical
significance of weights assigned independently to the edges from a given distribution. Applications to real
networks reveal that the GloSS filter is indeed able to identify relevant connections between vertices.
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I. INTRODUCTION

A popular way to look at a complex system is turning it
into a graph, or network, by highlighting the fundamental
elements of the system (vertices) and the interactions between
them (edges connecting vertices), possibly with their strength
(weights on edges). Due to the recent availability of massive
data sets and computational facilities capable of processing
them, many networked systems have been carefully investi-
gated in the last few years [1–7].

A recurrent property is the heterogeneity in the distributions
of the main structural features of such systems. These include
purely topological attributes, like the number of neighbors
of a vertex (degree) [8,9] as well as variables depending on
the weighted character of the edges, like the edge weights
and the sum of the weights of the edges incident on a vertex
(strength) [10]. Such heterogeneity is responsible for peculiar
properties of complex networks, like their high robustness
against random attacks or failures [11]. Weights and topology
are by no means independent, revealing a set of nontrivial
relationships [10]. For this reason it is improper to separate
weights from topology and to study the system by exploiting
either source of information.

However, keeping the full information about the network
can give rise to problems. A large network with a high edge
density may be intractable by traditional tools of network
analysis. For instance, it may be impossible to produce a
meaningful visualization of the network. Also, a high edge
density is a serious obstacle for graph clustering techniques
[12], most of which rely on the working assumption that the
network is sparse, i.e., that the number of edges is not much
larger than the number of vertices. Other analysis tools may
not be applicable due to their high computational complexity.
In addition, the estimates of the edge weights may be biased by
measurement errors, so the connections between some pairs
of vertices might not be meaningful.

For all these reasons, it is important to develop suitable
techniques to reduce the network, by maintaining only the most
valuable information. The problem of information reduction
in datasets has a long tradition and has led to the design of
very popular methods, like Principal Component Analysis
[13]. For networked data a well-known strategy is coarse
graining [14–17], which consists of grouping vertices based
on their mutual similarity or topological role in the network
and replacing each group with supervertices. Here, instead,
we wish to preserve all vertices and act only on the edges, by
selecting the most relevant ones. This is a major challenge.
For one thing, it should be clarified what “relevant” means, as
this is not straightforward. In fact, several options are possible,
depending on the features of the system that shall be preserved.
Since edge weights are usually broadly distributed, keeping
just the largest weights is a viable option, since a few edges
account for most of the total weight. All weights lower than a
predefined threshold could be then erased [18–22]. However,
global thresholding has two drawbacks. On the one hand, it
introduces a scale in an originally multiscale system. On the
other hand, it may spoil important topological properties. For
instance, it may fragment the network into a large collection
of components. To avoid that, one may construct a maximum
spanning tree [23], where as many edges as possible are
removed such to maintain the connectedness of the graph and
to keep the largest possible total weight on the remaining
edges. This traditional technique is also not ideal, as it reduces
the network to an acyclic graph (a tree), whereas cycles are very
important structural features of complex networks. Moreover,
a tree has a number of edges equal to the number of vertices
minus one, and it is unlikely that the number of relevant edges
simply depends on the number of vertices, for any system.
Tumminello et al. have shown that many more edges and
information can be kept, by extracting a subgraph that can be
embedded on a surface of genus k, instead of a tree [24].

046101-11539-3755/2011/83(4)/046101(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.046101


RADICCHI, RAMASCO, AND FORTUNATO PHYSICAL REVIEW E 83, 046101 (2011)

Still, selecting edges with a systematic bias toward the
largest weights would destroy the heterogeneity in the distri-
bution of edge weights, which is a crucial feature of complex
weighted networks. Furthermore, this could significantly mod-
ify the coupling between weights and topology. Meanwhile
there are a few methods capable of filtering the information
on the edges so as to respect the multiscale structure of
complex weighted networks. Such techniques include a two-
stage algorithm proposed by Slater [25,26] and a method by
Glattfelder and Battiston [27] based on a multilevel network
analysis. In recent works by Serrano et al. [28,29] the focus
is on the immediate neighborhood of each vertex. For a given
vertex, the weights on its adjacent edges are analyzed, and
those edges carrying a significant fraction of the total strength
of the vertex are picked. The significance of the weight is
estimated from the so-called disparity function, which results
from a simple null model stating how weights are distributed
among the edges incident on the vertex. Here we focus on the
edges, i.e., on pairs of connected vertices, rather than on the
individual vertices. Unfortunately, it is not possible to treat
pairs of connected vertices independently of the rest of the
network, as they are attached to other vertices, etc. The natural
solution is a global null model, which accounts for the full
topology of the network, while preserving the heterogeneity
of the weight distribution. In this paper we propose the Global
Statistical Significance (GloSS) filter, which satisfies these
constraints.

At variance with other techniques, the GloSS filter yields a
well-defined global p value for all edge weights of the network.
Furthermore, it correctly identifies situations in which all
edges are equally relevant or irrelevant, like when weights are
independently and identically distributed on the edges. Finally,
the performance of the GloSS filter on several real networks,
both directed and undirected, is compared with that of other
filtering techniques.

II. RESULTS AND DISCUSSION

A. The GloSS filter

The starting point is the weight matrix W, whose element
wij indicates the weight of the edge joining vertices i and j .
If there is no edge (interaction) between i and j , wij = 0. The
number of neighbors of vertex i is its degree ki . We also recall
that the strength [10] si of vertex i is the sum of the weights of
the edges incident on i: si = ∑

j wij . Our null model is a graph
where the connections of the original network are locked,
while weights are assigned to the edges by randomly extracting
values from the observed weight distribution Pobs(w). This
null model thus preserves both the topology and the weight
distributions of the original network, by construction.

Suppose that we want to evaluate the statistical significance,
according to this null model, of the edge between vertices i

and j , with observed weight wij . The degrees and strengths of
i and j are ki , kj , si , and sj . This can be formalized by means
of a Bayesian approach. The probability to observe weight
wij �= 0 on the edge, given the degrees and strengths of its
endvertices, reads

P (wij |si,ki,sj ,kj ) = Pobs(wij )
P (si,sj |wij ,ki,kj )

P (si,sj |ki,kj )
. (1)

The denominator on the right-hand side is a normalization
factor, while Pobs(wij ) is a well-defined number. In order
to estimate the term in the numerator we must take into
account that wij , ki , kj are given, and so the “free” variables
contributing to si and sj are the weights of the remaining ki − 1
and kj − 1 connections of vertices i and j , respectively. These
weights can be treated as independent random variables in
the null model, with the only restrictions that

∑
k �=j wik =

si − wij and
∑

k �=i wjk = sj − wij . This implies that

P (si,sj |wij ,ki,kj ) = F (si − wij ,ki − 1)F (sj − wij ,kj − 1).

(2)

The function F (s,k) is the probability of randomly extracting,
from the weight distribution Pobs(w), k elements whose sum
is equal to s, which means that

F (s,k) =
∫

dx1Pobs(x1)
∫

Pobs(x2)dx2 · · ·

×
∫

dxkPobs(xk)δ(x1 + x2 + · · · + xk − s), (3)

where the Dirac delta δ(x1 + · · · + xk − s) ensures the satis-
faction of the constraint on the vertices’ strength. We remark
that, if either i or j (or both) has degree 1, Eq. (2), as it stands,
would not be defined. Here the whole strength of i (or j )
would come from the edge ij , so the probability distribution
of observing that weight is just a δ function centered at wij ,
since no other values are compatible with the strength of the
vertex (si,j = wij if ki,j = 1).

Finally, the statistical significance (or p value) αij of the
observed edge weight wij can be computed by calculating the
integrals

αij = P (>wij |si,ki,sj ,kj )

=
∫ ∞
wij

dw Pobs(w) P (si,sj |w,ki,kj )∫ ∞
0 dw Pobs(w) P (si,sj |w,ki,kj )

. (4)

Despite its apparently high complexity, the computation of
the significance level can be carried out numerically in a
fast and accurate way. The probability function F (s,k) can
in fact be viewed as a multiple convolution integral of the
weight distribution function, and its computation may be
performed by invoking the convolution theorem. First, the
Fourier transform of the weight distribution is calculated, then
its kth power; the final answer is obtained by computing the
Fourier antitransform of the result (see details in Appendix A).
The extension of the former procedure to directed networks is
straightforward. If wij denotes the weight of the directed edge
going from vertex i to vertex j , it is sufficient to substitute in
the former equations ki and si with kout

i and sout
i , respectively.

For vertex j one ought to replace kj with kin
j and sj with s in

j .
Once the p value of each edge has been determined, we can
establish a certain threshold and deem the edges as significant
if their p values lie above that threshold. This procedure defines
what we have called the GloSS filter.

B. Tests on random weight distributions

Ideally, any filtering procedure should be able to recognize
situations in which there are no significant weights. For
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FIG. 1. (Color online) Cumulative distribution P (< α) of the
significance level α for independent identically distributed weights.
Networks are made of N = 1 000 vertices and have minimum degree
equal to 5. Connections among vertices are randomly drawn by
preserving the a priori given degree sequence. Vertex degrees and
edge weights are randomly chosen from the power-law distributions
P (k) ∼ k−γ and P (w) ∼ w−β , respectively. Statistical significance
of weights, for different choices of γ and β, is computed with the
GloSS filter (continuous curve) and the Disparity filter by Serrano
et al. [28] (dashed curve).

instance, given a distribution, we could assign weights taken
from that distribution on each edge, independently of the other
edges. In this way, the distribution of the weights on the
edges would be random, with no correlations with topological
features. Therefore, the fluctuations of the weights coming
from such distribution are just the expected fluctuations of
the distribution itself, whose statistical significance is exactly
indicated by the p value α of Eq. (4). The probability P (< α)
for an observed weight to have a p value α or lower is then
exactly equal to α, as all p values are equally probable. In
Fig. 1 we show the profile of P (< α) on random networks
with power-law distributions of degrees and weights, with

exponents γ and β, respectively. The four panels correspond
to different choices of γ and β. For high values of the
exponents (like γ,β = 100) the power-law distribution is
effectively exponential. In all cases we see that the GloSS
filter recovers the expected relation P (<α) = α (diagonal
continuous line), which indicates that indeed weights are
randomly distributed among the edges and there are no
significant fluctuations. The Disparity filter by Serrano et al.
[28], instead, displays a different profile (dashed line). For
actual power-law distributions of weights [Figs. 1(a) and 1(c)],
it yields the expected pattern up to a p value of about 0.4, then
it deviates from it. In particular, for the case of exponential
distributions of weights [Figs. 1(b) and 1(d)], all observed
weights have essentially the same p value α � 0.4 (yielding
the approximate step function for the cumulative displayed in
the figure). In this case the values of the weights are quite close
to each other, and the method has problems distinguishing
between them. We remark that, even if edge weights are quite
homogeneous here, once their distribution is defined one can
always assign to each weight a proper likelihood (p value)
and discuss its compatibility with the chosen distribution. The
different results obtained with the Disparity filter are due to
the different null model adopted by this filter, which is local.
However, at variance with the GloSS filter, it is not possible
to build a network based on the null model of the Disparity
filter, just because of its local character. It is only possible to
restrict the picture to the subgraph consisting of a node and its
incident edges.

C. Tests on real networks

Here we show some applications of our filtering procedure
to real weighted networks. First, we focus our attention on the
most “significant” weights of the network. For this purpose we
take the World Trade Web (WTW) [30], i.e., the network of
trade relationships of world countries. Vertices represent the
countries and edges are directed and weighted by the money
flow running from any two countries to the other (import and
export). The WTW is very useful for studying propagation
of economic crises and has been thoroughly investigated in

FIG. 2. (Color online) Top 50 connections of the WTW in 2006: GloSS filter (left), Disparity filter (right). Countries without edges are
removed from the picture.
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TABLE I. List of the top 20 most relevant connections of the WTW according to the GloSS (left) and the Disparity filter (right), respectively.
The weights are evaluated in millions of dollars. The edges selected by the Disparity filter carry on average much larger weights and have far
lower p values than those picked by GloSS.

GloSS Disparity

Rank α w Start vertex End vertex α w Start vertex End vertex

1 3 × 10−7 4649.2 USA Dominican Rep 4 × 10−112 307823 USA Canada
2 1 × 10−6 3893.1 USA Honduras 1 × 10−62 200515 USA Mexico
3 3 × 10−6 520.17 Italy Albania 3 × 10−51 211247 Canada USA
4 5 × 10−6 890.23 Haiti USA 2 × 10−34 4649.2 USA Dominican Rep.
5 2 × 10−5 1176.9 Zimbabwe South Africa 4 × 10−34 38386.1 USA Venezuela
6 3 × 10−5 13084.3 Belarus Russia 1 × 10−33 13084.3 Belarus Russia
7 6 × 10−5 1263.25 UK Cyprus 4 × 10−33 82175.1 China Taiwan
8 6 × 10−5 727.11 Uganda Kenya 8 × 10−30 3893.1 USA Honduras
9 6 × 10−5 1580.3 USA Nicaragua 3 × 10−28 62399.9 Austria Germany
10 8 × 10−5 7572 USA Ecuador 8 × 10−26 315362 USA China
11 9 × 10−5 1642.65 Benin China 9 × 10−26 103930 China South Korea
12 9 × 10−5 3326.3 USA Guatemala 9 × 10−26 19399.3 USA Israel
13 1 × 10−3 4062.74 Honduras USA 9 × 10−25 7572 USA Ecuador
14 1 × 10−3 508.5 USA Haiti 5 × 10−24 143421 Mexico USA
15 2 × 10−3 1458.28 Zambia South Africa 1 × 10−23 38642.4 Germany Austria
16 2 × 10−3 187.33 St. Kitts & Nevis USA 1 × 10−22 106105 Germany Netherlands
17 2 × 10−3 2282.3 USA Sri Lanka 5 × 10−22 27804.6 Germany Czech Rep
18 2 × 10−3 1056.25 Mozambique South Africa 1 × 10−21 8822.4 USA Trinidad & Tobago
19 2 × 10−3 459.05 India Nepal 4 × 10−21 27330.9 Ireland UK
20 2 × 10−3 193.22 China Burkina Faso 5 × 10−21 19308.9 Portugal Spain

the last few years [30–32]. Data are freely available [33,34].
The data we considered refer to the year 2006: The network
has 189 vertices and 12 705 edges. In Fig. 2 we show the 50
most significant edges, selected with the GloSS (left) and the
Disparity (right) filters, respectively. We see that the results are
quite different, even if some of the edges coincide. In particular,
the GloSS filter is more likely to capture connections involving
smaller or poorer countries than the Disparity filter, which
selects more frequently larger countries and trade exchanges.
This is manifest in Table I, where we list the top 20 edges,
along with their weights and p values.

Interesting economic relations, revealed as anomalous by
the GloSS filter, are those between China and North Korea
and also those relating China to Togo, Burkina Faso, and
Benin. While the existence of an anomalous connection
between China and North Korea can be explained in terms
of simple political reasons, the relations of China with the
African countries have deeper economic foundations based
on agreements on trade and economic and technological
cooperation. Particularly relevant economic relations are also
those established between Australia and Papua New Guinea,
between Italy and Albania, and between France and Gabon.
Papua New Guinea became independent from Australia only
in 1975, but its economic development is still controlled
by Australia. After the collapse of communism in Albania
(1991), a mass exodus of refugees moved to Italy. Albanians
form today one of the largest foreign communities in Italy,
and strong trade relationships are present between the two
countries. Gabon was a colony of France up to 1960 but still
maintains exclusive political and economic relationships with
France.

We now proceed with a more systematic study of the
importance of the selected weights for the structure of the
network. Since the goal is to reduce the information of the
system by keeping as many as possible of its features, one
may wonder how many edges, picked in descending order of
significance, are necessary to reproduce the most important
features of the original weighted graph. For instance, how
many edges are needed to form a connected graph? This test
has been suggested in Ref. [28]. In addition, we wish to check
when the distributions of the vertex degrees, vertex strengths,
and edge weights are restored. Since it is hard to verify the
match of two distributions, while it is far easier to compare
two numbers, we limit the comparison to an important property
of a distribution, the heterogeneity parameter, expressing the
dispersion of the distribution around its average. For a variable
x with a certain probability distribution, the heterogeneity
parameter is defined as the ratio of the second moment of
the distribution by the square of the first moment: 〈x2〉/〈x〉2.
Our tests consist then in adding edges until the heterogeneity
parameters of the distributions of the reduced network reach
those of the original network and remain stable until the last
edges are added. In Appendix B we use an alternative measure
for the comparison of distributions: the Kullback-Leibler
divergence [35]. We carried out the tests by using three
different filtering techniques: GloSS, Disparity, and global
thresholding. We also compare the rankings produced by our
filtering method with those obtained with the other techniques
to estimate their correlation.

We start with two undirected graphs: a network of US
senators [36] and the Zachary’s karate club network [37]. The
first is a network with 99 vertices, corresponding to members
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FIG. 3. (Color online) Applications of filtering techniques on two real weighted undirected networks: a network of US senators (left) and
Zachary’s karate club (right). For each network we show the size of the largest connected component and the heterogeneity parameter of the
degree (k), strength (s), and edge weight (w) distributions as a function of the number of edges added to the system (in decreasing order of
relevance). The continuous line stands for the results of the GloSS filter, the dot-dashed line for those of the Disparity filter, the dashed line
for global thresholding. In addition, we show scatter plots of the edge rankings estimated by the GloSS filtering technique and the other two
considered here: Disparity and global thresholding.

of the 109th Senate of the United States that served for the
full two-years term. The weight of the edge between a pair of
senators is weighted by the number of times they have voted
in the same way (the total number of edges is 4 851) [38].

Naturally, senators of the same party (Republican or
Democratic) are more likely to vote together than senators
of different parties. Consequently, the distribution of edge
weights is bimodal, with two groups of values corresponding
to edges joining Republican or Democratic senators and to
edges joining Republicans to Democrats. Zachary’s karate club
network consists of 34 vertices and 78 edges, corresponding
to the members of a karate club in the USA and their social
relationships. It has become quite popular lately as it is
frequently used as benchmark to test algorithms for community
detection [12]. In Fig. 3 we show the results of our analysis
of both graphs. The performances of the GloSS and Disparity
filters are rather similar. For the senator network we see that
after adding about 40% of the edges the reduced network
acquires the features of the original one. In this case, there
is a strong correlation between the GloSS filter and global
thresholding in the selection of the most relevant edges. This
is due to the fact that the senator network is almost fully
connected and its weight distribution is bimodal (as opposed
to the typically broad distributions observed in many systems).
Under the null model assumption of random assignments
of weights (from the given bimodal distribution), the larger
weights between members of the same party are more likely
to be deemed relevant by the GloSS filter.

Finally, we discuss applications to directed networks.
We take four datasets: the World Trade Web, the US air
transportation network, the Florida Bay ecosystem in the
dry season [39], and a commuting network in the UK. The
WTW has been described at the beginning of this subsection
[40]. In the US air transportation network, vertices are US
airports, and edges are weighted by the number of passengers
transported along the corresponding routes in the year 2000.
Our network has 664 vertices and 15 132 edges. The food
web of Florida Bay entails the trophic interactions between
species, weighted by carbon transfers from one species to
another. The network has been constructed within the ATLSS
Project of the University of Maryland [41]. The species are
125, their interactions 1 969. The network of commuting is
composed of 376 vertices, representing local authorities, and
geographical divisions covering the territories of England and
Wales. Each of the 72 954 directed edges corresponds to a flow
of commuters between the local authority of origin and that
of destination, with a weight accounting for the number of
commuters per day. The data come from the 2001 UK census,
where the local authority of residence and of work or study is
registered for a significative part of the British population [42].

In Fig. 4 we show the results of our analysis for the WTW
and the US airport network, following the same scheme as
in Fig. 3. The results for the food web and the network of
commuting are reported in Fig. 5. We note again a substantial
similarity between the GloSS and the Disparity filters. This
seems to be odd, as the two filtering procedures are very
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FIG. 4. (Color online) Applications of filtering techniques on two real weighted directed networks: the US airport network (left) and the
WTW (right). The panels are analogous as those of Fig. 3, although those relative to the degree and strength distributions are split to account
for the two possible edge directions (incoming and outgoing). The continuous line stands for the results of the GloSS filter, the dot-dashed line
for those of the Disparity filter, the dashed line for global thresholding.

FIG. 5. (Color online) Applications of filtering techniques on two real weighted directed networks: the food web of Florida Bay in the dry
season and the commuting network between cities in the UK. The panels report the same analyses as those of Fig. 4. The continuous line stands
for the results of the GloSS filter, the dot-dashed line for those of the Disparity filter, the dashed line for global thresholding.
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FIG. 6. (Color online) Cumulative distribution P (< α) of the
significance level α for weights taken from the observed distribution
of some of the real networks we considered. The continuous line
corresponds to the GloSS filter, the dashed line to the Disparity
filter.

different in their selection of the most significant edges, as we
have shown in Fig. 2 and Table I. What emerges from Figs. 3,
4, and 5 is that if a sizable fraction of edges are picked, both
filters select mostly the same weights, so after a while the
reduced descriptions of the network would match or become
very similar. On the other hand, global thresholding is clearly
inadequate to catch the main properties of the original network,
for it requires many more edges to recover them, as already
pointed out in Ref. [28].

We close the section by performing a study analogous to
that reported in Fig. 1, but for some of the real networks
examined here (Fig. 6). For the GloSS filter (continuous lines)
we find different patterns than that expected for the null model,
in which all p values are equally probable. Only for the US
airports do the p values have roughly the same probability, up
to α ∼0.8. For Zachary’s karate club, the WTW, and the food
web, there are significant differences with respect to the null
model. The Disparity filter (dashed lines) displays a markedly
different behavior: with the exception of Zachary’s karate club,
very low α values are much more frequent than found by the
GloSS filter.

III. CONCLUSIONS

Filtering the information of complex weighted networks
is crucial both for detecting the most relevant connections
and being able to process a system that is often too large
for many analytical tools to work efficiently. In this paper
we have presented the first filtering technique based on a
consistent global null model, preserving both the distribution
of edge weights and the full topology of the graph. The
recipe is by no means unique, and it would not be difficult
to propose alternatives with slight modifications of the main
ingredients. In fact, filters are as arbitrary as the notion of

“relevant information” is, so objective comparisons of different
strategies are unfeasible. Still, there are situations in which the
answer of the filter is intuitive. For instance, if weights are
independently and identically distributed among the edges,
there should be no anomalous fluctuations, and, consequently,
the p values of the edges should be homogeneously distributed.
We have seen that our GloSS filter indeed quantifies the
correct statistical significance in such instances, while other
techniques have problems.

Tests on real weighted networks show that the GloSS filter
is capable of subsuming the basic information about the system
in a fairly small fraction of the edges, especially the multiscale
structure of both the topology and the edge weights. While
we have put some emphasis on networks with heterogeneous
distributions of features, we remark that our procedure is very
general, and it applies as well to cases in which distributions
are peaked, as we have seen for the network of US senators.
The significance of the edges is not so strongly correlated with
their weights like for other techniques, so we are able to obtain
potentially relevant information also from the vertices with
low strength and degree and, consequently, a more balanced
tradeoff between topology and weights.

Therefore we believe that the GloSS filter is a valuable tool
for the analysis of networked datasets [43].
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APPENDIX A: NUMERICAL IMPLEMENTATION OF THE
GLOSS FILTER

The evaluation of the Fourier transform (and antitrans-
form) can be performed by using a fast Fourier transform
algorithm. This requires as input a binned version of the
weight distribution, where the number of bins b must be a
power of 2. The range of values we are interested in is [0,S],
where S = kmaxwmax is the product of the maximal degree
and the maximal weight observed in the network. A proper
number of bins is needed in order to be able to distinguish
different weight values: If δw is the minimum value of the
difference among all pairs of unequal weights in the network,
we set Q = �log2(S/δw)	 and perform the linear binning
of Pobs(w) over b = 2Q bins. We implement our filtering
technique by calculating the Fourier transform of the weight
distribution and all its powers up to kmax. For each resulting
expression we obtain the Fourier antitransform and finally
compute the p values of all edges according to Eq. (4). The
complexity of the various stages of our algorithm can be simply
estimated: b log2(b) is the typical complexity for calculating
the Fourier transform or antitransform; computing the powers
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of the Fourier transform requires a time that grows as b kmax;
deriving the inverse of the Fourier transform for each power
scales as kmax b log2(b); evaluating the statistical significance
for each of the M edges in the network goes as M b. Since in
general M 
 kmax, the computational complexity of the whole
filtering technique proposed in this paper is M b = M 2Q.

APPENDIX B: MATCHING THE BACKBONE AND THE
ORIGINAL GRAPH

In Sec. II C we have compared the distribution of local
properties of the backbone with that of the original graph,
to check how many edges are needed to reproduce the
basic features of the graph at study. For this purpose we
have compared the heterogeneity parameters of corresponding
distributions as a function of the fraction of added edges.
To give more robustness to our results, we consider here
an alternative measure for the comparison of distributions,
the Kullback-Leibler divergence [35], a well-known measure
in information theory. The results are shown in Fig. 7 for
four real networks. As we had found in Sec. II C, there
is little difference between the GloSS and the Disparity
filters, while global thresholding follows slightly different
trends.

FIG. 7. (Color online) Each panel shows the difference between
the degree distributions of the filtered networks and those of the
original systems, measured by the Kullback-Leibler divergence, for
the GloSS filter (continuous line), the Disparity filter (dot-dashed
line), and global thresholding (dashed line). For directed graphs the
panels are split in two halves, referring to the in-degree and the
out-degree distributions, respectively.
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