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Abstract. Random graphs are useful tools to study social interactions. In
particular, the use of weighted random graphs allows to handle a high level of
information concerning which agents interact and in which degree the interac-
tions take place. Taking advantage of this representation, we recently defined a
magnitude, the Social Inertia, that measures the eagerness of agents to keep ties
with previous partners. To study this magnitude, we used collaboration networks
that are specially appropriate to obtain valid statitical results due to the large size
of publically available databases. In this work, I study the Social Inertia in two of
these empirical networks, IMDB movie database and condmat. More specifically,
I focus on how the Inertia relates to other properties of the graphs, and show
that the Inertia provides information on how the weight of neighboring edges
correlates. A social interpretation of this effect is also offered.

1 Introduction

The theory of complex networks has recently produced a great deal of interest in a very mul-
tidisciplinary community (for recent reviews on the field see [1–4]). It has been applied with
success to a number of fields spanning from the Internet and the World-Wide Web [5–7] to
protein interactions in cells [8–10]. The study of human society is another topic where net-
works can play an important role. In this particular case, the vertices represent individuals
and the edges social interactions such as professional, friendship, or family relationships. These
interactions can appear on different levels of intensity. How strength our friendship with other
person is cannot be seen as a white-and-black concept but as a full scale of colors. This means
that the best networks to characterize social interactions are weighted graphs. Weighted graphs
include a magnitude associated to the edges, a so-called weight, that accounts for the quality
of each connection [11]. Here I will apply the mathematical tools designed for weighted graphs
to collaborations networks.
So far the major problem for the study of social networks has been the absence of large

enough databases from which reliable statistical conclusions could be extracted. However, on
the edge of the digital era, this restriction does no longer exist for a particular kind of social
networks, the so called collaboration networks. This type of networks are obtained from public
databases containing artistic or scientific productions such as books, movies or papers, together
with the names of the people authoring those works. The network is then formed by connecting
together pairs of persons who have co-authored a common work [5,12]. This graph is undirected,
the relations are reciprocal, and it may be weighted. The weights can be used to represent how
many times a certain partnership has taken place, maintaining thus a high degree of information
in a single graph [12,13]. Recently, we exploited the information contained in the weights of the
links to define a new quantity, the Social Inertia, which measures the eagerness of the authors
to keep working over and over with the same team [14]. My intention in this paper is to study
in detail the foundations of this magnitude and to show why it gives new information different
from previous metrics. In order to illustrate these points, I will use networks obtained from
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Fig. 1. a) Shows the cumulative distribution of weights, C(w), for the movie network (main plot) and
condmat (inset). The red line in the main plot corresponds to a power law with exponent −3 and the
one in the inset to an exponent −2 (the limit to have finite second moment). The b) plot contains the
distribution of values of Inertia for nodes with a given value of k (50, 100, 200) in the actor network.

the IMDB movie database [5,15] and from condmat [12]. The IMDB database comprehends
383640 actors and 127823 movies, while the data from condmat contains 16721 authors and
22002 papers.

2 Social inertia

Let us start by considering a network where the nodes are authors or actors, the edges represent
partnerships and the weight of the edges, wij for a link between i and j, the number of times a
co-authorship between authors i and j has been repeated. The degree of a node i, the number
of connections ki, corresponds to the number of different coauthors a particular actor has had.
Another important magnitude is the strength si, which is the sum over all the weights of the
links of node i. In our case, si is the total number of partnerships i had. The social inertia for
i is then defined as

Ii = si/ki, (2.1)

and accounts for how many of the partnerships have taken place with different partners. Ii
measures the level of conservatism of i, how open he or she is to collaborate with different
people. Its limits are Ii → 1 if the actor has never repeated collaborators, and Ii → qi if all
her works were carried out with the same team, where qi stands for the total experience of i
(number of works she has authored). Note that the Inertia is the average weight of the links
of a node and that this quantity can be defined for any weighted graph, regardless of how the
network has been generated. However, its physical meaning may vary if the network is not
social or if the weight does not represent how many times an interaction has occurred.

3 Relation between the Inertia and other properties of networks

Equation (2.1) can be written as Ii = si/ki = (1/ki)
∑
j∈ν(j) wij where ν(i) represents the

set of ki neighbors of i. If we consider a network where all the weights are alike, the Inertia
is a constant. Unweighted graphs are a particular case of this situation with Ii = 1 for all i.
If there exist a weight distribution in the graph Pw(w), then the values allowed to I depend
on how wide such distribution is. For distributions with a finite second moment and for nodes
with high degrees k, the Central Limit Theorem implies that their strengths must show a
Gaussian distribution around a central value 〈s〉(k) and that the deviation of this distribution
should grows as σs(k) ∼ k1/2 with the degree. This leads in turn to a Gaussian distribution of
the fluctuations of the Inertia of nodes with the same degree k, with the standard deviation
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Fig. 2. Average Inertia and standard deviation as functions of the degree. The data in a) are for the
actor network and those in b) for the condmat. The blue diamonds correspond to the randomized net-
works obtained switching the values of the weights of the links of the original networks (see explanation
in the text). The two straight lines represent the predicted k−1/2 decay for uncorrelated networks.

decreasing with the degree as σI(k) ∼ k−1/2. In other words: the Inertia should be better and
better determined, the larger the degree of a node becomes. If the degree of a node is known,
there remains almost no uncertainty in its value of the Inertia (specially if its degree is high).
This argument seems to establish that the Inertia is a magnitude dependent of others as the
degree, but is it really like that in real-world networks?
In order to give an answer to this question, I have plotted in Fig. 1a the cumulative weight

distribution (C(w) =
∫∞
w
dw′P (w′)) for both empirical networks (actors and condamt). For

the two examples, the weight distribution is wide but decays faster than C(w) ∼ w−2, which
implies that these distributions have finite second moments. However, as can be observed in
Fig. 1b, the distribution of values of inertia for nodes with a given value of the degree, Pk(I),
does not tend to a Gaussian form for high values of k. Otherwise, the curves in Fig. 1b should
tend to a parabola when k increases. This fact is in contradiction with the argument above.
Another point of conflict is its final prediction for the Inertia: the deviation of the values of
I for nodes with a certain degree k, σI(k), does not decay as k−1/2 for any of the networks
studied. Instead, it grows for the actor network, see Fig. 2a, and remains almost constant for
the condamt (Fig. 2b). This leads to a kind of indetermination rule: for the actors, the higher
the degree of a node is, the less we know a priori about its possible value of the Inertia. And
for the condmat, knowing the degree does not tell us anything about the Inertia. The values of
the average Inertia as a function of the degree is also represented in the same Figures and, in
contrast to what happens in transport networks [13], it does not change significantly.
One may wonder then what these networks have in particular to show this behavior. The

answer is profusely discussed in Ref. [17] and is related to the fact that the weights of the edges
are not randomly distributed. The edges of a node tend in general to be uniform, more than
in a purely random distribution. These correlations imply that nodes with the same degree
can have very different values of the strength and consequently vary in the Inertia. Weak links
are concentrated in certain areas of the network and the same happens with the strong links.
To illustrate this mechanism, I have disordered the weights of the links: maintaining the same
topological structure of the network, the weight of each link is interchanged with that of another
randomly chosen edge. The effect on σI(k) can be seen in Figs. 2a and 2b. For the randomized
networks, the deviation decays as k−1/2 following the prediction done by the argument discussed
above for uncorrelated graphs.
From the social perspective, this effect means that the authors or actors display a tendency

towards keeping their partnerships in relative similar levels. Some people are quite faithful and
go on repeating with the same collaborators, others change of collaborators with high frequency
and do not maintain a partnership for very long. These are the two extremes but of course there
is a full scale of behaviors for the agents in the middle. However, extreme conducts are here
more likely than in a completely random situation. Consequently, even if the number of different
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partners is the same for two actors, it is not easy to predict to which category they belong. The
difficulty of doing so may even increase with an increasing number of partners.

4 Conclusions

In summary, I have studied here how the Inertia, the average weight, of the nodes relates to
other magnitudes in social networks. A very simple theoretical arguments suggests that knowing
a certain magnitude as the degree, one has the Inertia of a node specified. I have checked the
validity of this argument in two real-world social networks: the IMDB movie database and
the condmat. Both of these cases show that the theoretical prediction fails. The reason for the
failure is the existence of weight-weight correlations in real networks. This fact implies that
the distribution of the Inertia contains important information on the behavior of the agents.
From a social point of view, the existence of these correlation indicate the presence of two
different type of behaviors. Some agents are faithful to their partners and maintain in average
a high level of collaboration with them, while others have a tendency to change quickly their
collaborators without allowing the partnerships to go too far.
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