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Endemic infectious states below the epidemic
threshold and beyond herd immunity
Javier Aguilar1, Beatriz Arregui García 1, Raúl Toral1, Sandro Meloni 1✉ & José J. Ramasco 1

The COVID-19 pandemic exhibits intertwined epidemic waves with anomalous fade-outs

characterized by persistent low prevalence. These long-living epidemic states complicate

epidemic control and challenge current modeling approaches. Here we introduce a mod-

ification of the Susceptible-Infected-Recovered model in a meta-population framework where

a small inflow of infected individuals accounts for undetected imported cases. Focusing on a

regime where this external seeding is so small that cannot be detected from the analysis of

epidemic curves, we find that outbreaks of finite duration percolate in time, resulting in

overall low but long-living epidemic states. Using a two-state description of the local

dynamics, we can extract analytical predictions for the phase space. The comparison with

epidemic data demonstrates that our model is able to reproduce some critical signatures

observed in COVID-19 spreading in England. Finally, our findings defy our understanding of

the concept of epidemic threshold and its relationship with outbreaks survival for disease

control.
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The proliferation of infectious diseases is inherent to the
social condition of human beings, and it has strongly
marked cultural evolution in the last millennia1–3. Cer-

tainly, our current bio-chemical knowledge is mature enough to
offer pharmaceutical solutions for many diseases. However, the
structure of our societies and our way of living (e.g. rapid com-
munications, highly connected world, dense urban areas, pollu-
tion, climate change, etc.) contribute to the appearance and quick
diffusion of new health threats4. Indeed, the experience of the
COVID-19 pandemic highlighted the importance of under-
standing other aspects of infectious diseases spreading such as:
the effect of non-pharmaceutical interventions5–7, long-range
travel restrictions4, the predictability of epidemic models8,
the impact of city structure9,10 and their effect on public
opinion11–13, etc.

In this context, we focus here on the anomalous behavior of
COVID-19 fade-outs. It was observed that epidemic curves after
the first epidemic wave are characterized by oscillations, plateaus,
linear growth of the total number of cases and high susceptibility
to secondary waves14–19. These phenomena result in overall long-
living, yet marginal, endemic states that differ from the classical
exponential decay that one would naively expect. This makes
difficult to assess when control measures could be relaxed since
their lifting may lead to new major outbreaks. Furthermore, long
survival times can easily result in “epidemic broths” where new
variants can emerge. Therefore, a proper evaluation of the plau-
sible causes of these long-living states is fundamental to design
interventions aimed at controlling disease spreading.

Since classical models fail in predicting persistent small fluc-
tuations close to absorbing states, this situation strikes our
understanding of disease spreading and poses a fundamental
problem for disease modeling: which is the minimal epidemic
model able to generate the observed phenomenology? This topic
is widely discussed in the literature. While some works assert that
this nontrivial temporal behavior is the result of the intrinsic
heterogeneity in the infection parameters or in the structure of
the contact networks15–17,20, another line of research suggests
that individual response could be at its basis, and, in turn, it may
depend on the state of the disease14,18,19. Moreover, the physics
community also noted how this phenomenology reminds of the
features observed at a fined-tuned critical point. For example,21

shows that the linear growth of the total number of cases and
incidence plateaus can be induced by the initial conditions of the
Susceptible-Infected-Recoved (SIR) model at the critical point
while other authors are looking for self-organization mechanisms
in order to avoid the dependence on fine-tuned parameters22,23.

In this work, we show that the presence of a small number of
undetected cases, either coming from importation or due to local
missed detection, explains the emergence of these anomalous
fade-outs and long-living states. To show the effect of this
mechanism, we study a meta-population epidemic model with a
small external seeding. Our approach does not depend, thus, on
ad-hoc model modifications, complex behavioral modeling, fine-
tuning, or self-organization mechanisms. By means of a coarse-
grain of the epidemic dynamics, we are able to extract analytical
information about the duration of outbreaks after the first wave.
This is a novel analytical procedure to extract global information
out of local properties in the context of meta-population models.
Our results confirm that endemic states could be sustained by the
minimal import of infected individuals below and above the
epidemic threshold. This shows that driving epidemics just below
the basic reproductive number may not result in a total epidemic
fade-out. Moreover, it also makes manifest that the whole concept
of herd immunity should be revisited. Finally, we also confront
our theoretical derivations with empirical epidemic data of
COVID-19 in England, finding that our mechanism can explain

the anomalous persistence of the disease and the observed sig-
natures of criticality after the end of the first wave.

Results and Discussion
External forcing. By external seeding (forcing), we mean a pro-
cess that introduces newly infected individuals to a population.
We mainly consider the regime in which these arrivals follow a
slow rate, in such a way that the external forcing can be seen as a
small perturbation on the system dynamics. Of course, in the very
early moments and depending on the epidemic parameters,
seeding has the potential to trigger an outbreak. However, rather
than in the first wave we are interested in the effects of forcing at
later stages of the epidemic spreading.

Such external seeding can be a description of a myriad of
processes. An example could be the effect in a certain region or
country of trips of undetected infected individuals from the rest
of the world, which would act as a reservoir. This can be
combined with other mechanisms such as failures in the isolation
of infected people, the effect of asymptomatic individuals
traveling, false negative tests, non-perfect mobility restrictions,
etc. In general, there is no epidemic control strategy that is
infallible. Our intention is to model all these undetected cases as
an effective (very low) inflow of epidemic seeds. In this sense, the
external seeding serves as an approximation intended to represent
a myriad of different real epidemic processes that would be
impossible to model explicitly.

The effect of external seeding on a single-population SIR model
has been studied in detail (see e.g.24,25). Also, the relevance of
meta-population models to study scenarios with realistic
topologies, such as cities, countries, or global airport connections
has been extensively explored (e.g.9,26–34). For instance, a recent
work has focused on the effects of multiseeding on a meta-
population framework35. However, the seeding, in that case, was
not external, since it originated in other subpopulations, and it
was not particularly small or constant over time. The question
that remains open and that we address in this paper is the impact
of this small external seeding from a reservoir in a meta-
population, especially, in the period between epidemic waves.

Single population SIR model with external seeding. In a single
well-mixed population, the SIR model with external seeding is
defined by the following rules: Infected individuals become
Recovered at rate μ, Susceptible individuals are infected after
contact with an infected agent at rate β. Lastly, a random indi-
vidual can be substituted by an external infected agent with rate h.
We use substitution, instead of direct introduction, to conserve
the total population N constant (N= S+ I+ R, where S, I and R
are the number of Susceptible, Infected and Recovered indivi-
duals, respectively). In our approach, we focus on continuous
time stochastic models that generate different epidemic curves
[I(t), S(t), R(t)] in every realization. These rules are encoded as the
transition rates of an stochastic Markov jumping process36:

lim
dt!0

PðIþ1;S�1;R;tþdtjI;S;R;tÞ
dt ¼ β I

N Sþ h
N S;

lim
dt!0

PðI�1;S;Rþ1;tþdtjI;S;R;tÞ
dt ¼ μI;

lim
dt!0

PðIþ1;S;R�1;tþdtjI;S;R;tÞ
dt ¼ h

N R:

ð1Þ

Here the seeding rate appears in the form h/N to account for
the substitution of a small number of individuals per unit of time.
If instead, h multiplied S and R directly, it would represent the
substitution of a fraction of the total population. This further
reinforces our message that we are considering small external
seeding.
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The dynamics of the system in the limit of large population
(N→∞) can be approximated by the set of deterministic
equations:

dS
dt ¼ �β I S

N � h
N S;

dI
dt ¼ β I S

N � μ I þ h
N ðSþ RÞ;

dR
dt ¼ μ I � h

N R;

ð2Þ

We proceed to summarize some important information derived
from Eqs. (2) that will help us to better understand the stochastic
model that will be considered afterward.

Absence of external forcing (h= 0). When h= 0, the dynamics
reduces to the classical SIR model and any state with I= 0 is an
absorbing fixed point. The behavior towards the absorbing state is
controlled by the basic reproductive number R0 ¼ β=μ. If R0>1,
the system is in the super-critical phase, characterized first by an
exponential growth of the infected individuals and a subsequent
exponential decrease, once the number of susceptible individuals
is so low that it cannot fuel the epidemic spreading. This passive
phenomenon based on starving out the epidemic spread thanks to
the development of an immune community is usually called herd
immunity. Contrary, if R0<1, the mean-field equations predict a
monotonic exponential decay of the number of infected indivi-
duals. The case R0 ¼ 1 is then the critical point, separating the
super-critical and subcritical phases.

These two phases also differ in their stationary states.
Whereas the disease reaches a macroscopic fraction of the
population (limt!1RðtÞ � OðNÞ) when R0>1, the sub-critical
(R0<1) fraction of affected individuals will be small
(limt!1RðtÞ � Oð1Þ). This fact allows us to define the attack
rate37,

α :¼ lim
t!1

RðtÞ
N

; ð3Þ

as a control parameter. The attack rate in the SIR model can be
computed exactly, and its analytical expression will be useful for
the derivations of the next section:

α ¼ 1þR�1
0 W �s0 R0 e

�R0
� �

: ð4Þ
Where s0 ¼ Sð0Þ

N is the initial fraction of susceptible individuals
and Wð�Þ is the Lambert function. See Supplementary Note S1 for
proof of the above equation. The critical point is characterized
both by a null attack rate (α= 0), together with a linear growth of
the recovered individuals (R(t)∝ t)21.

Not only the magnitude of the outbreak, but also its duration is
greatly determined by the basic reproductive number R0. In the
case of the stochastic finite-population SIR model, every
realization of the process will have a different value of the attack
rate and a different duration. However, Eq. (4) will still be
representative of its average behavior. Its stochastic nature is of
special relevance close to the critical point, where there is a
dominance of fluctuations, with a strongly varying number of
new cases per unit of time38–40.

With external seeding (h > 0). If h is non-zero, Eq. (2) has only
one fixed point irrespective of the values of h, β and μ:

S1 � lim
t!1

SðtÞ ¼ 0;

I1 � lim
t!1

IðtÞ ¼ h
μþh

N
;

R1 � lim
t!1

RðtÞ ¼ N μ
μþh

N
:

ð5Þ

This fixed point is stable. Therefore, there is no phase separation
regarding the stationary state of the system. The external seeding
removes the absorbing nature of the states with I= 0 and the

phase transition38. However, the dynamical evolution towards the
fixed point will show differences depending on the values of the
epidemic parameters. In order to see this, we investigate the
behavior of Eq. (2) with initial conditions: Ið0Þ ¼ I0 � Oð1Þ,
S(0)=N− I0 and R(0)= 0 for a short time window and in the
limit of large population, N≫ 1. In these limits, we find the linear
approximation to Eq. (2) for early times

dI
dt

� β� μ� h
N

� �
I þ h; ð6Þ

with solution

IðtÞ � I0 e
ðRh

0�1Þμ t þ h=μ

Rh
0 � 1

eðR
h
0�1Þμt � 1

� �
; ð7Þ

where, for the sake of functional similarity, we have named the
term Rh

0 ¼ R0 � h=ðN μÞ as the basic reproductive number in
the presence of external seeding. If initial conditions without
infected individuals are considered, I0= 0, then new outbreaks
are still started by the external seeding. Although the equilibrium
values given by Eq. (5) are independent of the value of Rh

0, this
parameter controls the characteristic time to reach the fixed
point. For Rh

0>1, the number of infected individuals I(t) will first
increase exponentially and become of macroscopic order quickly,
and then, due to the nonlinear terms in Eq. (2), it will decrease
towards the fixed point I∞. If Rh

0<1, the evolution can be either
monotonic or nonmonotonic depending on the intensity of the
seeding rate h, but in both cases the number of infected indivi-
duals will remain small through its entire evolution towards I∞.
Therefore, for Rh

0<1, the disease will still affect a macroscopic
portion of the population but in a slow fashion. Interestingly, in
the limit of small external seeding and big population size, in
which we are interested (h � Oð1Þ, N≫ 1), the basic reproductive
number for the SIR with or without external seeding are indis-
tinguishable (Rh

0 � R0). Therefore, empirical methods to mea-
sure the basic reproductive number could not notice the presence
of small external seeding.

Finite systems. When stochastic effects are taken into account, the
arrival of an infected individual triggers an epidemic outbreak
during which the number of infected is different from zero. We
will say that a population is active when there is, at least, one
infected individual, I > 0. Contrary, an inactive population has
I= 0. The random duration τ of an outbreak is the time during
which the population is active, (see Fig. 1a for a sketch).

The external seeding will create sequences of consecutive
outbreaks, as new infected individuals arrive at all times. If the
average arrival time h−1 is smaller that the average outbreak
duration, 〈τ〉, outbreaks are likely to overlap, while for h−1≫ 〈τ〉,
the outbreak due to the arrival of an infected individual will not
occur typically until a previous outbreak has disappeared. In the
sub-critical regime Rh

0<1, the outbreaks will be short, while in the
case of Rh

0>1, the first outbreak will likely generate a large
number of infected individuals and, hence, its duration will
increase significantly. In Fig. 1b, it is shown that the average
duration of the first outbreak 〈τ〉 can be used to characterize the
phase diagram of the single population SIR model with external
seeding. By comparing with the line of h= 0, it shows evidence
that a small external seeding does not produce a drastic change in
the characteristic times of the dynamics.

Secondary outbreaks in the super-critical phase will, in general,
be much smaller than the first one, both in intensity (number of
infected individuals during the outbreak) and in duration, see
Supplementary Note S7. In Fig. 1c it is shown the average
duration of the second outbreak after the first macroscopic wave.
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Instead of waiting until the first wave is over, we can force “herd
immunity" by starting the simulations from an initial condition:

Ið0Þ ¼ 1; Rð0Þ ¼ αN; Sð0Þ ¼ N � Ið0Þ � Rð0Þ; ð8Þ
in which the fraction α of recovered equals the attack rate in the
absence of external seeding, Eq. (4) with s0= 1− 1/N. Also in
Fig. 1c, we show that the small external seeding does not alter the
characteristic time of these outbreaks.

Independent sub-populations. Throughout the rest of the work,
we use a meta-population framework. This is, we deal with V
subpopulations, all of them having its own number of
individuals (fNigi¼1;:::;V ) and separate compartment variables
(fSi; Ii;Rigi¼1;:::;V ). Every subpopulation follows a well-mixed
stochastic SIR model. In the following, we fix the recovery rate to
be compatible with the range of values for several important
infectious diseases (such as COVID-19 or influenza): μ= 1/
3.7 days−1 41. By this means, we approach the time scales of real
diseases and it is possible to grasp in a more intuitive way some
results of this work, such as the order of magnitude of the out-
breaks survival times. The external seeding replaces an individual
chosen at random between the whole system of subpopulations
by a new infected individual. This is, a new infected individual
enters the system at rate h, replacing an older individual chosen
randomly within the ∑V

i Ni total members of the whole popu-
lation. Every sub-population i is thus selected to receive the seed
with a probability proportional to its population Ni.

We start with a simplistic setting in which all the sub-
populations have the same number of individuals (namely,
Ni= 105, ∀ i∈ [1, V]) and are independent (there is no circula-
tion of agents between them). In this way, the external field is the
only responsible for the onset of local epidemic outbreaks. This
situation could model a strict lockdown in which mobility
restrictions keep the sub-populations fully isolated. The external
seeding is considered a small perturbation of such severe
confinement. This simple approximation allows us to make
analytical calculations and build the understanding of more
realistic scenarios with communication between the sub-
populations considered in the next section.

We are primarily interested in the anomalous epidemic fade-
out after the first macroscopic wave of infections. For this reason
and as in Eq. (8), we fix the initial condition such that the total
number of infected individuals is equal to zero and the fraction of
recovered individuals is such that the possibility of macroscopic
outbreaks is avoided. This means that for each sub-population i:

Rið0Þ ¼ αNi; Iið0Þ ¼ 0; Sið0Þ ¼ Ni � Iið0Þ � Rið0Þ: ð9Þ

where α is the attack rate in the absence of external seeding (Eq.
(4) with s0= 1− 1/N). In this way, we mimic a situation in which
the whole system suffered a major super-critical outbreak. This
initial condition would be an absorbing state in the absence of
external seeding (h= 0), but its presence (h > 0) opens the
possibility to generate further outbreaks. We provide insights
about the behavior of the system with different initial conditions
in Supplementary Note S8.

In the following, we will differentiate local from global
properties. Being the local properties those referred to individual
sub-populations, e.g., the prevalence in a sub-population i, Ii(t)/
Ni, is local, while the total number of infected agents IðtÞ ¼
∑V

i¼1 IiðtÞ is global. One of our objectives is to understand some
global characteristics from the knowledge of the local ones. The
main magnitude from which we will base the conclusions of this
work is the duration of global outbreaks, τG, defined as the time in
which the number of infected individuals in the whole system
remains strictly greater than zero. If at time t1 an external seed
enters a system with no other infected individuals, I(t1)= 1, and
the global prevalence remains different from zero until time
t2 > t1, this is, I(t2)= 0 but I(t) > 0 for t1 < t < t2, then the duration
of a global outbreak would be τG= t2− t1. In a more intuitive
way, the uninterrupted concatenation of local outbreaks results in
a global outbreak (see Fig. 2a for a sketch illustrating the
difference between local and global outbreaks). Also, see Fig. 2b-c
for an example of computation of τG in simulations (see the
methods section for further details regarding simulations).

In Fig. 3, we plot 〈τG〉 as a function of the basic reproductive
number R0 and the external seeding rate h. This figure informs
thus about the time-scales for which the disease is active in the
system. Interestingly, we can distinguish a cross-over between two
regimes from the duration of global outbreaks: one in which the
typical time-scale of global outbreaks is much bigger than the one
of local outbreaks, and another in which the duration of global
and local outbreaks share the order of magnitude. The presence of
long global outbreaks after the first epidemic wave for small
values of the seeding rate h and for values of R0 both larger and
smaller than one constitutes one of the main results of this paper.
This provides a very simple mechanism to explain the observed
endemic-yet-marginal epidemic states.

There is an interplay between the external seeding and the
epidemic dynamics. Given that the rate of activation (h) is small,
if the duration of local outbreaks (tuned with R0) is too low, then
the global outbreak is not sustained and will be quickly
interrupted. Only if there is a proper balance between the two
dynamics, we can observe the increase in the global outbreak
duration (Fig. 3). Note that the single population setting cannot

Fig. 1 Local outbreaks. Results of numerical generation of trajectories of the stochastic SIR model with external seeding in a single population using the
Gillespie algorithm58,59. a (Example of a local outbreak of duration τ= 4.3 with parameters N= 105, R0 ¼ 0:8, μ= 1/3.7 day−1 and h= 1.2. A shadowed
area is placed where the disease is deactivated (I= 0). b Average duration 〈τ〉 of the first outbreak started from a single seed, I(0)= 1, S(0)= N, R(0)= 0
for different values of the external import (h) and of the basic reproductive number (R0). In (c), similar to (b), but the outbreak starts from an initial
condition beyond herd immunity, using the initial conditions of Eq. (8). Both in (b) and (c), the results have been averaged over 100 realizations and the
errorbars signal the magnitude of the standard error.
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explain this effect. The overlapping of sub-populations is
necessary to generate the endemic state of the disease (Fig. 1b).

Theory. We define n(t) as the number of active sub-populations
(those for which the number of infected people is greater than
zero) at time t. Our assumption is that we can write the evolution
of the probability P(n, t) that n takes a certain value at a time t in
terms of a master equation with time-independent transition
rates42,43. For this, we can write the variable n(t) and the corre-
sponding rates W+ and W− of the master equation as follows

Wþ ¼ lim
dt!0

PðnðtþdtÞ¼n0þ1jnðtÞ¼n0Þ
ðV�n0Þ dt ;

W� ¼ lim
dt!0

PðnðtþdtÞ¼n0�1jnðtÞ¼n0Þ
n0 dt

:
ð10Þ

Where W− (resp. W+) is defined as the rate at which one

particular active (inactive) population gets deactivated (activated).
The objective is to find an expression for the duration of global
outbreaks as a function of W− and W+ in the limit of a large
number of sub-populations, V≫ 1. To do so, we make use of the
framework of the backward Kolmogorov equation to compute the
average time to go from n= 1 to n= 0 (see42,44,45 and Supple-
mentary Notes S2, S3, S5), which yields

hτGi �
1

WþV
e
Wþ
W�V � 1

� �
: ð11Þ

In order to further exploit Eq. (11), we need to identify the
rates of the activation-deactivation process (W− and W+) as
functions of R0, h, V and N. W+ is the rate at which one inactive
sub-population becomes active. Since the external seeding acts
uniformly on every sub-population, we obtain that W+= h/V.
We associate W− with the inverse of the average time that a sub-
population remains active: W−= 1/〈τ〉. In order to work with
analytically tractable expressions, we approximate 〈τ〉 for small h
with the average time with h= 0. When h ≈ 0, it is unlikely that
many external seeds enter in the same active sub-population; and
even if so, they would not introduce big changes in the time scales
(see Fig. 1b and c). Furthermore, we will treat differently the sub-
critical (R0<1) and super-critical (R0>1) regimes. In the sub-
critical region, we approximate the duration of local outbreaks by
the average duration of a one-population outbreak in the SIS
model (this statement is discussed in Supplementary Note S6):

W� � � μR0

logð1�R0Þ
; ð12Þ

see Supplementary Note S4 for details on the derivation of Eq
(12). Therefore, we can rewrite Eq. (11) as

hτGi �
1
h

exp
�h logð1�R0Þ

μR0

� �
� 1

� 	
: ð13Þ

This equation sheds light on the numerical results of Fig. 3 for
R0<1. In the first place, we can now reproduce the sub-critical
region of this figure without an upper cut-off. Secondly, it allows
us to collapse all the h, R0 and V dependence in a single curve,
see Fig. 4a. Moreover, it shows that the transition to large
persistence times is not abrupt, the curve is continuous, non-
divergent, and with well-behaved derivatives. Besides, it is of
special interest that the scaling of W+ with V cancels the

Fig. 2 Global outbreaks. In (a), we show a sketch with four different sub-populations, labeled i, j, k, and l, experiencing local outbreaks. Each of these
outbreaks starts at a different time and has a different duration (τ). They all contribute to a global outbreak of duration τG. Such a global outbreak started
with the first local outbreak in sub-population i at time t1 and finished at time t2, when the last local outbreak died out (in sub-population l). In panels (b)
and (c), we show the meaning of local and global outbreaks with actual simulations. In (b), we show the total number of infected individuals (I=∑iIi) in a
particular instance of a global outbreak. This global outbreak was initiated at time t1= 24, when the external seeding acted on the system with no other
infected agent, and lasted until time t2= 195, when the total number of infected individuals became zero. The total duration of the global outbreak is
τG= t2− t1= 171 days. In (c), using the same realization displayed in (b), we enquire about the duration of local outbreaks. The length of horizontal lines is
the duration of local outbreaks, whereas the vertical axis informs about the label of the sub-populations. One can see how local outbreaks pile up
generating the global outbreak of duration τG. The parameters used to generate this example where V= 1600, β= 0.8μ, and h= 0.1 days−1

(h/V= 6.25 ⋅ 10−5).

Fig. 3 Duration of global outbreaks. In this figure, we investigate the
average global outbreak duration, 〈τG〉, for V= 1600 independent (isolated)
sub-populations obtained from numerical simulations using the Gillespie
algorithm (58,59). Global outbreaks that do not end by the time tmax ¼
4 � 104 are stopped. The global outbreak duration was averaged over 100
realizations for different values of the basic reproductive number, R0, and
the external seeding rate, h. A transition can be observed between a region
where the duration of global outbreaks is of the order of local ones (in red,
bottom left and right) and another one in which global outbreaks are much
longer than local ones (in blue, center and top).
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dependence of the average time with the global system size (see
Fig. 4). Therefore, the general behavior of the long-lived epidemic
states should not depend on the meta-population size and could
be present at different scales (village, city or country level).

In terms of the super-critical phase (R0>1), it is important to
stress that sub-populations that reached local-herd immunity are
still susceptible to generate further outbreaks induced by the
external seeding h or by infected visitors from other subpopula-
tions. However, these outbreaks will not be macroscopic, since
there is not a susceptible population large enough to fuel them.
Our way to make quantitative predictions in this regime starts by
noticing that the statistics of these outbreaks “beyond herd-
immunity" resemble those of the sub-critical regime in a
susceptible population. Indeed, we can map the epidemic
dynamics beyond herd-immunity by a sub-critical SIS model
with a new effective transmission rate

β0 ¼ β ð1� αÞ; ð14Þ
where α is the attack rate defined in Eq. (4). See S7 for details on
the derivation of Eq. (14). Therefore, we are able to exploit
the same explanation built in for the sub-critical phase: even if
local herd-immunity is reached, simultaneous sub-critical
local outbreaks can percolate in time resulting in an endemic
state at the global level. This observation enables us to estimate
the average time of global outbreaks in the super-critical regime
using an analogous version of Eq. (13) with R0

0 ¼ β0=μ ¼
�Wð�s0R0e

�R0 Þ, verifying R0
0 2 ð0; 1Þ for R0>1 (see Supple-

mentary Note S7):

hτGi �
1
h

exp
�h logð1�R0

0Þ
μR0

0

� �
� 1

� 	
: ð15Þ

Eq. (15) predicts a similar collapse of data that the one
observed in the subcritical regime but using now the effective
transmission rate, see Fig. 4b.

Adding mobility between sub-populations. Although our results
until now explain the emergence of epidemic endemic states, the
assumption of independence between the sub-populations limits
their applicability to real-world scenarios. A more realistic setting
has to take into account that individuals can move across different
subpopulations. This possibility enables a different mechanism to
start local outbreaks, since infected agents can visit susceptible
populations and susceptible individuals can also get infected out of
their residence subpopulation. Through the rest of this section,
epidemic dynamics and the external seeding is implemented as
explained in the case of independent sub-populations. At a

constant rate h one individual from the entire population is
replaced by a new infected seed coming from outside the system.

Random diffusion. Our first approximation to include mobility
explicitly is pure random diffusion between sub-populations:
every agent will jump to a connected neighboring subpopulation
at a constant rate M. For the moment, the number of connections
per sub-populations is a constant (k), and the initial condition is
uniform Ni=N= 105 population across all sub-populations i.
Under these circumstances, the distribution of the number of
inhabitants will remain constant on average. Despite it has been
shown that pure diffusion is not a proper description of human
mobility in all scales, it has been used to model the large-scale
spreading of infectious diseases (see, for example, the imple-
mentation of air traveling in30,37,46–48). We shall see in the next
section that the main results discussed here hold as well for the
case of recurrent mobility.

Similarly to our procedure in the section of independent
subpopulations, we first investigate the duration of global
outbreaks with direct simulations of the stochastic process in
which, once more, we implement a maximum time tmax at which
simulations stop. As we are interested in the arising of anomalous
outbreaks after the first wave, we will set in each subpopulation
the initial conditions given by Eq. (9).

In Fig. 5, we show the average duration of the first global outbreak
for different values of the mobility rate M and the basic reproductive
number R0. Essentially, the effect of mobility in the range of M
explored is negligible and the 〈τG〉 of all simulations coincide with the
theoretical prediction for the independent sub-populations case (Eq.
(13) and Eq. (15), both shown in dashed lines in Fig. 5).

The probability that the first epidemic outbreak in a given sub-
population i affects a neighboring sub-population j mainly
depends on two factors: the number of infected individuals in i,
and the rate M at which individuals from i travel to neighboring
subpopulations37. This is the reason why in a situation with no
macroscopic outbreaks, we do not expect mobility to play a major
role. In S8, we check that mobility does play a role in the duration
of global outbreaks when considering the first wave in the
analysis. Also in S8, we test that our results are robust to
variations in the initial condition.

We note the predictive power of Eqs. (13) and (15) even in the
case of mobility. Its applicability is remarkable, given the strong
approximations introduced for its derivation (independent sub-
populations and SIS dynamics).

Recurrent mobility. We test next the robustness of our findings
when the mobility is recurrent. This type of mobility is used to

Fig. 4 Analytical prediction for the duration of global outbreaks. Comparison of analytical expressions for the average duration of global outbreaks with
simulations. In (a), we show hτ

G
i averaged over 100 realizations for different values of V, R0 and h. Here, we only use subcritical values for the basic

reproductive number (R0<1). The functional relation to collapse the data in a single curve is Eq. (13), which is shown in dashed lines. In (b), we do the
same, but concentrating on the super-critical region (R0<1), and using Eq. (15) to collapse the data. The dashed line is a plot of Eq. (15). Both plots show
evidence of the good agreement of the simulations with the theoretical predictions. The plateau observed in simulations is an artifact that corresponds to
the maximum time of simulations (tmax).
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model back and forth trips as those related to commuting, which
represent the majority of daily mobility in urban environments. It
has been proven that recurrent mobility produces different pro-
pagation patterns compared to diffusion due to the repetition of
contacts in the residence and working areas9,10,35,47,49,50. In
practice, we assign to every agent a sub-population of residence
and one of work (which can be the same). Agents are assumed to
spend 1/3 of the day in the working sub-population and the rest
2/3 in the residence one. Note that this implies that the initial
number of residents in each sub-population (fNigi¼1;:::;V ) is pre-
served in time. In this case, mobility fluxes are parameterized by
the fraction of resident agents traveling every day (m). Once the
daily fluxes between subpopulations are fixed, they remain the
same during all the simulation. The main variables are thus the
number of individuals living in subpopulation i and working in j
at each of the disease states ({Xij}, where i, j= 1, . . . ,V, and X can
be S, I or R). The addition of recurrent mobility makes it difficult
to simulate the stochastic process using, for instance, the Gillespie
algorithm in feasible times. In order to reduce the computing
time, we make use of an approximation that exploits the differ-
ence between the time scales of the epidemic and mobility
rates31,51. The basic idea behind this approximation is that
recurrent mobility is encoded in an effective transmission rate
that depends on mobility and demographic characteristics of each
sub-population.

We show next that the regimes obtained in the previous
sections still hold and they are not an artifact derived from the
uniform distribution of populations and connections, nor of the
specific type of mobility. In Fig. 6, we obtain similar patterns in
the phase diagram as we vary the mobility intensity parameter
(m) for:

● Figure 6a,b: A configuration in which sub-populations
form a 2-D regular lattice with a Gaussian distribution of

the number of residents (average 105 individuals and σ= 3/
20 × 105). The number of agents traveling in each link
between sub-populations i and j are mNi/4.

● Figure 6c,d: Sub-populations are connected by a scale-free
network generated with the configurational model and with
degree distribution P(k) ~ k−2.5. The average degree is
〈k〉= 6.2. The outflow of a sub-population i is equally
distributed across the links departing fromi and it is equal
to mNi/ki.

● Figure 6e,f: A realistic application in the city of Paris. The
basic divisions of the city are census areas “ensemble des
communes", the resident populations and commuting
networks are obtained from official statics52,53. As before,
we use a control parameter (m) to determine the fraction of
resident population that commutes. The destinations are
selected according to the empirical commuting flows. For
example, if ωij is the empirical number of individuals living
in i and working in j, we will consider in our simulations
mNi ωij/∑ℓωiℓ travelers in the link i− j.

In all these panels, we note that there is an extended parametric
area for which the endemic states emerge. These results are robust
to changes in the initial condition (see Supplementary Note S8)
and to the epidemic model: i.e., a SEIR model also generates the
same variety of behaviors (see Supplementary Note S9).

Empirical evidence. Lastly, we compare our predictions with
publicly available governmental data of COVID-19 spreading in
England54. Specifically, we focus on the anomalous epidemic
fade-outs observed in COVID-19 incidence (number of new
infections per day) between the two first waves of the pandemic.
A situation that exactly represents the assumptions of our model.
Broadly speaking, this period corresponds to the months between
April and September 2020 and the geographical resolution of our
data is at the level of the “lower-tier local authorities" (LTLA)
–one of the administrative units in which the country is divided.
England is composed of 315 (see a sketch in Fig. S10 of the
Supplementary Information) of these divisions whose average
population is 179, 000 inhabitants.

In Fig. 7, we show one instance of the evolution of the
prevalence in a particular LTLA. In the data, we can differentiate
two regimes with exponential changes in the prevalence,
associated with the decay and growth of the first and second
wave respectively. We can also see a third dynamical phase
between the two waves, in which prevalence flattens and is low
but almost always nonzero. This phase is what we call an
anomalous persistent fade-out since it cannot be characterized by
the standard models (see Fig. 7a). However, as shown in Fig. 7b,
our model equipped with an external field is able to reproduce
both the exponential decay and the subsequent fluctuating
plateau.

Fig. 8 adds more quantitative information to our discussion. It
shows that the distribution of times for which LTLAs have zero
prevalence is well-fitted by an exponential functional form. This
is precisely the distribution expected by our model when
neglecting mobility of infected individuals. In this case, the
activation of an LTLA can only be caused by the field and the
distribution of times with zero prevalence would read

PðtÞ ¼ h e�ht: ð16Þ

Where h is the rate at which infected individuals enter the LTLAs
from outside. Hence, one can estimate the external field from the
exponential fit of the distribution in Fig. 8 together with Eq. (16),
in this case, obtaining h ≈ 0.04 days−1 as a proxy for the external
seeding rate at LTLA level.

Fig. 5 Effect of mobility: diffusion. Effect of random diffusion on the
duration of global outbreaks. Dots show the duration of the a global
outbreak averaged over 100 simulations for different values of R0 and M.
We show a transect of fixed external seeding (h= 1 and h/V= 2.5 × 10−3).
The initial condition mimics the situation after the first epidemic outbreak
[Eqs. (9)]. The topology is a squared lattice with periodic boundary
conditions (k= 4) with V= 400 (20 × 20). All simulations are stopped
either at time tmax ¼ 4 ´ 104 (days) (horizontal dotted line) or when the
total prevalence reaches zero. Dashed curved lines show our analytical
estimations (Eqs. (13) for R0 < 1 and (15) for R0 > 1). As discussed in the
text, mobility doesn't have a deep effect since no macroscopic outbreaks
are expected.
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With the previous results we have shown that our model is
capable of reproducing the statistics of epidemics in the period
within the two first waves. Furthermore, external seeding can also
explain features of anomalous fade-outs that resemble those of
fine-tuned critical points. Indeed, in Fig. 9, we show that the
growth of recovered individuals during the period within the two
first waves is well-fitted by a linear function. This linear growth is

a general characteristic in our model that we would expect for any
external field with I ≈ 0 and R0<1, however, the linear growth is
only shown at the critical point in the standard SIR model21. A
different signature of criticality is given by the measures of the
effective reproductive number obtained in real data, which
fluctuate around the critical value (see Fig. 10a). Remarkably, we
can measure similar kind of fluctuating and near-critical values

Fig. 6 Effect of mobility: recurrent mobility. Average global outbreak duration for sub-populations connected through recurrent mobility, and for two
values of the portion of travelers (m). Also, different topologies and demographic statistics are inspected. Averages were performed over 100 realizations.
Global outbreaks that do not end by the time tmax ¼ 4 ´ 104 are stopped. In (a, b), V= 400 sub-populations are connected forming a regular lattice with
periodic boundary conditions. Demographics are Gaussian distributed. In (c, d), the topology is scale-free network with a degree distribution P(k) ~ k−2.5

and with V= 400 sub-populations proportional to the degree. In (e, f), connectivity and populations are read from commuting data of the city of Paris
(V= 469).

Fig. 7 Anomalous fade-outs in real data. In the two panels we show with dots the evolution of the prevalence in one particular LTLA corresponding to the
region of Haringey, in London. Observing the data, we differentiate three dynamical regions regarding the behavior of the prevalence corresponding to the
first wave (exponential decay), the anomalous fade-out (fluctuating plateau), and the second wave (exponential growth). In (a) and (b), we also show
results from simulations carried with the mobility switched off as described in the case of independent sub-populations, using the demographic details of
the LTLA and we fixR0 ¼ 0:8. The solid line represents the median and the shadowed area of the first and third quartiles obtained from 103 simulations. In
(a), we show the evolution obtained with simulations without external seeding (h= 0). With this setting, the model reproduces properly the exponential
decay but fails in describing the subsequent plateau. In (b), simulations are run with h= 0.2. In this case, the model captures both the decay and the
plateau regimes.
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for the effective reproductive number on data generated with
simulations of a metapopulation SIR model with external seeding
(see Fig. 10b). In Fig. 10c, we show that this behavior disappears
when the external seeding is switched off. In this case, we observe
more monotonous and clearly sub-critical values for the basic
reproductive number. In Figs. S11, S12, and S13 we show that this
phenomenon is observed in a robust way for different values of
the external seeding.

Conclusions
We have proposed and studied the addition of a small external
field to a SIR dynamics on a meta-population system. This field
accounts for the important rate of infectious or latent individuals
undetected to the surveillance systems and who can arrive from
other populations or even reside in the local one. We show that
small external fields are not noticeable by usual estimates of the
basic reproductive number, yet they can have noticeable effects at
the global scale. Our findings are general and not restricted to a
specific disease. However, they are specially well-suited for the
COVID-19 situation, in which non-vaccinated regions could act
as reservoirs of undetected infections at low-yet-constant rates.

Our main result is that a small external seeding can cause
epidemic endemic states for an extended parametric region. This
phenomenon has relevant consequences: 1) Even if the pharma-
ceutical and non-pharmaceutical response to an epidemic crisis
can ensure that the transmissibility becomes sub-critical, it cannot
be granted that the disease fades out. The spreading survives in a
low-prevalence, yet uninterrupted epidemic state. The danger of
these persistent states is that the system is highly susceptible to
generating new exponential outbreaks as soon as control

Fig. 8 Distribution of times between consecutive outbreaks. Distribution
of times for which the LTLAs have zero prevalence, as predicted by the
theory, is well fitted by an exponential distribution (Eq. (16)). The value of
the exponent of the best fit is 0.041(8), and can be used as a proxy for the
rate at which infected individuals enter the LTLAs from outside per unit
of time.

Fig. 9 Linear growth of recoveries. For each LTLA we fit the evolution of
the number of recovered individuals to a linear function during the period
between the first two epidemic waves. In the figure, it is shown the
probability distribution of the coefficients of determination (R2) resulting
from the linear fit. The number of recoveries is measured as the cumulative
of the incidence minus the prevalence (RðtÞ ¼ ∑t0¼t

t0¼0 incðt0Þ � Iðt0Þ). The
evolution of the number of recoveries is well-fitted by a linear function in
the majority of LTLAS (R2≈ 1). The linear growth is the one expected by our
model for any external seed when the prevalence is close to zero and
R0 < 1. However, this kind of linear growth would only be present at the
critical point of the classic SIR model without external field. Those LTLAs in
which the number of recoveries does not follow a linear function (R2≈ 0)
are associated with LTLAs in which the activity between waves was null or
very low (see Fig. S15). The inner plot shows one example of the evolution
of the number of recoveries together with the shadow area signaling the
period in which the curve is well-fitted by a linear function. More examples
are provided in Fig. S15.

Fig. 10 Critical values for the effective reproductive number. Measures of
the effective reproductive number. All measures shown of the time-varying
reproduction number are computed with the method explained in60 and its
associated package. In (a), we show the effective reproductive number
estimated from the incidence in England during the period between the first
and second Covid-19 waves. In (b) and (c), we show measures of the basic
reproductive number over one realization of our model as described in the
results section for the case of independent sub-populations with V= 32,
N= 8000, thus representing the average size and population of an LTLA. In
both (b) and (c), the initial condition is I(t= 0)= 185, S(0)= V*N− 185 and
R0 ¼ 0:8, thus resembling the epidemic state of of the LTLA shown in Fig. 7
on March 2020 as measured from the real data. In (b), there is an external
field (h= 0.5), and we recover the near-critical and fluctuating values for the
effective reproductive number observed in real data [this is, in (a)]. In (c),
the external seeding is switched-off (h= 0), and the values of the effective
reproductive number are more monotonous and clearly sub-critical.
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measures are lifted or new variants emerge. 2) For super-critical
scenarios, we also show that herd immunity in all sub-
populations does not imply an extinction of epidemics at the
global level. This fact echoes the results of46, which showed that
rats acting as a reservoir of bubonic plague remove the concept of
herd immunity even if the full population is vaccinated. In our
case, it is not necessary a reservoir species since humans from
other populations by themselves act as the reservoirs. Thus, we
join a recent current of works claiming that the whole notion of
herd immunity must be revisited15,55.

The framework of the backward Kolmogorov equations, used
to compute fixation times, allowed us to check our numerical
findings analytically and obtain scaling relations. Moreover, it
shows that this phenomenon is not linked with a sharp transition
around a tipping point. The map of the SIR model to a two-state
system conceptually means a coarse-graining of the local
dynamics. This strategy could be further exploited in the future in
order to deal with the local-global complex relation inherent to
any meta-population structure.

This work is specially pertinent as the current literature is
struggling to find explanations to criticality signatures found in the
COVID-19 spread (uninterrupted-yet-small prevalence, linear
growth of the recoveries, high susceptibility to changes in mobility
restrictions and social distancing, etc). Our model is capable of
reproducing the persistence of the COVID-19 disease between
waves in the census areas of England. We can also explain
empirical features such as the exponential distribution of the time
between outbreaks, the linear growth of the recoveries and the
near-critical values of the effective reproductive number. These
results are remarkable given the simplicity of our assumptions and
the lack of fine-tuning. Our model is not equipped with the
explicit time-dependence needed to capture the arising of new
macroscopic prevalence peaks (that we link to reduction of the
restriction measures and the arising of new variants). Although it
is possible to develop a multi-strain version, we kept the model
simple in this work for the sake of analytical tractability.

Methods
Simulations. The duration of global outbreaks is a random variable, and we study
its average value 〈τG〉. Our first approach to examine the behavior of 〈τG〉 was to
compute it from direct simulations. Since we are interested in the anomalous epi-
demic fade-out after the first macroscopic wave, our simulations start from the initial
condition defined in Eq. (9). Then, at some stochastic time t1, the external seeding
will generate one infected seed in sub-population label i. This event will start both a
local outbreak in sub-population i and a global outbreak. At a different time t2 > t1
the total prevalence will be zero for first time after t1. We will stop the simulation at
t2 and sample one value of the total duration of global outbreaks as τG= t2− t1. Let
us remark that the local and global events differ since the external seeding could
activate multiple sub-populations before t2. Repeating this experiment many times
one can access the ensemble average 〈τG〉. A technical difficulty arises since, as we
will see, the values of τG can be prohibitively large in order to access them with
simulations. Hence, in order to make affordable the computational cost of the work,
in the simulations we set up an upper time limit tmax after which we stop the
simulation independently on whether the global outbreak has vanished or not.
Therefore, the maximum value that one can sample for τG with this approach is tmax.

Data analysis. Disease prevalence (number of infected individuals per day) is
computed from the empirical incidence by assigning to each new case an incu-
bation and an infectious period. The first one is sampled from a log-normal dis-
tribution, with a mean incubation period of 5.2 days, parameterized as in56. The
infectious period follows a exponential distribution with mean 2.3 days chosen as
in41. Since incidence data is only weekly available, we uniformly distribute cases
over the days of the week to facilitate the analysis and comparison with the
simulation results. A sensitivity analysis demonstrating the robustness of our
empirical results is presented through the figures in Supplementary Note S10.

Data availability
Resident populations and commuting networks of the city of Paris are obtained from the
official statics department52,53. Epidemic data on COVID-19 is obtained from UK
government sources54.

Code availability
The codes for the different models and data analysis are available at57 and are free to use
providing the right credit to the author is given.
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