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Approximate numerical methods are one of the most used strategies to extract information from
many-interacting-agents systems. In particular, the binomial method is of extended use to deal with
epidemic, ecological and biological models, since unbiased methods like the Gillespie algorithm can
become unpractical due to high CPU time usage required. However, authors have criticized the
use of this approximation and there is no clear consensus about whether unbiased methods or the
binomial approach is the best option. In this work, we derive new scaling relations for the errors in
the binomial method. This finding allow us to build rules to compute the optimal values of both the
discretization time and number of realizations needed to compute averages with the binomial method
with a target precision and minimum CPU-time usage. Furthermore, we also present another rule
to discern whether the unbiased method or the binomial approach is more efficient. Ultimately, we
will show that the choice of the method should depend on the desired precision for the estimation
of averages.

I. INTRODUCTION

Stochastic processes simulations are one of the main
pillars of complexity science [1–3]. Indeed, the list of
fruitful applications is endless and we can name but a few
paradigmatic examples like the study of population dy-
namics in ecology [4, 5], gene expression [6], metabolism
in cells [7], finances and market crashes [8, 9], epidemi-
ology [10–13], telecommunications [14], chemical reac-
tions [15], quantum physics [16] and active matter [17].
As models become more intricate, there arises a technical
challenge of producing stochastic trajectories in feasible
computation times, since unbiased methods that gener-
ate unbiased realizations of stochastic trajectories may
become unpractical due to lengthy computations. Ap-
proximate methods, such as the binomial approach in
which we will focus, aim to solve this issue significantly by
reducing CPU time usage. The use of the approximated
methods is extended (see e.g. [18–20]), and some authors
assert that they might be the only way to treat hetero-
geneous many agents systems effectively [21]. However,
other works claim that the systematic errors induced by
the approximations might not trade-off the reduction in
computation time [22, 23]. The primary objective of this
work is to shed light in this debate and assess in which
circumstances the approximate binomial method can be
advantageous with respect to the unbiased algorithms.

To solve this question, we derive a scaling relation for
the errors of the binomial method. This result allows
us to obtain optimal values for the discretization time
and number of realizations to compute averages with a
desired precision and minimum CPU time consumption.
Furthermore, we derive a rule to discern if the binomial
method is going to be faster than the unbiased counter-
parts. Lastly, we carried a numerical study to compare
the performance of both the unbiased and binomial meth-
ods and check the applicability of our proposed rules.

Ultimately, we will show that the efficiency of the bino-
mial method is superior to the unbiased approaches only
when the target precision is below a certain threshold

value.

II. TWO-STATE MODELS

Although one can be more general, throughout this
work we will focus on stochastic models of two-state
agents, such that the possible states of the ith agent can
be σi = 0 or σi = 1. Models of binary-state agents
are widely used in many different applications, such as:
proteins [24], 1/2 spins [25], epidemic spreading [10, 26],
voting dynamics [27], chemical reactions [28, 29], drug-
dependence in pharmacology [30], etc. Spontaneous cre-
ation or annihilation of agents will not considered, there-
fore, its total number, N , is conserved. We furthermore
assume Markovian dynamics, so given that the system is
in a particular state at time t, the “microscopic rules”
that dictate the switching between states just depend on
the current state σ(t) = {σ1(t), . . . , σN (t)}. These mi-
croscopic rules are given in terms of the transition rates,
defined as the conditional probabilities per unit of time
to observe a transition,

wt (σ → σ′) := lim
dt→0

P (σ′; t+ dt|σ; t)

dt
. (1)

A particular set of transitions in which we are spe-
cially interested define the “one-step processes”, meaning
that the only transitions allowed are those involving the
change of a single agent’s state, with rates

wti(σi → σ′i) :=

wt({σ1, . . . , σi, . . . , σN} → {σ1, . . . , σ
′
i, . . . , σN}), (2)

for i = 1, . . . , N . Our last premise is to consider only
transition rates wi(σi → σ′i) that do not depend explicitly
on time t. For binary-state systems, quite commonly, the
rate of the process σi = 0 → σi = 1 is different of the
reverse process σi = 1 → σi = 0 and we define the rate
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of agent i as

wi(σi) :=

{
wi(0→ 1) if σi = 0,

wi(1→ 0) if σi = 1.
(3)

Note that the rates could, in principle, be different for ev-
ery agent and depend in an arbitrary way on the state of
the system. The act of modelling is actually to postulate
the functional form of these transition rates. This step
is conceptually equivalent to the choice of a Hamiltonian
in equilibrium statistical mechanics.

As a detailed observation is usually unfeasible, we
might be interested on a macroscopic level of description
focusing, for example, on the occupation number n(t),
defined as the total number of agents in state 1,

n(t) :=

N∑
i=1

σi(t), (4)

being N − n(t) the equivalent occupation of state 0. In
homogeneous systems, those in which wi(σi) = w(σi), ∀i,
transition rates at this coarser level can be computed
from those at the agent-level as

W (n→ n+ 1) = (N − n)w(0),

W (n→ n− 1) = nw(1). (5)

Some applications might require an intermediate level
of description between the fully heterogeneous [Eq. 2] and
the fully homogeneous [Eq. (5)]. In order to deal with a
coarse-grained heterogeneity, we define C different classes
of agents. Agents can be labeled in order to identify their
class, so that li = ` means that the ith agent belongs to
the class labeled ` with ` ∈ [1, C] and we require that
all agents in the same class share the same transition
rates wi(σi) = w`(σi), ∀li = `. This classification allows
us to define the occupation numbers N` and n` as the
total number of agents of the `th class and the number
of those in state 1 respectively. Moreover, we can write
the class-level rates:

W`(n` → n` + 1) = (N` − n`)w`(0),

W`(n` → n` − 1) = n`w`(1). (6)

In general, stochastic models are very difficult to be
solved analytically. Hence, one needs to resort to numeri-
cal simulations than can provide suitable approximations
to the quantities of interest. There are two main types
of simulation strategies: unbiased continuous-time and
discrete-time algorithms. Each one comes with its own
advantages and disadvantages that we summarize in the
next sections.

III. UNBIASED CONTINUOUS-TIME
ALGORITHMS

We proceed to summarize the main ideas behind
the unbiased continuous-time algorithms, and refer the

reader to [21, 26, 31–34] for a detailed description. Say
that we know the state of the system σ(t) at a given
time t. Such state will remain unchanged until a random
time t′ > t, when the system experiences a transition or
“jump” to a new state, also random, σ′(t′):

σ(t)
t′−t−−−→ σ′(t′). (7)

Therefore, the characterization of a change in the system
necessarily requires us to sample both the transition time
∆t = t′ − t and the new state σ′(t′).

For one-step processes, new states are generated by
changes in single agents σi → 1−σi. The probability that
agent i changes its state in a time interval t′ ∈ [t, t+dt] is
wi (σi) dt by definition of transition rate. Therefore, the
probability that the agent will not experience such tran-
sition in an infinitesimal time interval is 1 − wi (σi) dt.
Concatenating such infinitesimal probabilities, we can
compute the probability Qi(σi,∆t) that a given agent
does not change its state during an arbitrary time lapse
∆t as well as the complementary probability Pi(σi,∆t)
that it does change state as

Qi(σi,∆t) = lim
dt→0

(1− wi(σi)dt)∆t/dt = e−wi(σi)∆t,

Pi(σi,∆t) = 1− e−wi(σi)∆t. (8)

Eq. (8) conforms the basic reasoning from which most
of the continuous-time algorithms to simulate stochastic
trajectories are built. It allows us to extend our basic
postulate from Eq. (1), which only builds probabilities
for infinitesimal times (dt), to probabilities of events of
arbitrary duration (∆t). It is important to remark that
Eq. (8) is actually a conditional probability: it is only
valid provided that there are no other updates of the
system in the interval ∆t. From it we can also com-
pute the probability density function that the ith agent
remains at σi for a non-infinitesimal time ∆t and then
experiences a transition to σ′i = 1−σi in the time interval
[t+ ∆t, t+ ∆t+ dt]:

fi(σi; ∆t) = e−wi(σi)∆twi(σi). (9)

The above quantity is also called first passage distribu-
tion for the ith agent. Therefore, given that the system
is in state σ at time t, one can use the elements defined
above to compute the probability that the next change
of the system is due to a switching in the agent i at time
t′ ∈ [t+ ∆t, t+ ∆t+ dt]:

P(ith agent switches state in [t+ ∆t, t+ ∆t+ dt]) ×
P(Other agents change state only after t+ ∆t+ dt) =

fi(σi; ∆t)dt×
N∏
j 6=i

Qj(σj ,∆t) = e−W (σ)∆twi(σi)dt, (10)

where we have defined the total exit rate,

W (σ) :=

N∑
i=1

wi(σi). (11)



3

Two methods, namely the first-reaction method and
Gillespie, can be distinguished based on the scheme
used to sample the random jumping time t′ and switch-
ing agent i from the distribution specified in Eq. (10).
The first-reaction method involves sampling one tenta-
tive random time per transition and choosing the min-
imum among them as the transition time that actually
occurs. In contrast, the Gillespie algorithm directly sam-
ples the transition time and then determines which tran-
sition is being activated. See extended descriptions of
these methods in [21, 31, 32, 35, 36].

IV. DISCRETE-TIME APPROXIMATIONS

In this section, we consider algorithms which at simu-
lation step s update time by a constant amount, ts+1 =
ts+∆t. Note that the discretization step ∆t is no longer
stochastic, and it has to be considered as a new parame-
ter that we are in principle free to choose. Larger values
of ∆t result in faster simulations since fewer steps are
needed in order to access enquired times. Nevertheless,
the discrete-time algorithms introduce systematic errors
that grow with ∆t.

A. Discrete-synchronous

It is possible to use synchronous versions of the process
where all agents can potentially update their state at the
same time ts using the probabilities Pi(σi,∆t) defined in
Eq. (8) (see e.g. [34, 37]).

Algorithm 1 Discrete time synchronous agent level
1: Increment time: ts+1 = ts + ∆t
2: Compute all probabilities Pi(σi,∆t), i = 1, . . . , N , using

Eq. (8).
3: For all agents, generate a uniform random number ûi ∈

[0, 1]. If ûi < Pi(σi,∆t) change the state σi → 1− σi.
4: go to 1.

We note that the use of synchronous updates changes
the nature of the process since simultaneous updates
were not allowed in the original continuous-time algo-
rithms. Given that the probabilities Pi(σi,∆t) tend to
zero as ∆t → 0, one expects to recover the results of
the continuous-time asynchronous approach in the limit
∆t → 0. Nevertheless, users of this method should bear
in mind that this approximation could induce discrep-
ancies with the continuous-time process that go beyond
statistical errors [38].

B. Binomial method: two simple examples

When building the class-version of the synchronous
agent level (Algorithm 1), one can merge together events

with the same transition probability and sample the up-
dates using binomial distributions. This is the basic idea
behind the binomial method, which is of extended use in
the current literature (e.g. [20, 39, 40]). Since references
presenting this method are scarce, we devote a longer
section to its explanation.

Let us start with a simple example. Say that we are
interested in simulating the decay ofN radioactive nuclei.
We denote by σi = 1 that nucleus i is non-disintegrated
and by σi = 0 the disintegrated state. All nuclei have
the same time-independent decay rate µ:

wi(1→ 0) = µ, wi(0→ 1) = 0. (12)

This is, all nuclei can decay with the same probability
µdt in every time-bin of infinitesimal duration dt, but
the reverse reaction is not allowed. This simple stochas-
tic process leads to an exponential decay of the average
number nt of active nuclei at time t as 〈nt〉 = Ne−µt.

Using the rates (12), we can compute the probability
that one nucleus disintegrates in a non-infinitesimal time
∆t [Eq. 8],

p := Pi(1,∆t) = 1− e−µ∆t, ∀i. (13)

Therefore every particle follows a Bernoulli process in
the time interval ∆t. This is, each particle decays with
a probability p and remains in the same state with a
probability 1 − p. So the total number of decays in a
temporal-bin of duration ∆t follows a binomial distribu-
tion B(N, p),

P [n decays in ∆t] =

(
N

n

)
pn(1− p)N−n. (14)

The average of the binomial distribution is 〈n〉 = Np
and its variance σ2[n] = Np(1 − p). This result invites
to draw stochastic trajectories with a recursive relation:

nt+∆t = nt −∆nt, (15)

where we denote by ∆nt ∼ B(nt, p) a random value
drawn from the binomial distribution, with average value
〈∆nt〉 = ntp, and we start from n0 = N . In this simple
example, it turns out that Eq. (15) does generate un-
biased realizations of the stochastic process. From this
equation we obtain

〈nt+∆t〉B = 〈nt〉B − 〈∆nt〉B = 〈nt〉B(1− p). (16)

The symbol 〈·〉B notes averages over the binomial
method. The solution of this recursion relation with ini-
tial condition n0 = N is

〈nt〉B = N (1− p)
t

∆t = Ne−µt, (17)

which coincides with the exact result independently of
the value of ∆t. Therefore, the choice of ∆t is just
related to the desired time resolution of the trajecto-
ries. If ∆t � (Nµ)−1, many of the outcomes ∆nt used
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in Eq. (15) will equal zero as the resolution would be
much smaller than the mean time between disintegration
events. Contrary, if ∆t � (Nµ)−1, much of the infor-
mation about the transitions will be lost and we would
generate a trajectory with abrupt transitions. Still, both
simulations would faithfully inform about the state of the
system at the enquired times [see Figs. 1 (a) and (b)].

Let us now apply this method to another process where
it will no longer be exact. Nevertheless, the basic idea
of the algorithm is the same: compute non-infinitesimal
increments of stochastic trajectories using binomial dis-
tributions. In the so-called birth and death process, we
consider a system with N agents which can jump between
states with homogeneous constant rates:

wi(1→ 0) = µ, wi(0→ 1) = κ. (18)

Reasoning as before, the probabilities that a particle
changes state in a non-infinitesimal time ∆t are:

P (0,∆t) = 1− e−κ∆t,

P (1,∆t) = 1− e−µ∆t. (19)

Where we can avoid the use of subscripts since all agents
share the transition rates. At this point, we might feel
also invited to write an equation for the evolution of
agents in state 1 in terms of the stochastic number of
transitions:

nt+∆t = nt −∆nt,1 + ∆nt,0. (20)

Where ∆nt,1 and ∆nt,0 are binomial random variables
distributed according to B(nt, P (1,∆t)) and B(N −
nt, P (0,∆t)) respectively. However, trajectories gener-
ated with Eq. (20) turn out to be only an approximation
to the original process. The reason is that the probabil-
ity that a given number of transitions 0→ 1 happen in a
time window is modified as soon as a transition 1→ 0 oc-
curs (and vice-versa). If we now take averages in Eq. (20),
use the known averages of the binomial distribution and
solve the resulting linear iteration relation for 〈nt〉B , we
obtain:

〈nt〉B =

(
n0 −

b

a

)
(1− a)t/∆t +

b

a
(21)

with a = 2− e−µ∆t − e−κ∆t and b = N(1− e−κ∆t). It is
true that in the limit ∆t → 0, this solution recovers the
exact solution for the evolution equation of the average
number of non-disintegrated nuclei for the continuous-
time process, namely

d〈nt〉
dt

= −µ〈nt〉+ κ(N − 〈nt〉),

〈nt〉 =

(
n0 −N

κ

κ+ µ

)
e−(κ+µ)t +N

κ

κ+ µ
, (22)

but the accuracy of the discrete approximation depends
crucially on the value of ∆t. If, for instance, we take

∆t � max(κ−1, µ−1), then we can approximate a ≈ 2,
b ≈ N , such that Eq. (21) yields

〈nt〉B =

{
N − n0, if t/∆t odd,

n0, if t/∆t even,
(23)

a numerical instability that shows up as a wild oscillation,
see Fig. 2.

Therefore, the fact that agents are independent and
rates are constant is not sufficient condition to guarantee
that the binomial method generates unbiased trajectories
for arbitrary values of the discretization step ∆t. Never-
theless, it is remarkable that the only condition needed
to ensure that Eq. (20) is a good approximation to the
exact dynamics, Eq. (22), is that ∆t � min(κ−1, µ−1).
Given than the system size N does not appear in this
condition, we expect the binomial method to be very ef-
ficient to simulate this kind of process if we take a suffi-
ciently small value for ∆t, independently on the number
of agents, see Fig. 2, where both ∆t = 0.1, 1 produced a
good agreement for µ = κ = 1. By comparing the aver-
age value of the binomial method, Eq.(21) with the exact
value, Eq.(22), we note that the error of the binomial ap-
proximation can be expanded in a Taylor series

〈nt〉B − 〈nt〉 = λ∆t+O(∆t2). (24)

where the coefficient of the linear term λ depends on t
and N , as well as on other parameters of the model. We
will check throughout this work that a similar expansion
of the errors in the binomial method holds for the case
of more complex models.

C. Binomial method: general algorithm

If we go back to the general two-state process in which
the functional form of the rates can have an arbitrary
dependence on the state of the system, we can approx-
imate the probability that the state of agent i changes
in ∆t by Pi(σi,∆t) [Eq. (8)]. If all these probabilities
are different, we cannot group them in order to con-
form binomial samples. If, on the other hand, we can
identify large enough classes such that all agents in each
class have the same rates w`(σ), we can approximate the
variation of the occupation number n` of each class dur-
ing the time ∆t as the difference ∆n`,0 − ∆n`,1 where
∆n`,0 and ∆n`,1 follow, respectively, binomial distribu-
tions B(N` − n`, P`(0,∆t)) and B(n`, P`(1,∆t)), with
P`(σ,∆t) given by Eq. (8) using any agent i belonging
to class `. All class occupation numbers are updated at
the same time in step s, yielding the synchronous bino-
mial algorithm, which reads:
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FIG. 1. Simulations of the radioactive decay process with rates given by Eq.(12), using the binomial method [Eq. (15)]. In (a)
the time discretization is ∆t = 1, whereas in (b) is ∆t = 0.5. In both panels N = 100 and µ = 1. Dots and error bars indicate
the average and standard error respectively, both computed from 20 simulations. With dashed lines, we show the analytical
average (red) plus and minus the analytical standard error (gray): 〈n(t)〉 ± σ[n(t)]/

√
20. Independently of the discretization

time, the results from simulations agree with the analytical value within errors.

FIG. 2. Three realizations of the birth and death process with
constant rates defined by Eq. (18) simulated with the use of
the binomial method [Eq. (20)]. In this case, we also use
different time discretization ∆t, and fixed N = 1000, µ = 1,
and κ = 1. Note the numerical instability that shows up
as wild oscillations in the numerical trajectories for the large
time step ∆t = 10. Otherwise, there is a good agreement
between simulations and the expected average value (dashed
line) for both ∆t = 0.1, 1

Algorithm 2 Binomial synchronous class level

1: Update time as ts+1 = ts + ∆t.
For every class ` ∈ [1, . . . , C]:

2: Update the values of P`(1,∆t), P`(0,∆t), using Eq. (8).
3: Update the number of agents as n` → n` − ∆n`,1 +

∆n`,0, where ∆n`,1 and ∆n`,0 are values of bi-
nomial random variables distributed according to
B(n`, P`(1,∆t)) andB(N`−n`, P`(0,∆t)), respectively.

4: go to 1.

A similar reasoning could be built departing from the
knowledge that the number of occurrences of continuous-
time independent processes follows a Poisson distribu-
tion [15]. This conception gives rise to the tau-leaping
algorithm [21, 26] used in the context of chemical mod-
eling.

V. THE
27

4
RULE

The major drawback of the binomial method to simu-
late trajectories is the necessity of finding a proper dis-
cretization time ∆t that avoids both slow and inaccurate
implementations. In this section, we propose a semi-
empirical predictor for the values of the optimal choice of
∆t that propitiates the smallest computation time for a
fixed desired accuracy. Moreover, we will present a rule to
discern whether an unbiased continuous-time algorithm
or the discrete-time binomial method is more suitable for
the required task.

Consider that we are interested in computing the av-
erage value 〈Z〉 of a random variable Z that depends on
the stochastic trajectory in a time interval [0, T ]. For
example, Z could be the number of nuclei for the pro-
cess defined in Eq. (12) at a particular time t ∈ [0, T ].
The standard approach to compute 〈Z〉 numerically gen-
erates M independent realizations of the stochastic tra-
jectories and measures the random variable Z(i) in each
trajectory i = 1, . . . ,M . The average value 〈Z〉 is then
approximated by the sample mean

ZM :=
1

M

M∑
i=1

Z(i). (25)

Note that ZM itself should be considered a random vari-
able as its value changes from a set of M realizations to
another.

For an unbiased method, such as Gillespie, the only
error ε in the estimation of 〈Z〉 by ZM is of statistical
nature and can be computed from the standard deviation
of ZM , namely

ε =
σ√
M
, with σ :=

√
〈Z2〉 − 〈Z〉2. (26)

The quantification of the importance of the error, for
sufficiently large M , follows from the central limit the-
orem [32, 41] using the confidence intervals of a normal
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distribution:

P [〈Z〉 − ε ≤ ZM ≤ 〈Z〉+ ε] = 0.6827 . . . (27)

It is in this sense, that one says that the standard error ε
is the precision of the estimation and writes accordingly

〈Z〉 = ZM ± ε. (28)

Note that, according to Eq.(26), for an unbiased method
the error in the estimation of the sample mean ZM tends
to zero in the limit M →∞.

For a biased method, such as the binomial, that uses a
finite discretization time ∆t and generates MB indepen-
dent trajectories, the precision is altered by a factor that
does not tend to zero in the limit MB → ∞. Based on
the result found in the simple birth and death example
of the previous section, let us assume for now that this
factor scales linearly with the discretization time ∆t and
can be written as λ∆t where λ is a constant depending
on the model. We will corroborate this linear assumption
both with calculations and numerical simulations in the
next section. Then we can write the estimator using the
binomial method as

〈Z〉 = ZMB
+ λ∆t± εB , (29)

where εB =
σ√
MB

. The maximum absolute error of the

biased method is then |λ|∆t+εB . Due to the presence of
a bias term in the error, the only way that the precision
of the binomial method can equal the one of an unbiased
approach is by increasing the number of realizations MB

compared to the number of realizations M of the unbi-
ased method. Matching the values of the errors of the un-

biased and the biased methods and using εB =

√
M

MB
ε,

we arrive at the condition that the required number of
steps of the biased method is

MB = M

(
|λ|∆t
ε
− 1

)−2

, (30)

and the additional requirement ∆t ≤ ε
|λ| (otherwise the

bias is so large that it can not be compensated by the
increase in the number of realizations MB).

What a practitioner needs to know is the total CPU

time t
(CPU)
B the biased method needs to achieve the same

accuracy ε reached by the unbiased method. The CPU
time to generate one stochastic trajectory is proportional

to the number of steps,
T

∆t
, needed to reach the final

time T and can be written as CB
T

∆t
, where CB is the

CPU time needed to execute one iteration of the binomial
method. Hence the total time required to generate MB

trajectories is

t
(CPU)
B = CBMB

T

∆t
. (31)

The discretization time associated with a minimum value
of the CPU time consumption and subject to the con-
straint of fixed precision is obtained by inserting Eq. (30)
in Eq. (31) and minimizing for ∆t (see Appendix A). The
optimal time reads:

∆topt =
1

3

ε

|λ|
. (32)

Inserting the equation for the optimal ∆t in Eq. (30), one
obtains:

Mopt
B =

9

4
M =

9

4

(σ
ε

)2

. (33)

Eqs. (32) and (33) have major practical use, since they

tell us how to choose ∆topt and Mopt
B to use the bino-

mial method to reach the desired precision ε and with
minimum CPU time usage.

Still, one important question remains. Provided that
we use the optimal pair (Mopt

B ,∆topt), is the binomial
method faster than an unbiased approach? In order to
answer this question we first obtain the expected CPU
time of the binomial method with the optimal choice in-
serting Eqs.(32) and (33) in Eq. (31):

t
(CPU,opt)
B =

27

4

CB
|λ|

σ2

ε
T. (34)

On the other hand, the CPU time needed to generate one
trajectory using the unbiased method is proportional to
the maximum time T , and the total CPU time to gen-

erate M trajectories is t
(CPU)
U = CMT , where C is a

constant depending of the unbiased method used. The
expected ratio between the optimal CPU time consump-
tion with the binomial method an the unbiased approach
is

α =
t
(CPU,opt)
B

t
(CPU)
U

=
27

4

CB
C

|λ|
ε
. (35)

Eq.(35) defines what we called “the 27
4 rule”, and its use-

fulness lies in the ability to indicate in which situations
the binomial method is more efficient than the unbiased
procedure (when α < 1). Also from Eq.(35) we note that
unbiased methods become the preferred option as the ex-
pected precision is increased, i.e. when ε is reduced. We

note that there is a threshold value ε = 27
4
|λ|CB

C for which
both the unbiased and binomial methods are equally ef-
ficient.

Eqs. (32), (33) and (35) conform the main result of this
work. These three equations (i) fix the free parameters of
the binomial method (∆t and MB) in order to compute
averages with fixed precision ε at minimum CPU time
usage, and (ii) inform us if the binomial method is more
efficient than the unbiased method. The use of these
equations require the estimation of four quantities: σ, C,
λ, and CB , which can be computed numerically with lim-
ited efforts. The standard deviation σ depends only on
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the random variable Z and has to be computed anyway
in order to have a faithful estimate of the errors. As we
will show in the examples of section VI, the constant λ
can be obtained through extrapolation at high values of
∆t (thus, very fast implementations). Finally, the con-
stants C and CB can be determined very accurately and
at a little cost by measuring the CPU usage time of a few
iterations with standard clock routines (both C and CB
depend as well on our ability to write efficient codes).

VI. NUMERICAL STUDY

In this section, we want to compare the performance of
the Gillespie algorithm (in representation of the unbiased
strategies) and the binomial method. Also, we show the
applicability of the rules derived in last section to fix
the value of ∆t and decide whether the Gillespie or the
binomial method is faster. We will do so in the context
of the SIS model with both all-to-all connections and a
meta-population structure.

A. All-to-all

We study in this section the all-to-all connectivity,
where every agent is connected to all others and have
the same values of the transition rates. In the particular
context of the SIS process, these rates read :

w(0→ 1) = β

N∑
j=1

σj
N

= β
n

N
, w(1→ 0) = µ. (36)

Where µ represents the rate at which infected individu-
als recover from the disease and β is the rate at which
susceptible individuals catch the disease from an infected
contact. The transition rates at the macroscopic descrip-
tion are also easily read from the macroscopic variable
itself. From Eq. (5):

W (n→ n+ 1) = β
n

N
(N − n)

W (n→ n− 1) = µn. (37)

The main outcome of this all-to-all setting is well known
and can easily be derived from the mean-field equation
for the average number of infected [42],

d〈n(t)〉
dt

= β
〈n〉
N

(N − 〈n〉)− µ〈n〉 (38)

and indicates that for R0 ≡ β/µ > 1 there is an “active”
phase with a non-zero stable steady-sate value 〈n〉st =
(1 − µ/β)N , whereas for R0 < 1 the stable state is the
“epidemic-free” phase 〈n〉st = 0 where the number of
infected individuals tends to zero with time.

In order to draw trajectories of this process with the
binomial method we use Algorithm 2 with a single class
containing all agents, N` = N, n` = n. The probability

to use in the binomial distributions is extracted from the
individual rates of Eq. (36):

P (1,∆t) = 1− e−µ∆t, P (0,∆t) = 1− e−β n
N ∆t. (39)

We note that the probability P (0,∆t) in Eq.(39) that
a susceptible agent experiences a transition in a time ∆t
is an approximation of

P (0,∆t)exact = 1− exp

(
− β
N

∫ t+∆t

t

n(s)ds

)
. (40)

Such approximation is a good representation of the orig-
inal process when ∆t is so small that n(t) can be consid-
ered as constant. In any case, we checked both analyt-
ically (see Appendix B) and numerically [see Fig. 3-(a)
and (b)] that the errors of the method still scale linearly
with the time discretization, as pointed out in section V.

Now let us discuss the crucial step of choosing the dis-
cretization ∆t of the binomial method. First we look
for a condition on ∆t that ensures that Eq. (40) can
be properly approximated by Eq. (39). Since the aver-
age time between updates at the non-zero fixed point is
W (nst)

−1 = [(1−µ/β)N/2]−1, a heuristic sufficient con-
dition to ensure proper integration is to fix ∆t ∝ 1/N .
In Fig. 4-(a), it is shown that this sufficient condition in-
deed generates a precise integration of the process. Also
in Fig. 4-(a) we can see that this is in contrast with the
use of ∆t = 1, which provides a poor representation of
the process (as claimed in [22]). However, regarding the
CPU-time consumption, the sufficient option performs
poorly [Fig. 4-(b)]. Therefore, a proper balance between
precision and CPU time consumption requires to fine
tune the parameter ∆t. This situation highlights the
relevance of the rule derived in section V to choose ∆t
and discern if the binomial method is advantageous with
respect to the unbiased counterparts.

In Fig. 5-(a), we show the agreement of Eq. (35) with
results from simulations. In this figure, the discretiza-
tion step ∆t and number of realizations for the bino-
mial method MB have been optimally chosen according
to Eqs. (32) and (33). This figure informs us that the
binomial method is more efficient than an unbiased Gille-
spie algorithm counterpart when the target error is large,
namely for ε & 3 · 10−3, whereas the unbiased method
should be the preferred choice for dealing with high pre-
cision estimators. In Fig. 5-(b) we fix the precision in the
regime where the binomial method is more efficient and
plot the CPU time consumption for both the binomial
and Gillespie methods for different values of the trans-
mission rate β. In this way, we can see explicitly the ad-
vantage of using the binomial method for low precision.
In any case, the magnitude of the computation times is
small for both methods and therefore we assess that the
efficiency study is not needed for the case of all-to-all im-
plementations. This situation is different for the case of
more complex models, as the one treated in next section,
for which approximate methods are needed to produce
simulations in feasible times.
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FIG. 3. Panel (a) plots the average density 〈xt〉B :=
〈nt〉B
N

of infected individuals of the all-to-all SIS model at time t = 20

obtained using the binomial method for different values of the discretization step ∆t. The number of realizations is MB = 100,
and other parameter values are β = 4, µ = 1, N = 103, n(t = 0) = 10. The statistical error bars are smaller than the symbol
size. In accordance with Eq.(25), we find that there is a linear dependence at small ∆t with slope λ = −0.25(1). The horizontal
dashed line is the extrapolation at ∆t = 0 obtained from the linear fit. In panel (b) we plot for the same case, the relative error

εr :=

∣∣∣∣ 〈nt〉B〈nt〉
− 1

∣∣∣∣, using a very accurate value of
〈nt〉
N

= 0.7497 obtained with the the so-called Gaussian approximation [43] ,

corroborating the linear dependence with the discretization step (dashed line of slope 1).
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FIG. 4. We plot in panel (a) the average density 〈xt〉B :=
〈nt〉B
N

of infected individuals of the all-to-all SIS model at time t = 20

obtained using the binomial method as a function of R0 = β/µ for different discretization times ∆t. We take n(t = 0) = 10,
µ = 1.0, N = 103, and MB = 100. Statistical error bars are smaller than the symbol size. The estimations of the average agree
within errors for ∆t = 10−3 and ∆t = 10−2. However, discrepancies are found for bigger values of ∆t, for which the systematic
errors are bigger than the statistical errors. Thus, the analysis of systematic errors should be taken into account to produce
results with fixed desired precision . In panel (b), we plot the average CPU time (in seconds) per realization which, according
to Eq.(31) scales as 1/∆t. This plot evidences the need of a fine tuning of ∆t in order to avoid slow and imprecise calculations.
It is relevant for the application of the 27

4
rule that CPU time consumption (and therefore CB) is not highly dependent on R0.

B. Meta-population

The meta-population framework consist on C sub-
systems, each of them containing a population of N` indi-
viduals, ` = 1, . . . , C. Agents of different sub-populations
are not connected and therefore cannot interact, whereas
agents within the same population interact through an
all-to-all scheme as defined in Sec. VI A. Individuals can
diffuse through populations, thus infected individuals can
move to foreign populations and susceptible individuals
can catch the disease abroad. Diffusion is tuned by a

mobility matrix m, being the element m`,`′ the rate at
which individuals from population ` travel to population
`′. Therefore, to fully specify the state of agent i we need
to give its state σi and the sub-population `i it belongs
to at a given time. Regarding the macroscopic descrip-
tion of the system, the inhabitants of a population can
fluctuate and therefore it is needed to keep track of all
the numbers N` as well as the occupation numbers n`.
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FIG. 5. We plot in panel (a) the ratio between the CPU times of the binomial and the Gillespie algorithms applied to the
simulation of an all-to-all SIS model with parameter values T = 20, µ = 1, β = 2, N = 103, and n(t = 0) = 10 as a function of
the target error ε. The dots are the results of the numerical simulations using for the binomial method the optimal values of
the discretization step ∆t and number of realizations MB as given by Eqs. (32) and (33), while the number of trajectories in
the Gillespie algorithm was computed from Eq. (26). The solid line is Eq. (35), using the values obtained from the simulations:
σ = 0.031, λ = −0.25, C = 4.45 · 10−3 s, CB = 7.727 · 10−6 s. The dashed horizontal line at α = 1 signals where the Gillespie

and binomial methods are equally efficient and it crosses the data at ε = 27
4
|λ|CB
C

= 3 · 10−3. In panel (b) we fix the precision

ε = 0.01, and plot the CPU-time to generate the ensemble of trajectories for different values of R0 = β
µ

for both the binomial

(B) and the Gillespie (G) methods. Same parameter values T , µ and N as in panel (a). M and Mb are computed as in (a).
Except for R0 . 1, where they perform similarly, the binomial method takes always less time than the Gillespie algorithm.

The rates of all processes at the sub-population level are:

W`(n` → n` + 1) = β
n`
N`

(N` − n`),

W`(n` → n` − 1) = µn`,

W ((N`, N`′)→ (N` − 1, N`′ + 1)) = m`,`′N`. (41)

If we assume homogeneous diffusion, the elements of the
mobility matrix are m`,`′ = m if there is a connection
between subpopulations ` and `′ and m`,`′ = 0 otherwise.
Also if the initial population distribution is homogeneous,
N`(t = 0) = N0, ∀`, then the exit rate reads:

W (σ) =

C∑
`=1

(
β
N` − n`
N`

+ µ

)
n` +mCN0, (42)

which can be expressed as a function of the occupation
variables {n`, N`}. In this case, the average time between
mobility-events, [mCN0]−1, is constant and inversely pro-
portional to the total number of agents CN0. This makes
simulating meta-population models with unbiased meth-
ods computationally expensive, as a significant portion of
CPU time is devoted to simulating mobility events and
those methods are often infeasible. The binomial method
is, therefore, the preferred strategy to deal with this kind
of process [See Appendix C for details on how to apply
the binomial method to meta-population models [44]].
However, one has to bear in mind that the proper use
of the binomial method requires supervising the proper
value of ∆t that generates a faithful description of the
process at affordable times.

In Fig. 6-(a) we also check the applicability of the rules
derived in section V, this time in the context of metapop-
ulation models. As in the case of all-to-all interactions,
the preferential use of the binomial method is conditioned

to the desired precision for the estimator. Indeed, un-
biased methods become more convenient as the target
errors decrease. Also we show in the figure the remark-
able similarity between the values of α [Eq. (35)] for the
all-to-all and meta-population interactions. This result
suggests that one can make the comparisons of efficiency
suggested in section V using simple all-to-all models and
then use the optimal values for ∆t and MB in complex
meta-population structures. In Fig. 6-(b), the advan-
tage of using the binomial method for low precision is
explicitly shown. Compared to the case of the all-to-all
interactions of section VI A, the required CPU-time of
the Gillespie method is very large, making it computa-
tionally very expensive to use. Therefore, this situation
exemplifies the superiority of the binomial method with
optimal choices for the discretization times and number
of realizations, as derived in this work.

VII. DISCUSSION

This work provides a solution for the existing debate
regarding the use of the binomial approximation to sam-
ple stochastic trajectories. The discretization time of the
binomial method needs to be chosen carefully since large
values can result in errors beyond the desired precision,
while low values can produce extremely inefficient sim-
ulations. A proper balance between precision and CPU
time consumption is necessary to fully exploit the poten-
tial of this approximation and make it useful.

We have demonstrated, through both numerical and
analytical evidence, that the systematic errors of the bi-
nomial method scale linearly with the discretization time.
Using this result, we can establish a rule for selecting
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FIG. 6. Panel (a): Similar to Fig.5 for the case of the meta-population SIS model with parameter values t = 5, µ = 1, β = 2.
There are C = 100 subpopulations arranged in a square 10× 10 lattice such that each subpopulation is connected to 4 nearest
neighbors (we assume periodic boundary conditions); each subpopulation contains initially N`(t = 0) = 103 agents, ∀`, and
we have set the mobility amongst neighboring subpopulations to a constant value m = 10. The discretization step and the
number of trajectories of the binomial method take the optimal values of Eqs. (32) and (33), while the number of trajectories
in the Gillespie algorithm was computed from Eq. (26). The required constants measured from the simulations are σ = 0.433,
λ = −0.18, C = 0.056 s, CB = 6.0 · 10−5 s. The dashed horizontal line at α = 1 signals where the Gillespie and binomial

methods are equally efficient and it crosses the data at ε = 27
4
|λ|CB
C

= 1.3·10−3. The continuous line is the theoretical prediction
Eq.(35), while the dotted line is the equivalent result obtained in the all-to-all version of the model. We note that the values
of α for both the all-to-all and the meta-population structure are of similar magnitude. In (b) we set a target precision ε = 0.1
and vary β in order to get the desired R0 = β

µ
. Except for very small R0, the binomial method is more efficient for this level

of precision, taking about two orders of magnitude less time.

the optimal discretization time and number of simula-
tions required to estimate averages with a fixed precision
while minimizing CPU time consumption. Furthermore,
we derived another rule that can tell us in which cases
the binomial method is superior to unbiased algorithms.
In general, the advantage of using the binomial method
depends on the target precision: the use of unbiased
methods becomes more optimal as the target precision
increases.

The numerical study of our proposed rules signals that
the ratio of CPU times between the unbiased and bi-
nomial methods are similar in both all-to-all and meta-
population structures. This result facilitates the use of
the rules in the latter case. Indeed, one can develop
the study of efficiency in the all-to-all framework and
then use the optimal values of the discretization time

and number of realizations in the more complex case of
meta-populations.
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Maeztu Program for units of Excellence in R&D, grant
CEX2021-001164-M, and the Conselleria d’Educació,
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Appendix A: Optimal time

In this section, we show the proof for Eq. (32). Inserting Eqs. (26) and (30) in Eq. (31) we obtain:

t
(CPU)
B =

MCBT

∆t

(
|λ|∆t
ε
− 1

)−2

. (A1)

The above equation informs about the CPU time consumption using the binomial method with a time discretization
∆t. Eq.(A1) has only one relative minimum for ∆t in the interval [0, ελ ]:

∆t =
1

3

ε

|λ|
, (A2)

which we identify as the optimal choice for the time discretization.

Appendix B: Scaling of errors with ∆t

Consider a SIS model with all-to-all interactions, and let n(t) be the number of infected individuals at time t. The
probability that a susceptible agent will change its state at time t′ ∈ [t, t+ dt] is:

P (0,∆t)exact = 1− exp

(
− β
N

∫ t+∆t

t

n(s)ds

)
. (B1)

In the context of the binomial approximation, this probability is approximated by:

P (0,∆t) = 1− exp

(
− β
N
n(t)∆t

)
. (B2)

The difference between Eqs. (B1) and (B2) is the error associated to the use of Eq. (B2) instead of Eq.(B1). We call
this difference ∆P .

∆P = P (0,∆t)exact − P (0,∆t) = exp

(
− β
N
n(t)∆t

)
− exp

(
− β
N

∫ t+∆t

t

n(s)ds

)
. (B3)

Considering ∆t small, we can approximate∫ t+∆t

t

n(s)ds ≈ n(t)∆t+ n′(t)
∆t2

2
. (B4)

Where n′(t) = d
dtn(t). Inserting the above expression in Eq. (B3), we obtain

∆P = exp

(
− β
N
n(t)∆t

)
− exp

(
− β
N

[
n(t)∆t+ n′(t)

∆t2

2

])
= exp

(
− β
N
n(t)∆t

)[
1− exp

(
− β
N
n′(t)

∆t2

2

)]
≈ βn′(t)

2N
∆t2. (B5)

If we make use of the binomial method, the faithful increment in the number of infected individuals should be ∆nexact,
a random variable drawn from a binomial distribution B (n(t), P (0,∆t)exact). Instead, we use a random variable ∆n
drawn from the approximate distribution B (n(t), P (0,∆t)). The difference between the mean values of the exact
random variable and the actual one used in the numerical method is

〈∆n〉exact − 〈∆n〉 = n(t)∆P ∼ ∆t2. (B6)

Therefore, if we want to reach a final simulation time T , the accumulated error of using the approximation Eq. (B3)
for a number of iterations proportional to T/∆t scales as ∆P/∆t ∼ ∆t. This scaling is corroborated numerically in
Fig. 3 of the main text.



2

Appendix C: Binomial method on meta-population framework

In this section, we show how to adapt the binomial method (algorithm 2) to the case of meta-population models
(described in section VI B). Let s`(t) and n`(t) be, respectively, the number of susceptible and infected individuals in
subpopulation ` = 1, . . . , C at time t. These occupation numbers fully characterize the state of the system. Note that
the total number of agents in class ` at time t is N`(t) = s`(t) + n`(t). We partition mobility and epidemic events
and perform separate updates for each of them to sample the future state {s`(t+ ∆t), n`(t+ ∆t)}`=1,...,C .

-Mobility: The first step involves the calculation, for all sub-populations, of the number of agents who move
within a time interval ∆t. These quantities, denoted by {∆s`,∆n`}`=1,...,C , are extracted from binomial distributions

∆n` ∼ B (n`(t), p
out
` ), ∆s` ∼ B (s`(t), p

out
` ) with pout

` = 1−e−∆t
∑

j m`,j . Then, traveling agents have to be distributed
among neighboring sub-populations. We call ∆s`,`′ ,∆n`,`′ , respectively, the number of susceptible and infected indi-
viduals entering in sub-population `′ coming from `. Those numbers are sampled, respectively, from the multinomial

distributions, M(∆n`; {p`,`′}`′=1,...,C) and M(∆s`; {p`,`′}`′=1,...,C), with p`,`′ =
m`,`′∑
jm`,j

. The general multinomial

distribution M(N ; p1, . . . , pk) is defined by the probabilities

P (n1, . . . , nk) =

(
N

n1 · · ·nk

)
pn1

1 . . . pnk

k . (C1)

One possible method for sampling numbers {n1, . . . , nk} from a multinomial distribution is by using an ordered
sequence of binomial samples [45].

ni ∼ B

N −∑
j<i

nj ,
pi

1−
∑
j<i pj

 , i = 1, . . . , k. (C2)

At this point, the state of the system is updated with the mobility events:

n`(t) = n`(t) +
∑
j

∆nj,`, (C3)

s`(t) = s`(t) +
∑
j

∆sj,`, (C4)

but time is not yet increased t→ t+ ∆t as the changes due to epidemic dynamics still need to be accounted for.

-Epidemics: Once agents have been reallocated according to the mobility dynamics [Eqs. (C3,C4)], occupation
numbers are updated following the transmission and recovery rules [Eq. (36)]. To do so, we extract two binomial
numbers per sub-population:

∆n`,1 ∼ B
(
n`(t), 1− e−µ∆t

)
, ∆n`,0 ∼ B

[
s`(t), 1− exp

(
−β n`(t)

n`(t) + s`(t)
∆t

)]
, (C5)

The new state of the system reads,

n`(t+ ∆t) = n`(t) + ∆n`,0 −∆n`,1,

s`(t+ ∆t) = s`(t)−∆n`,0 + ∆n`,1, (C6)

and time is now updated t→ t+ ∆t.
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