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A B S T R A C T

We develop algorithms to analyze Information and Communication Technologies (ICT) data
in order to estimate individuals’ mobility at different spatial scales. Specifically, we apply
the algorithms to delineate airport catchment areas in the United Kingdom’s Greater London
region and to estimate ground access trip times from a very large ICT dataset. The spatial
demand is regressed over demographic, socio-economic, airport-specific and ground access
modal characteristics in order to determine the drivers of airport demand. Drawing on these
insights, we develop a catchment area game inspired by Hotelling that analyzes the potential
impact of collaboration between airports and airlines by integrating evidence of consumer
behavior with producers’ financial data. We apply the game to a case study of two London
airports with overlapping catchment areas for local residents. Our assessment of airline-airport
vertical collusion and airport-airport horizontal collusion indicates that the former is beneficial
to both producers and passengers. In contrast, whilst horizontal and vertical collusion is
the equilibrium outcome in the analytic symmetric case, it is found to be less likely in the
asymmetric case and the real-world, data-driven analysis, due to catchment area and cost
asymmetries. Thus, such new datasets may enable regulators to overcome the long-standing
information asymmetry issue that has yet to be resolved. Combining new data sources with
traditional consumer surveys may provide more informed insights into both consumers’ and
producers’ actions, which determines the need (or lack thereof) for regulatory intervention in
aviation markets.

. Introduction

The ever-increasing number of big datasets produced by Information and Communications Technologies (ICT), complemented by
dvancements in the computational power and methodological tools necessary for their assessment, has opened the way to the study
f socio-technical systems at unprecedented detail (Vespignani, 2012). A case in point is the wave of new studies that touch several
spects of human long-range mobility, such as seasonal changes in population distribution (Deville et al., 2014), migration (Simini
t al., 2012), tourism (Lenormand et al., 2015a; Bassolas et al., 2016), and air passenger flows (Hawelka et al., 2014). ICT has
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been used, for example, to examine the interaction of long-range airline traffic with short-range ground transportation, which has
been shown to strongly shape the spreading of epidemics (Balcan et al., 2009). This issue has been investigated by drawing data-
informed origin–destination demand matrices from GPS traces of mobile phones (Iqbal et al., 2014), micro-blogging (Lenormand
et al., 2014) and location-based social networks (Noulas et al., 2012) (see Barbosa et al. (2018) for a recent review). Improving our
understanding of the evolution of the transport system and the ability to optimize demand forecasts, however, necessitates not only
access to big datasets but also the formulation of adequate methodological foundations (Hosni and Vulpiani, 2017). Specifically,
the economic dimension of transportation ought to be taken into account when attempting demand forecasting (Lenormand et al.,
2015b; Lotero et al., 2016a,b; Florez et al., 2018). In the case of airports, given that they serve as a platform that connects airlines
with passengers, two separate revenue streams may arise that encourage cross-subsidization such that one price is artificially low
and the other too high. For example, low aeronautical charges paid by airlines in order to increase passenger volume may lead
to excessively high car parking charges and retail prices at the airport (Thelle et al., 2012). It is, thus, necessary to understand
the variables driving airline demand such as pricing (Lenormand et al., 2015b; Lotero et al., 2016b; Florez et al., 2018), ground
transport accessibility (Gallotti et al., 2016; Yuan et al., 2012; Gallotti and Barthelemy, 2014, 2015), vehicle accessibility, (Gallotti
et al., 2012, 2016), taxi availability (Yuan et al., 2012) and public transport timetables (Gallotti and Barthelemy, 2014, 2015).

We develop a new ICT-based approach in order to shed new light on an important question that has arisen in the literature over
he last decade: Do airports compete? This is a significant issue because the answer is likely to impact, among other issues, the need to
egulate airport charges. In order to showcase the potential use of large data sources, we have chosen the six airports operating in the
reater London region in the United Kingdom (UK) as a case study. In 1987, British Prime Minister Margaret Thatcher privatized the
ondon airports whilst creating the British Airports Authority, which owned Heathrow, Gatwick and Stansted airports, plus several
ther airports. In 2008, the UK Competition Commission forced the ownership separation of the London airports in an attempt
o encourage greater competition between the facilities. Today, Heathrow, Gatwick and Stansted are owned by separate consortia
nd companies. Three additional airports currently operate in the Greater London region: London City airport, created in 1987,
s privately owned. Luton airport is publicly owned by the local borough council, which, in 1997, issued a 30-year management
ontract to a public–private partnership. Southend airport is owned by the local council but it has been leased since 1994 to a
ubsidiary of the Stobart Group, a British infrastructure, aviation and energy company. Since all six airports are now in individual
ands, one could assume that there is the potential for competition for airlines and passengers, achieved through pricing- and
uality-related strategies. Heathrow also potentially competes for transfer passengers with other international gateways in Europe,
uch as Paris Charles de Gaulle Airport in France and Frankfurt Airport in Germany.

The question of whether airports in multi-airport regions compete remains an open question in the literature. According to Starkie
2002) and Gillen (2011), the deregulation of the airline industry has afforded airlines the freedom to choose which airports
est serve their needs and has increased their willingness to change their network choices accordingly. Furthermore, utilizing the
erfindahl–Hirschman Index and a multinomial logit model, Lieshout et al. (2016) conclude that competition among airports in the
nited Kingdom is substantial, providing the population with multiple options to access almost all of Europe in less than three hours.
owever, Pels et al. (2001) argue that airports with a high volume of demand, such as Heathrow, pursue profit maximization whilst

emaining a preferred hub, which suggests that even in a multi-airport region, airports are not pure substitutes. Adler and Liebert
2014) find that the purely privatized airports in the UK set higher charges than their public counterparts even when potentially
ompeting with other facilities. Airports may also attempt to differentiate themselves by offering mixed quality services to airlines
nd passengers as a function of the airline business model.

Ground access mode alternatives and trip times to access and egress airport facilities may also help or hinder competition. Pels
t al. (2003) argue that access time is a dominant explanatory factor of airport choice, therefore airport management interested
n increasing their market share should actively encourage investments in relatively fast access modes. Similarly, Fuellhart (2007),
ased on a case study of Harrisburg International Airport in Pennsylvania, argues that access plays an important role in the aggregate
ecisions of passengers. Given the magnitude of costs required for road and rail infrastructure, accessibility to an airport is usually
ot a decision made by airport owners1 but is likely to impact the catchment area and demand levels, which ought to be considered
hen assessing the likelihood of competition.

Several stylized models have been used to analyze the dynamics of airport competition. Barbot (2009) presents a model to analyze
ncentives for vertical collusion between airports and airlines. The model is a three-stage game in which airlines choose whether to
ollude in the first stage. The airports then set their aeronautical charges in the second stage, followed by the airlines setting airfares
n the third stage. Barbot finds that in the case of market asymmetry, there are incentives for collusion between airports and airlines.
nother model is that of Teraji and Morimoto (2014), which focuses on price competition between airports and their impact on
irline network choices. In their two-stage game, after airports set their prices, airlines choose their network configuration, i.e., hub
r point-to-point services. They distinguish between social-welfare maximizing and equilibrium network outcomes, showing that
nder equilibrium, an excessive number of point-to-point networks emerge.

To identify collusive behavior in complex, network-based markets such as the aviation industry, we propose a novel game-
heoretic model that describes the strategic behavior between two airport–airline couples. The game structure is, in general, valid
or describing competition between providers with non-neutral price structures paid by retailers and consumers (Rochet and Tirole,

1 One exception is that of Southend airport, owned by the Stobart Group, which built and operates the airport railway station. However, as the
roup states in the 2020 annual report, the station has reported losses over consecutive periods and the group is planning to sell off the asset https:
445
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2004). For example, an airport could behave strategically and impact the economic outcome by decreasing airport charges. As
a response, airlines might reduce airfares and draw increased passengers to the airport’s commercial facilities. Accordingly, the
airport may increase commercial revenues over and above the loss in airport charges, thus maximizing airport profits. Moreover,
in markets embedded in the physical space such as airports, which physically connect airlines and passengers, the distance to the
facility constitutes a cost to the passenger, a consideration that, in addition to the airfares and commercial airport prices, determines
the catchment areas for the producers. For this reason, our model of airport competition is based on a catchment area game, which
could be applied to other markets such as e-commerce companies, supermarket chains and newspapers.

This data-driven framework represents both methodological and practical contributions to the study of markets, in general,
nd transportation management, in particular. We develop algorithms that utilize big data from GPS records generated by mobile
hones in order to create demand matrices, airport market shares and trip times, all at the statistical area level. We then estimate
he importance of the drivers of demand in the market using regression analysis. Our analysis shows that airport size, the ground
ransport network, public transport services offered and socio-economic characteristics of the statistical areas explain passengers’
irport selection in a multi-airport region. We use the insights drawn from these analyses to develop a Hotelling-inspired, catchment
rea game to estimate the likelihood that airports compete for passengers or horizontally collude to maximize the extraction of
onsumer surplus. Since airports may act as hubs or serve one major airline customer, we also test whether or not airports choose
o collude with their main customer, known as vertical collusion. This formulation is sufficiently general to be relevant to many
arkets with the potential for both vertical and horizontal collusion. The analytical equilibrium outcome of a two airport–airline
air catchment area game suggests that airport–airline vertical collusion is in the interests of both producers hence, is likely to occur.
he analytical outcome also suggests that horizontal airport collusion leads to higher profits, indicating that all parties are likely to
ollude. However, in the numerical analysis of two airports in the Greater London area that share an overlapping catchment area,
e find that the larger airport–airline pair chooses to compete, leading to an equilibria outcome that differs from the symmetric,
nalytical outcome. In summation, the big data analyses provide detailed information on consumers and the catchment area game
rovides insight into producers’ behavior, which together should aid policy-makers when deciding on the need for airport regulation.

The rest of the paper is organized as follows: In Section 2, we present the methodology and the algorithms developed to integrate
nd analyze the datasets describing passenger behavior. It continues with a detailed description of the case study and an empirical
nalysis of the datasets. In Section 3, we explore plausible producer behavior by developing a catchment area game and apply it to
he analysis of two London airports. We analyze the game both analytically and numerically. In Section 4, we conclude and discuss
ossible policy responses and further directions.

. Empirical analysis and consumer behavior

In this section, we present the algorithms developed for extracting and analyzing the ICT data. In Section 2.2, we showcase a
ase study of the Greater London area, including summary statistics, data validation and then visualize the catchment areas for the
ix London airports. Subsequently, we present two demand analyses in order to explore the variables affecting consumer behavior,
ir travel demand and airport choice.

.1. Algorithms to extract data

To characterize mobility from and to the airports, we aggregate a large dataset of anonymized GPS records in the UK generated
y opted-in users of mobile applications in order to estimate distance and ground access times to/from airport facilities. The data
as provided by Cuebiq Inc. The minimal spatial units considered in the study are middle layer super output areas (MSOAs), which

epresent geographical divisions employed in the UK census and surveys for statistical purposes. Within this database, we analyze
ix months of mobility data in the UK, covering the period February to July 2017. The information used for this study includes the
TC timestamp, anonymized user ID, and latitude and longitude coordinates. First, we isolate all the trajectories of the anonymized
sers for which at least a single GPS data-point falls within the geographical boundaries of the six airports in the Great London
rea, as shown in Fig. 1(a) (IATA codes: LHR, LTN, STN, LGW, LCY, SEN). For this purpose, the airport areas are approximated by
polygon manually constructed over satellite maps. We further require at least 12 data points to fall within the polygon in order

o ensure the anonymized user was not simply traveling near the airport area. This implicitly imposes a minimal duration of the
rder of one hour. This minimal duration may vary depending on the mobile phone operating system, but under ideal conditions,
e have a data point approximately every 5 min for Android phone users.

Subsequently, we aggregate the behavior of the anonymized users at the census level. We associate each observed trip to the
irport undertaken by an anonymized user with a regularly visited location (home or workplace) based on the MSOA, covering
he whole of England and Wales. These MSOAs have a population of about 7200, on average, as can be seen in Fig. 1(b), ensuring
urther anonymization of the aggregated data. The MSOA associated to ‘home’ represents the largest number of data points recorded
t nighttime (after 6 pm and before 8 am), whilst ‘work’ draws from the largest number of points recorded during working hours,
etween 9 am and 5 pm. Distances from the airports are then measured as the minimum distance in a local projection (British
ational Grid) between the MSOA polygons and a point within the airport polygon.

In order to correctly frame the passenger analysis using the London airports alone, we isolate and exclude the trajectory
roduced by the workers at the airport and aviation companies. Consequently, we introduce two different filtering conditions:
I) An anonymous user is considered a worker if he/she is seen at the airport at least once on each of three consecutive days; (II)
446
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Fig. 1. The case study of the six London airports and England and Wales MSOAs.

Fig. 2. Distribution of the individual dwell times.

of appearing on at least three different days). The rationale behind condition I is that it is unlikely that an air passenger flies three
days in a row from/to the same airport. As for condition II, as the distribution of the individual dwell times is similar across the
six airports, we evaluate the value of the threshold for condition II as the point where a visible change is observed in the statistical
behavior across the distribution of the average dwell times for the whole user-base, as shown in Fig. 2. This selection identifies a
fraction of about 5% of travelers as workers at the different airports (with the exception of LCY, where they are 11%). The workers
represent 30%–50% of the total number of daily trajectories over the six months analyzed. As the workers stay in the airport for
longer times, they ultimately produce the majority of data-points recorded in the MSOA. We also exclude from our analysis trips
to airports that lie in the same MSOA associated with the user’s home or workplace because it falls below the resolution we set to
ensure full anonymization of our results.

Once workers are identified and excluded from our analysis, we define two categories of users. The first category is local residents,
who are observed across the United Kingdom for at least 40 days in the 6 months of our analysis and are observed inside the MSOA
associated to home and workplace for at least 10 days. The second category is potential tourists, who are observed for less than 15
days. The identification of an anonymized user as a local UK resident appears to be reliable due to the abundance of data. Conversely,
those labeled potential tourists are most likely a mix of tourists and local users who turn on their mobile applications sparsely. For
this reason, to classify a user as a tourist in the London area, we further require the anonymized users to be observed in the data
for at least 3 days and for at least 75% of the range of days between the first and last observation. Moreover, these users should be
447
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Table 1
Descriptive statistics of airports in case study.

Airport Distance to London
city center
(kilometers)

Trip time by car
(minutes)

Trip time by fastest
public transport
mode (minutes)

Passengersa

(millions)
Air transport
movementsa

(thousands)

LCY 16 40 45 4.53 76.5
LGW 70 80 33 45.55 283.4
LHR 27 40 40 77.99 476.2
LTN 56 64 70 15.99 106.1
SEN 69 82 120 1.09 11.3
STN 66 72 100 25.90 172.6

aSource: CAA (2017).

Table 2
Descriptive statistics of the MSOAs.

Statistic Mean St. Dev. Min Max

Population 7787.2 1599.6 2203 16,342
Cars per capita 0.5 0.1 0.1 0.8
Bus stops count 36.3 25.6 0 252
With coach station 17%
With metro station 6%
With rail station 27%
Net weekly income (£) 602.5 137.4 280 1400
Area (km2) 21.0 53.1 0.3 1117.2
Population density (per km2) 3218.0 3431.3 5.7 24,720.9

observed in proximity to at least two of the four most visited touristic locations in London (Tower of London, Buckingham Palace,
Madame Tussauds, and the London Eye). Foreign travelers who do not meet the potential tourists’ criteria are excluded from the
data. Those could include, for example, business travelers. Finally, for every day in which an anonymized user was viewed at an
airport, we estimate the time interval between the last point within the home and workplace MSOA (if recorded) and the arrival at
the airport, or vice versa in the case of observed trips from the airport. We then associate the trip with the MSOA (home or work)
that was temporally closer to the airport. For each MSOA, we record the number of trips and the distribution of the recorded travel
times. Since there is no guarantee that the time between the last observation around the home (or work) and the observation at
the airport perfectly correspond to the traveler’s journey from/to the airport, we do not use the average travel times but rather
the shape of the distribution recorded in the form of quartiles. These flows and travel times are subsequently connected to a set of
socio-economic data extracted from the British Census at the MSOA level, in addition to statistics on the local accessibility of the UK
public transportation network collected from openly available data (Gallotti and Barthelemy, 2015), in order to feed the regression
analysis.

After creating the dataset, we perform data validation by comparing the processed information to the demand data published
y the Civil Aviation Authority (CAA) and to the travel times recorded in the Google Maps API tool, as described in Section 2.3.

.2. Case study of Greater London

The case study consists of six airports in the Greater London area: Heathrow (LHR), Gatwick (LGW), London City (LCY), Luton
LTN), Stansted (STN), and Southend (SEN), all of which currently serve scheduled airline services. Table 1 presents distance and
rip times to central London, as well as the demand served in 2017. We make use of the geographical split of England and Wales
nto 7201 MSOAs; relevant socio-economic summary data are described in Table 2 and their correlations are presented in Table 3.
rom the raw data, it is clear that there is substantial variation in the dataset, with population sizes ranging from 2200 up to 16,300
nhabitants, and from MSOAs of one-third of a square km in London up to 1120 km in rural areas. Net weekly incomes also vary
onsiderably, with average incomes in some MSOAs equal to half the mean weekly salary (£600), compared to more than double
he average salary in wealthier areas. To explore the effects on ground accessibility, we also focus on vehicle ownership and its
orrelation with other characteristics. As expected, the regions with an underground or metro service tend to have lower levels of
ehicle ownership. Higher population densities are also highly negatively correlated with ownership levels. Furthermore, bus stops
re located more frequently in zones without a metro service, which could explain the positive correlation with car ownership. For
his reason, we regress demand with respect to public transportation options and the lack thereof in order to explore the sensitivity
f the other variables.

We analyze the demand of both locals and tourists for each of the six airports drawing from all MSOAs in England and Wales. In
otal, the dataset includes 104,158 trips by locals and 4580 trips by tourists in the six month period from January to July 2017. The
ggregated data is presented in Table 4. We note that although the dataset represents less than 0.1% of the total trips, the sample is
till substantially larger in comparison to any classical survey undertaken for such purposes. London Heathrow attracts the largest
arket share and serves more intercontinental routes than the other airports, which are more likely to serve domestic and European

outes. As can be seen in Table 4, tourists are split between the more business-oriented, who opt for London Heathrow, and the
448



Transportation Research Part B 166 (2022) 444–467N. Adler et al.

t
o

Table 3
Correlations between MSOA variables.

Population Cars
per capita

Bus stops
count

Coach
station

Metro
station

Rail
station

Income Density

Population 1
Cars per capita −0.21 1
Bus stops count 0.12 0.42 1
Coach station 0.09 0.02 0.20 1
Metro station 0.08 −0.24 −0.14 0.03 1
Rail station 0.09 0.04 0.02 0.17 0.04 1
Income 0.01 0.35 −0.12 −0.08 0.10 0.07 1
Density 0.18 −0.73 −0.50 −0.11 0.23 −0.09 0.03 1

Table 4
Demand distribution and market share per airport according to analysis.

Airport Locals trip demand Locals market share Tourists trip demand Tourists market share Total demand Total market share

LCY 9 203 0.09 91 0.02 9 294 0.09
LGW 27,379 0.26 1143 0.25 28,522 0.26
LHR 39,155 0.38 2143 0.47 41,298 0.38
LTN 10,899 0.10 175 0.04 11,074 0.10
SEN 793 0.01 10 0.00 803 0.01
STN 16,729 0.16 1020 0.22 17,749 0.16

Total 104,158 1.00 4582 1.00 108,740 1.00

leisure travelers, who are more likely to use Stansted compared to the locals. Both groups are equally likely to use Gatwick, but the
remaining airports, namely, London City, Luton and Southend, tend to serve the local population.

2.3. Data validation

Validating the accuracy of the dataset is an important element of the analysis (Khan et al., 2014). In Fig. 3, we compare the dataset
o the UK Civil Aviation Authorities (CAA) dataset from 2017 (CAA, 2017), after removing connecting passengers. The percentage
f connecting passengers per airport is reported in the CAA Passenger Survey Report for 2016 (CAA, 2016).2 Fig. 3 clearly shows

that the annual market share across airports is very similar to that estimated based on the ICT data. However, there is a slight bias
towards coverage of the more European business-oriented passengers than the general public on average. Consequently, Gatwick is
slightly under-represented whilst LCY is over represented in the ICT dataset. In addition, we compare the median measured access
times from each MSOA in the data analyzed to that of the Google Maps API data. In Fig. 4(a), we present the Google Maps estimation
of travel time for the rush-hour compared to the estimated travel times for the 15,981 MSOA-airport pairs that were collected. It
can be seen that for well covered MSOA-airport pairs, namely, those with at least 20 observations, the median measured times and
Google times lie approximately on the 45◦ line. In Fig. 4(b), we compare the two datasets at an off-peak time (4 am) using the 25th
percentile estimated access time, which seems reasonably well-matched. Finally, in Fig. 4(c), we compare the 75th percentile from
the dataset to that of Google under the assumption that this represents public transport trips. Fig. 4(c) shows greater variability
compared to Figs. 4(a) and 4(b), but still with significant estimators.

2.4. Consumer behavior analysis

In order to explore the characteristics that affect air travel demand, we first apply an ordinary least squares (OLS) regression. We
aggregate demand according to origin–airport pairs, summed over both directions. Almost two thirds of origin–airport demand data
pairs contain zero demand. In order to handle a large proportion of zero demand, we perform two regression analyses, similar to that
of Fletcher et al. (2005). We first perform a binary logit regression for the complete dataset that measures the drivers effect on the
existence of demand. These drivers include socio-economic characteristic of the MSOA (e.g., population size, average income level)
and airport market power over the MSOA (e.g., its size, represented by the number of annual air traffic movements). To capture the
role of the catchment area and potential overlapping areas, we include the travel time to the nearest alternative airport (which is the
second closest for the MSOA-airport observation covering the closest airport). We also include a dummy which indicates whether
the MSOA is served by additional airports within a 60 min radius. The last group of drivers are the travel options such as travel
time to the airport, car ownership levels and public transport options. The logit regression equation is shown in Eq. (1).

P(flying)𝑖,𝑗 =
1

1 + exp
(

𝛾0 +
∑𝐾

𝑘=1 𝛾𝑘𝑋𝑘,𝑖,𝑗

) , (1)

2 As this report does not include Southend airport (SEN), we assume that no connecting passengers were served.
449
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Fig. 3. Annual passengers and market share for 2017 compared to case study analysis.

Fig. 4. Validation of the observed access times.

where P(flying)𝑖,𝑗 is the probability of demand for airport 𝑗 from MSOA 𝑖, 𝑋𝑘,𝑖,𝑗 is the 𝑘th characteristic out of 𝐾 of MSOA 𝑖 with
respect to airport 𝑗 (e.g., distance), 𝛾𝑘 is the coefficient of characteristic 𝑘, and 𝛾0 is the intercept. In a second regression, we analyze
only those origin–airport pairs with positive demand, as shown in Eq. (2).

ln (demand)𝑖,𝑗 = 𝜂0 +
𝐾
∑

𝑘=1
𝜂𝑘 ln𝑋𝑘,𝑖,𝑗 , (2)

such that the 𝜂 coefficients represent the elasticity of demand with respect to the relevant characteristic. Both regressions were
performed twice, with and without public transportation capacities, for the purpose of sensitivity analysis.

We analyze the origin–airport characteristics that affect travel demand in general. The aggregated data cover 43,206 origin–
airport demand pairs, of which around 65% contain zero demand. The binary logit regression presented in Eq. (1) for the entire
dataset measures the variables’ impact on the existence of demand. In addition, we perform an OLS regression of pairs with non-zero
demand, presented in Eq. (2), that analyzes the characteristics affecting the magnitude of demand. The results of the two regressions
are presented graphically in Fig. 5 and numerically in Table C.10 in Appendix C. We note that in both regressions, the non-binary
independent variables are log transformed multiples of 10; therefore, in the logit regression (denoted models (a1) and (a2)), we
estimate the change in the log odds of demand per 10 percent change in the continuous independent variables or binary variable.
In the OLS regressions (denoted models (b1) and (b2)), we obtain the percentage change in demand for a 10 percent change in the
continuous independent or binary variables. The results of models (a1) and (a2) (blue and red columns in Fig. 5(a), respectively)
suggest that a 10% population growth in a MSOA (e.g., due to an increase in density) increases the demand odds by 𝑒0.134−1 ≈ 14%.
The travel time to the nearest airport is, as expected, positively associated with the probability of flying from a particular airport
from a specific MSOA. Increasing the relative travel time between an MSOA and an airport by 10%, decreases the demand odds
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Fig. 5. Regression results with models (a1) and (b1) in blue and models (a2) and (b2) in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

by 1 − 𝑒−0.297 ≈ 31% percent. This highlights the importance of access times. Furthermore, in terms of access modes, rail, metro
and intercity coach services increase the probability of positive demand between 10 and 40%. However, bus services are negatively
associated with the probability of demand. We assume that areas located within Greater London are better characterized by rail
and metro than the rest of England. For the residents in a MSOA served by multiple airports, the overlapping catchment area has a
negative impact on demand for each of the respective airports because residents enjoy more options, indicating some competition
between the airports, at least at the service level, for example by offering similar destinations.

We estimate the drivers of demand from MSOA to airports for which demand is positive and the results of models (b1) and (b2)
are presented in Fig. 5(b) (blue and red columns, respectively). As expected, because aviation is considered a discretionary-derived
demand, the higher the average MSOA income, the higher the expected trip demand levels. With respect to the catchment areas,
the coefficient of the ‘overlapping’ variable, which equals one if more than one airport is deemed to be within the catchment area
of a MSOA, is negative suggesting competition reduces demand. The greater the distance to the next nearest alternative facility,
the higher the demand for the specific airport, as demonstrated by the ‘time to 2nd airport’ variable. Again, access time plays an
essential role in determining the demand. With respect to car ownership, the regression results suggest that 10% higher ownership
leads to 7 to 9% lower demand. This may be due to (i) car owners choosing to drive for short-distance trips instead of taking a
flight, or alternatively, (ii) due to MSOAs with higher population densities leading to lower car ownership shares, particularly in
London. In contrast, improved access to rail and intercity bus (coach) services increases demand for trips by 8 to 10% and the
underground/metro stations show the strongest effect, with an approximately 22% increase in demand. Moreover, the inclusion
of public transportation alternatives in the regression did not change the results, confirming their robustness with respect to their
effect on aviation demand.

2.5. Competition across catchment areas

Assuming that the ICT dataset is sufficiently representative, we create catchment area maps from the GPS data compiled for the
local inhabitants only. Figs. 6(b) through 6(g) present the catchment areas for each of the six airports included in the case study.
The visualization of the catchment areas around the airports clearly shows substantial differences, which are partly due to the
dissimilar services offered in terms of final destinations, information that is missing from the current ICT dataset. For example, LHR
and to a lesser extent LGW act as intercontinental gateways for the British Airways network, a member of the One World alliance.
Consequently, the catchment area of LHR covers many of the MSOAs across England and Wales, whereas STN and LTN serve mostly
low-cost carriers, namely Ryanair and Easyjet, thus offering services of a dissimilar type to that of LHR. Luton’s catchment area is
mostly to the north of the airport location, whereas Stansted serves a narrow, long corridor to the north and east. However, there
is an overlapping area to the east of Luton and west of Stansted from which local residents are served by both airports. Gatwick
airport serves mostly the south of England, whereas Southend and London City airports serve the immediate area around their
respective locations. It has been argued in the literature that airports in multi-airport regions tend to differentiate themselves in an
attempt to avoid head-on competition (Fröhlich and Niemeier, 2011). Based on the catchment area maps of Fig. 7 which highlights
the level of market dominance of an airport over a zone it seems that airports tend to be monopolistic markets, except for Luton
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Fig. 6. Airport catchment areas for local inhabitants.

and Stansted that have a relatively small overlapping catchment area for local residents. It is further emphasizing the importance
of ground transport access on airport competition.

In Fig. 8, we show the difference in the ground access travel time between each pair of the six airports analyzed (e.g., LHR-LCY
in the top left panel). The time difference measures the gap in trip time to each airport for inhabitants residing in one MSOA such
that positive values represent a shorter distance to the second airport. A cloud of points represents a single MSOA area, and each
solid line a running average (red for the first airport, blue for the second airport). The Southend (SEN) airport was excluded from
this plot due to the limited amount of data gathered. A comparison of all the curves highlights that many couples display almost
symmetrical running averages, indicating a substantial overlap in the potential markets. This is particularly true for the cases of the
LHR-LGW and LTN-STN pairs.

In summation, the theoretical assumption that a catchment area around an airport is a circle of approximately 100–150 km would
appear to be an inaccurate depiction of reality (Adler and Liebert, 2014; Sun et al., 2021), at least in the case of the London region.
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Fig. 7. Intensity map.

Fig. 8. Empirical market ground access trip times between every airport pair. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
453



Transportation Research Part B 166 (2022) 444–467N. Adler et al.

t
g
S

3

m
t
F
t
t
p

w

w

a

Table 5
% of overlapping destinations between airports.

Airport Number of destinations LHR LGW STN LTN LCY SEN

LHR 495 1.00
LGW 248 0.77 1.00
STN 165 0.56 0.56 1.00
LTN 91 0.65 0.69 0.68 1.00
LCY 45 0.73 0.67 0.58 0.42 1.00
SEN 20 0.65 0.80 0.75 0.65 0.45 1.00

The distinct catchment areas may suggest that airport-airline pairs compete by offering common destinations. Some confirmation
comes from the data about shared final destinations between each pair of airports as depicted in Table 5. However, it does not
provide an understanding of other potential collusive issues, such as price coordination. For that, we present in the following section
a theoretical analysis that explains levels of competition. We focus our case study on the LTN-STN pair due to the 68% overlap in
final destinations, as shown in Table 5), and the similar airline business models, which would suggest the potential for gains from
collusion.

3. Analytical model and producer behavior

In this section, we develop a catchment area game drawing insight from Section 2. In Section 3.1, we describe the behavior of
he producers serving the market and discuss the potential impact of vertical and horizontal collusion. In Section 3.2 we solve the
ame analytically for a simple symmetric game, which we solve and extend to a numerical, non-symmetric sensitivity analysis in
ection 3.3. Finally, we analyze the Stansted–Luton case in Section 3.4.

.1. Catchment area game

We develop a catchment area game featuring two airports and two airport–airline pairs. We extend and adapt the Barbot (2009)
odel of vertical collusion between airport–airline pairs in order to explore horizontal collusion between airports, as depicted in

he top graph of Fig. 9. The bottom graph part is an enlarged version of the empirical ground access analysis of LTN-STN shown in
ig. 8. The fraction of the total population traveling from/to one of the two airports is a function of the difference in time required
o reach the airport from the origin MSOA to Luton (LTN) and Stansted (STN). Points represent single MSOAs. The dashed line is
he running average, and the colored margins are the standard error of the mean. The crossover point represents the indifference
oint 𝐼 , defined in the top graph.

To construct the catchment area game, first consider the top graph of Fig. 9, where airports 𝐿 and 𝑆 are located within 𝑑
minutes drive from one another. Airline 𝐸 operates at airport 𝐿 and airline 𝑅 operates at airport 𝑆. Each airport–airline pair has
a monopolistic catchment area, hence the superscript 𝑚. For the pair (𝐿,𝐸), this area is located to the west of the airport, and for
the pair (𝑆,𝑅), to the east. A passenger located within 𝑥𝑚𝐿 minutes from airport 𝐿 will choose to fly from this airport if the overall
cost of service, i.e., the sum of the access costs and airfare, is lower than 𝑉𝐸 , which represents the passenger’s willingness to pay for
the service. The potential demand for the (𝐿,𝐸) service in their monopoly region is a function of the number of individuals living
within 𝑥𝑚𝐿 minutes from airport 𝐿. The area between the two airports is the ‘‘competitive’’ area, hence the superscript 𝑐. We assume
that distances 𝑥𝑐𝐿 and 𝑥𝑐𝑆 minutes from the airports are the same distance from the airport as 𝑥𝑚𝐿 and 𝑥𝑚𝑆 , respectively. However, 𝑥𝑐𝐿
and 𝑥𝑐𝑆 may overlap, creating an overlapping catchment area between the airports. Denoting 0 ≤ 𝜒 ≤ 1, a passenger located at point
𝐼 within the overlapping catchment area is 𝑑𝜒 minutes from airport 𝐿 and 𝑑(1−𝜒) minutes from airport 𝑆 and is indifferent (hence
the 𝐼) between the two airports. Based on this simplification, the deterministic choice model assumes that a passenger located to
the west of 𝐼 chooses airport 𝐿 and a passenger located to the east of 𝐼 chooses airport 𝑆. The access time 𝑥𝑚𝐿 is estimated according
to Eq. (3).

𝑉𝐸 = 𝑡𝑥𝑚𝐿 + 𝑝𝐸 , which yields: 𝑥𝑚𝐿 =
𝑉𝐸 − 𝑝𝐸

𝑡

and for 𝑆: 𝑥𝑚𝑆 =
𝑉𝑅 − 𝑝𝑅

𝑡
, (3)

here 𝑡 is the access cost per minute, 𝑝𝐸 and 𝑝𝑅 are the airfares of airlines 𝐸 and 𝑅, respectively. A summary of the parameters
and decision variables is presented in Table 6.

For the competitive catchment area, the equilibrium ratio is defined as in Eq. (4).

𝑉𝐸 − (𝑑𝜒𝑡 + 𝑝𝐸 ) = 𝑉𝑅−(𝑑(1 − 𝜒)𝑡 + 𝑝𝑅) which yields:

𝑑𝜒 =
𝑉𝐸 − 𝑉𝑅 + 𝑡𝑑 + 𝑝𝑅 − 𝑝𝐸

2𝑡
, (4)

here 𝜒 is the fraction of 𝑑 that is captured by airport 𝐿 ((1 − 𝜒) is captured by airport 𝑆).
Assuming that the potential passengers are spread evenly across the catchment area, then airport 𝐿’s demand to the west of the

irport, 𝑦𝑚𝐿, is defined as in Eq. (5).

𝑦𝑚 = 𝑟𝑚𝑥𝑚 and similarly 𝑦𝑚 = 𝑟𝑚𝑥𝑚, (5)
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Fig. 9. The catchment area game of the empirical estimation of the market competition between Luton and Stansted, produced by the average ground access
trip times. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Notation.

Type Symbol Meaning

Decision variables
𝑝𝑖 Airfare of airline 𝑖 = 𝐸,𝑅
𝑝𝑗 Airport charge at 𝑗 = 𝐿,𝑆
𝑘𝑗 Commercial prices at airport 𝑗

Parameters

𝑟𝑐 Potential passengers per minute drive from each MSOA in the competitive area
𝑟𝑚𝑗 Potential passengers per minute drive from each MSOA in 𝑗’s monopoly area
𝑑 Travel distance (in minutes) between airports
𝑡 Ground access cost
𝑉𝑖 Willingness to pay to travel with airline 𝑖
𝛽𝑗 Price sensitivity of airport amenities 𝑗
𝛼𝑗 , 𝛿𝑗 Parameters of airport 𝑗’s cost function
𝑐𝑖 Airline 𝑖’s cost per passenger

Outcomes

𝐼 Indifference point between airports
𝜒 Share of passengers choosing one airport over the other
𝑥𝑚𝑗 Airport 𝑗 catchment area size in the monopoly area
𝑥𝑐𝑗 Airport 𝑗 catchment area size in the competitive area
𝑦𝑚𝑗 Airport 𝑗 demand in the monopoly area
𝑦𝑐𝑗 Airport 𝑗 demand in the competitive area
𝑦𝑘𝑗 Airport 𝑗 demand for commercial amenities
𝑡𝑐𝑗 Airport 𝑗 total cost
𝜋𝑖 Airline 𝑖 profit
𝜋𝑗 Airport 𝑗 profit
𝜋𝑖+𝑗 Airline 𝑖 and airport 𝑗 aggregate profit

where 𝑟𝑚𝐿 and 𝑟𝑚𝑆 are the demand per time unit distance west of airport 𝐿 and east of airport 𝑆, respectively. Consequently, the
demand for airports 𝐿 and 𝑆 from the competitive area are defined as:

𝑦𝑐𝐿 = min
(

𝑟𝑐𝑑𝜒, 𝑟𝑐𝑥𝑐𝐿
)

and 𝑦𝑐𝑆 = min
(

𝑟𝑐𝑑(1 − 𝜒), 𝑟𝑐𝑥𝑐𝑆
)

, (6)

where 𝑟𝑐 is the demand per unit distance in the competitive area. Based on the ICT data presented in Section 2, we know that the
overlapping area exists, hence in the analysis we explicitly assume market covering for the competitive area, i.e., Eq. (6) can be
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rewritten as 𝑦𝑐𝐿 = 𝑟𝑐𝑑𝜒 and 𝑦𝑐𝑆 = 𝑟𝑐𝑑(1 − 𝜒) and that there is a non-negative demand for both airports in their monopoly area and
n the competitive area.

The passengers also consume amenities at the airport. The demand for amenities is a function of the number of passengers, the
rices and price sensitivity, as shown in Eq. (7).

𝑦𝑘𝐿 = (𝑦𝑚𝐿 + 𝑦𝑐𝐿) − (𝛽𝐿𝑘𝐿) and 𝑦𝑘𝑆 = (𝑦𝑚𝑆 + 𝑦𝑐𝑆 ) − (𝛽𝑆𝑘𝑆 ), (7)

where 𝑘𝐿 and 𝑘𝑆 are the average prices for amenities in airports 𝐿 and 𝑆, respectively, and 𝛽𝐿 and 𝛽𝑆 represent the price sensitivity.
ote that according to Eq. (7), the result is that the optimal average price for an amenity is such that half the passengers will purchase
product or service at the airport.3

For the cost structure at the airport, we assume a linear cost function. Hence, we formulate the total cost at the airport as follows:

𝑡𝑐𝐿 = 𝛼𝐿(𝑦𝑚𝐿 + 𝑦𝑐𝐿) + 𝛿𝐿 and 𝑡𝑐𝑆 = 𝛼𝑆 (𝑦𝑚𝑆 + 𝑦𝑐𝑆 ) + 𝛿𝑆 , (8)

here 𝛼 and 𝛿 are parameters of the cost function. The airport profit is given by:

𝜋𝐿 = 𝑝𝐿(𝑦𝑚𝐿 + 𝑦𝑐𝐿) + 𝑘𝐿𝑦
𝑘
𝐿 − 𝑡𝑐𝐿 and 𝜋𝑆 = 𝑝𝑆 (𝑦𝑚𝑆 + 𝑦𝑐𝑆 ) + 𝑘𝑆𝑦

𝑘
𝑆 − 𝑡𝑐𝑆 , (9)

where 𝑝𝐿 and 𝑝𝑆 are prices per passenger that the airports charge the airlines. The airline profit function is given by:

𝜋𝐸 = (𝑝𝐸 − 𝑐𝐸 − 𝑝𝐿)(𝑦𝑚𝐿 + 𝑦𝑐𝐿) and 𝜋𝑅 = (𝑝𝑅 − 𝑐𝑅 − 𝑝𝑆 )(𝑦𝑚𝑆 + 𝑦𝑐𝑆 ), (10)

here 𝑐𝐸 and 𝑐𝑅 are each airline’s operating cost per passenger.
Consequently, we define a two-stage, oligopolistic market where in the first stage, two airports simultaneously set charges to be

aid by airlines. In the second stage, the airlines simultaneously set their airfares whilst accounting for the airport charges from
he first stage and the cost of travel to the airport as a function of the furthest passenger’s location within the catchment area. In
ddition, the airports set commercial prices to be paid by passengers in the second stage. This is a complete, imperfect information
ame, as presented in Fig. 10, where, given the mobility and economic data collected, we estimate the payoffs for eight market
cenarios: (i) full competition, (ii+iii) single airport–airline vertical collusion, (iv) both airport–airline pairs vertically collude, and
v–viii) airport-airport horizontal collusion combined with scenarios (i) to (iv).

We solve the game using analytical and numerical solution methods. When using analytics, in order to maintain tractability, we
olve the game for the scenarios in which both airport–airline pairs vertically collude or not (i.e., scenarios (i), (iv), (v), and (viii)).
e assume symmetry, i.e., that the airports and airlines are of the same size and cost structure. In the numerical analysis, we solve
symmetric case study for all scenarios and then compare the results to the real-world, asymmetric case of two London airports
ith clearly identifiable overlapping catchment areas according to the results of the analysis described in Section 2.1. Specifically,
e analyze Luton (𝐿) and Stansted (𝑆), which function as hubs for Eastjet (𝐸) and Ryanair (𝑅), respectively. The market specific

characteristics are that Stansted is the larger of the two, and Ryanair’s cost structure is lower than that of Easyjet. In the collusive
scenarios, profits depend on the airport’s bargaining power versus that of the hubbing airline. We solve the joint profit functions
and split any additional gain or loss evenly between the airport and the airline, according to the Nash bargaining solution (Nash,
1950). We estimate the additional profit or loss in comparison to scenario (i), the purely competitive case, for scenarios (ii)–(iv),
and in comparison to scenario (v), the horizontal collusion case, for scenarios (vi)–(viii).

3.2. Competition or collusion between producers

We solve scenarios (i), (iv), (v), and (viii) analytically under the assumption that the airports and airlines are of the same size
and cost structure (see Fig. 10 and Appendix A). We also assume that the parameters and decision variables are non-negative. In
other words, there are no subsidies and parameter values must be such that no airline or airport is so uncompetitive that it is driven
out of business. Due to symmetry, we refer to airline 𝑖 and airport 𝑗. We first present the analysis from the producers’ perspectives
and then the consumers (see Appendix B for proofs).

Solving for airfares across the four scenarios, leads to the following ranking4:

𝑝(𝑖𝑣)𝑖 ≤ 𝑝(𝑣𝑖𝑖𝑖)𝑖 ≤ 𝑝(𝑖)𝑖 ≤ 𝑝(𝑣)𝑖 , 𝑖 ∈ 𝐸,𝑅. (11)

This interesting result suggests that the purely competitive solution outcome does not lead to the lowest airfares as may be expected.
Rather, airport–airline vertical collusion lowers airfares beyond the competitive outcome (scenario (i)). This phenomenon might be in
part due to the elimination of the issue of double marginalization (Gaudet and Long, 1996). An alternative explanation relates to the
behavior of airport management who lower airport charges in the expectation that airlines reduce airfares which in turn attracts more
passengers. Any deviation by an airline that increases airfare will result in lower demand and increased airport charges. On the other
hand, as expected, airport-airport horizontal collusion leads to higher airfares. Perhaps surprisingly, the case of complete collusion
(scenario viii) also leads to lower airfares compared to the purely competitive market (scenario i). In other words, the downward

3 The profit from the terminal side is 𝜋𝑘 = ((𝑦𝑚 + 𝑦𝑐 ) − 𝛽𝑘) 𝑘. The optimal price leads to demand 𝑘∗ = (𝑦𝑚 + 𝑦𝑐 )∕2𝛽. 𝑦𝑘∗ = (𝑦𝑚 + 𝑦𝑐 )∕2.
4 For proof see Appendix B.2.
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Fig. 10. The two-stage game.

pressure on airfares from vertical collusion outweighs the negative impact of horizontal collusion, leading to lower airfares when
all parties collude, as compared to the competitive outcome. This outcome might be explained by the monopoly power an airport
enjoys over a restricted geographical area, hence, the contribution of horizontal collusion is rather limited compared to that of
vertical collusion. Another potential explanation might be the characteristics of the model in which we assume that a single airline
serves each airport. The level of demand is in reverse order to the airfare ranking shown in Eq. (11). Therefore, the least favorable
outcome from the customers’ perspective is horizontal collusion without vertical collusion (scenario v), which leads to the highest
airfares amongst the scenarios analyzed. Full collusion is the second favorable outcome for consumers after vertical collusion.

From the profit perspective, we show that horizontal collusion increases the profits of the airports at the expense of the airlines,
as compared to pure competition (for proof see Appendix B.1): 𝜋(𝑣)

𝑗 ≥ 𝜋(𝑖)
𝑗 and 𝜋(𝑣)

𝑖 ≤ 𝜋(𝑖)
𝑖 . We note that in addition, aggregate profits

under vertical collusion (scenario (iv)) are higher than those of the competitive market (scenario (i)): 𝜋(𝑖𝑣)
𝑖+𝑗 ≥ 𝜋(𝑖)

𝑖 + 𝜋(𝑖)
𝑗 , for a higher

access cost threshold as shown in Proposition 3. Finally, comparing scenarios (iv) and (viii) shows that the aggregate profits for
the vertically colluding airline 𝑖 and airport 𝑗 under complete collusion (𝜋(𝑣𝑖𝑖𝑖)

𝑖+𝑗 ) are higher as compared to purely vertical collusion
(𝜋(𝑖𝑣)

𝑖+𝑗 ), hence scenario (viii) is the Nash equilibria outcome: 𝜋(𝑣𝑖𝑖𝑖)
𝑖+𝑗 ≥ 𝜋(𝑖𝑣)

𝑖+𝑗 .

3.3. Numerical analysis of the catchment area game

The numerical analysis of all the scenarios represents the case of Luton-Easyjet (𝐿,𝐸) and Stansted–Ryanair (𝑆,𝑅). The parameters
collected for the numerical analysis are presented in Table 7. Before turning to the case study, we run the numerical analysis for a
symmetric catchment area game and assume that the airports and airlines have the same size and cost structure. For this purpose,
we compute the average values of the parameters presented in Table 7. The symmetric catchment area game results appear in
Table 8(a) where in each cell, the four numbers represent the profits of airports on the top row and those of airlines on the bottom
row. The left column is for the (𝐿,𝐸) pair and the right one for the (𝑆,𝑅) pair. Each airport decides whether to compete with its
counterpart (represented by the four cells of scenarios (i)–(iv) in the top left corner) or to collude (represented by the four cells
of scenarios (v)–(viii) in the bottom right corner). Each hub airport–airline pair decides whether to vertically collude (scenarios
(ii)–(iv) and (vi)–(viii)) or not (scenarios (i) and (v)).

The analysis reveals that complete collusion (scenario (viii)) is the equilibrium outcome, involving both horizontal and vertical
collusion, as shown analytically in Section 3.2. To explore the robustness of that result, we introduce asymmetry between the players
with respect to the cost function of the airline and the potential market size. We find that for this case, if one of the airlines has at
least 17% higher costs per passenger than the other airline, it is sufficient for the equilibrium to shift from (viii) to (vi), suggesting
that the airport–airline pair that produces services at a lower cost might be reluctant to collude with the other pair. The same occurs
when one airport monopoly catchment area is 27% denser in population per minute drive. Different airport costs are also a factor,
however, because an airport cost structure includes a high share of fixed costs, the difference in variable costs would need to be three
times higher in order to shift the equilibrium. From the broader perspective, this quantitative assessment suggests that regulators
ought to carefully assess horizontal collusion between airports. In contrast, vertical collusion between airports and airlines might
not need to be discouraged because it is also favorable for customers. On the other hand, we also note that vertical collusion could
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Table 7
Parameters applied to the numerical case.

Symbol Measure units Meaning Value References

𝑟𝑚𝐿, 𝑟𝑚𝑆 , 𝑟𝑐 people Potential passengers per minute drive
from each MSOA

120,000, 240,000, 80,000 Dataset

𝑑 minutes Distance in minutes drive between
airports

60 Google maps

𝑡 £ Cost per minute drive 0.45 AAA
𝑉𝐸 , 𝑉𝑅 £ Willingness-to-pay for trip 92, 72 Merkert and Beck (2017)
𝛽𝐿, 𝛽𝑆 Commercial price sensitivity 0.30, 0.60 (×106) Del Chiappa et al. (2016) and

Andreyeva et al. (2010)
𝛼, 𝛿 Parameters of the airport cost

function
Luton: 4, 70 × 106

Stansted: 2, 160 × 106
Bottasso and Conti (2012)
Financial reportsa

𝑐𝐸 , 𝑐𝑅 £ Airline average cost per passenger 52, 29 Financial reportsb

aLuton: https://www.london-luton.co.uk/CMSPages/GetFile.aspx?guid=62eca0aa-5002-47ac-a364-be135ded21a9 Stansted: https://www.magairports.com/media/
1416/annual-report-year-ended-31st-march-2017-mahl.pdf.
bEasyjet: http://corporate.easyjet.com/~/media/Files/E/Easyjet/pdf/investors/results-centre/2017/2017-annualreport-and-accounts-v1.pdf Ryanair: https:
//investor.ryanair.com/wp-content/uploads/2017/07/Ryanair-FY2017-Annual-Report.pdf.

Table 8
The numerical solutions. The left column in each cell represents the (𝐿,𝐸) pair, and the right column the (𝑆,𝑅) pair. The top row represents airport profits,
nd the bottom row airline profits (in millions of £)

(a) The numerical symmetric case

Airport S (with airline R)

Without horizontal
collusion

With horizontal
collusion

Without
vertical

collusion

With
vertical

collusion

Without
vertical

collusion

With
vertical

collusion

Airport L (and airline E)

Without
horizontal
collusion

Without
vertical

collusion

(i)
27 27
79 79

(ii)
−8 73
60 125

With
vertical

collusion

(iii)
73 −8
125 60

(iv)
38 38
90 90

With
horizontal
collusion

Without
vertical

collusion

(v)
29 29
64 64

(vi)
55 55
38 91

With
vertical

collusion

(vii)
55 55
91 38

(viii)
54 54
90 90

(b) Luton–Stansted case

Airport S (with airline R)

Without horizontal
collusion

With horizontal
collusion

Without
vertical

collusion

With
vertical

collusion

Without
vertical

collusion

With
vertical

collusion

Airport L (and airline E)

Without
horizontal
collusion

Without
vertical

collusion

(i)
15 11
49 97

(ii)
−2 74
40 160

With
vertical

collusion

(iii)
48 −7
83 87

(iv)
29 55
64 141

With
horizontal
collusion

Without
vertical

collusion

(v)
15 12
42 90

(vi)
55 52
26 130

With
vertical

collusion

(vii)
34 31
61 74

(viii)
50 47
77 125
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https://www.london-luton.co.uk/CMSPages/GetFile.aspx?guid=62eca0aa-5002-47ac-a364-be135ded21a9
https://www.magairports.com/media/1416/annual-report-year-ended-31st-march-2017-mahl.pdf
https://www.magairports.com/media/1416/annual-report-year-ended-31st-march-2017-mahl.pdf
http://corporate.easyjet.com/~/media/Files/E/Easyjet/pdf/investors/results-centre/2017/2017-annualreport-and-accounts-v1.pdf
https://investor.ryanair.com/wp-content/uploads/2017/07/Ryanair-FY2017-Annual-Report.pdf
https://investor.ryanair.com/wp-content/uploads/2017/07/Ryanair-FY2017-Annual-Report.pdf
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Fig. 11. Luton and Stansted catchment areas and overlapping region (blue zone). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

We further note that the assumption of full market coverage in the overlapping area always leads to an interior solution, i.e. both
airports serve strictly positive demand in the competitive catchment area. We also explored the option of a corner solution in which
one airport–airline pair solely concentrates on extracting profits from the monopoly area, thus avoiding head-on competition for
passengers. However, this consistently results in lower profits for the producers across all scenarios, suggesting that the internal
solution is the unique equilibrium outcome regardless of the full coverage assumption. Indeed, this finding is mirrored in the results
of the ICT data analysis which shows that the overlapping catchment area is fully covered and served by both airports (the blue
area in Fig. 11).

3.4. Results of the Luton-Stansted catchment area game

We now turn to assess pricing competition between two London airports serving very similar, primarily leisure markets. Given
the available road and public transport network services, Luton and Stansted have clearly defined separate catchment areas. Since
most transit corridors are directed towards London, access times from the MSOAs east of Stansted to Luton and west of Luton to
Stansted are long, despite the relative geographical proximity. The asymmetry between Luton-Easyjet and Stansted–Ryanair is both
in the per-passenger cost of each airline and in the potential market size, where both differences are well above the thresholds found
in Section 3.3. The data was collected from financial reports and shows that Ryanair cost per passenger are 60% that of Easyjet. By
comparing the fiscal year of 2020, which was subject to many lockdowns due to the Covid19 pandemic and saw the plummeting in
the numbers of passengers, to the year before, we see that Luton is characterized by smaller fixed costs with higher variable costs.5
The potential demand is presented in Fig. 11 and consists of zones located up to an hour drive from Luton (green), Stansted (red),
or both (blue); the darker the color of the zone, the greater the population size. The blue overlapping catchment area to the east of
Luton and to the west of Stansted consists of 111 zones and approximately 800,000 residents, of which 54% chose Luton and 46%
Stansted, according to the ICT data. The green region contains 246 MSOAs with a total of two million inhabitants, who require less
than one hour to travel to Luton and more than one hour to reach Stansted. Approximately 80% of the passengers residing in this
region chose to fly through Luton. In contrast, the red region consists of 479 MSOAs with around four million inhabitants, of which
85% of the passengers chose to fly from Stansted. Fig. 11 also confirms the assumption that the competitive area between the two
airports is fully covered by the two airports i.e., everyone travels from these MSOAs to one of the two airports.

5 From January to December 2020, around 5 million passengers went through Luton airport, and from April 2020 to March 2021, 3 million passengers went
through Stansted. Comparing the fiscal years 2020 and 2019 allowed us to estimate the variable and fixed costs for each airport as depicted in Table 7.
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Table 9
Real world data estimation compared to the catchment area game results.

Variable Units Real world estimation Scenario (i) Scenario (iv) Scenario (v) Scenario (viii)

LTN STN LTN STN LTN STN LTN STN LTN STN

Local passengers millions 10 16 4 8 9 17 4 8 7 16
Airport profit million £ 27 57 15 11 29 55 15 12 50 47
Airline profit million £ 53 162 49 97 63 141 42 90 77 125
Average airfare £ 62.9 45.5 84.5 62.3 66.5 44.5 85.6 62.9 71.9 47.4
Airport charge per passenger £ 6.2 6.2 20.8 20.8 7.4 7.3 22.8 21.9 11.7 9.4
Commercial revenue per passenger £ 5.2 5.4 3.5 3.2 7.5 7.2 3.2 3.1 6.1 6.6

The results are depicted in Table 8(b). Comparing pure competition (i) and airport–airline vertical collusion (iv), the Nash
quilibrium outcome suggests that both airport–airline combinations will be more profitable when colluding (scenario (iv)). In
ine with the analytical fare rankings, this is also the preferable outcome for passengers, because this equilibrium offers the lowest
irfares hence, the highest utility compared to the other three scenarios. In the scenarios involving horizontal collusion between
irports ((v)–(viii)), we see that both airport–airline pairs still prefer to vertically collude, which leads to the highest profits under
he complete collusive outcome (scenario (viii)). Consequently, when comparing the results in both quadrants, we conclude that
ertical collusion is likely. However, a comparison of the cases where both airport–airline pairs vertically collude ((iv) and (viii))
eveals that only the smaller (𝐿,𝐸) pair strongly prefers complete collusion (viii), whereas the larger (𝑆,𝑅) pair is better off without
orizontal collusion (iv). Since collusion requires cooperation between all relevant parties, the equilibria outcome will likely be
ertical, but not horizontal, collusion (scenario (iv)). Under the Nash bargaining approach, any additional profits or losses from
partnership are shared equally between all parties, in this case between the four producers. We note that the additional profits

chieved in scenario (viii) compared to that of the disagreement point scenario (v) are not sufficient to encourage the larger pair to
articipate. If we were to assume that (𝑆,𝑅) have stronger bargaining power, we could then change the arrangement such that one
r a pair of producers gain more from the additional profits than the other players. However, no change in the percentage share of
he additional profits could induce one of the pairs of producers to agree without the other pair being worse off. Consequently, in
his real-world case, the competitive outcome will always be marginally preferable for at least one of the pairs.

The preference for horizontal collusion depends primarily on the level of asymmetry in potential demand (catchment areas) and
he producers’ cost functions. Ryanair is an ultra-low-cost carrier whose cost per passenger is 60% that of Easyjet, and the population
f the Stansted monopoly catchment area is around double that of Luton. Therefore, the (𝑆,𝑅) pair has less interest in horizontal
ollusion and prefers the non-collaborative option. We note that the case where both airport–airline pairs vertically collude without
irport-airport horizontal collusion (scenario (iv)) also offers the preferable outcome for passengers. This equilibrium serves the
ighest demand with the lowest airfares, thus increasing consumer surplus. Specifically, the airport cross-subsidizes the two sides of
he market by lowering airline charges in exchange for increased passenger numbers, which, in turn, increases commercial revenues
nd overall airport profits. This would suggest that the UK Civil Aviation Authority was correct to force ownership separation of
he airports and remove price regulation at Luton and Stansted.

To confirm our results, we compare the outcome of the demand and the decision variables to the case study, as depicted in
able 9. The catchment area game equilibrium, scenario (iv), is the most similar to the real-world outcome, in terms of passenger
olumes and airfares. The model results over-estimate the airport charges, probably due to excess airport market power over the
irlines in the catchment area game which assumes a single airline operating per airport. A further confirmation of the likelihood of
ertical collusion may be drawn from the fact that the posted charge per passenger at Stansted is £14 to 15 for a Boeing 737–8006

hereas the financial report suggests a payment of £6 per passenger (Table 9).

. Conclusions and future directions

The methodology presented in this research includes new algorithms to assess ICT data in order to create demand matrices based
n geographical regions. Subsequently, we perform regressions over the ICT data in order to explain the drivers of demand, shedding
ight on passenger behavior. Finally, we formalize a catchment area game that analyzes potential collusion between multiple service
roviders, which helps to explain producer behavior.

One of the overarching aims of this research is to assess the potential insights that could be drawn from analyzing information
nd communication technology (ICT) data from mobile phone applications. The passenger demand, which is geographically based,
s created from as series of algorithms that characterize mobility patterns at different spatial scales. The innovative methods extract
rom mobile phone records the aggregated trajectories of users traveling to the airports from home or work and determine whether
hey are local residents, tourists or airport workers. Based on this information, catchment area maps are visualized and market shares
re estimated relatively accurately. However, conflicting signs regarding competition remain unanswered. Whilst London Heathrow

6 Stansted’s conditions of use, including airport charges, 1 April 2017 to 31 March 2018.
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https://live-webadmin-media.s3.amazonaws.com/media/3277/stal-conditions-of-use-2017-18.pdf.
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draws passengers from across the UK, acts as a hub for British Airways and serves inter-continental demand, most of the demand
for the remaining airports draws from local catchment areas. Yet, the same final destinations are offered from multiple airports,
which could be deemed a sign of a competitive market. Consequently, we develop an additional model for analyzing competition
based on the insights collected.

We identify the importance of access and egress times to the airports together with additional socio-economic demand drivers.
he regression results suggest that airport choice is partly determined by the road network and the forms of public transportation
vailable. The most important of these is the existence of railway, metro and bus services, which influence the size of the demand
rom each area.

We also assess competition with respect to pricing strategies between two London airports with clearly identified overlapping
atchment areas. The catchment area game analyzes both horizontal and vertical collusion between and across airports and airlines
sing both analytics and numerics. Whilst it seems that airports and airlines are likely to vertically collude, horizontal collusion
etween airports is much harder to determine. The symmetric, theoretical equilibrium solution outcome suggests that airports will
orizontally collude. However, the real-world solution outcome between two airports of different sizes does not indicate an incentive
or collusion. Our formulation, in conjunction with access to high-resolution consumer behavior data, should enable regulators to
nalyze catchment areas as a means to gain insight as to competition between producers at multiple levels, e.g., the service level
r the pricing level. It would also help to ascertain the likelihood of collusion and the need for corrective regulatory actions. Most
mportantly, our formulation shows that the theoretical analysis may not always accurately predict the likely outcome. The data-
riven analysis acts as a decision support tool, solving the conflict between the visualization of the ICT data and the likelihood of
ompetition or collusion between producers.

Future research could apply this type of methodology to other markets, such as supermarkets, which connect wholesalers with
onsumers, or shopping malls, which connect retailers with consumers. The problem of information asymmetry between private
ompanies and government regulators is an on-going issue and the use of anonymized big datasets may help the regulators to create
fair playing ground and encourage competitive equilibrium outcomes. The same methodology could also be directly applied, mutatis

mutandis, to any similar markets in which passengers travel to service-provider facilities. It could also be extended to online markets
such as Amazon, Alibaba or eBay, where goods are sent directly to the consumers. In such cases, the catchment areas are dictated
by the cost of the goods and the shipping times, which depend on complex logistics involving a network of warehouses. In general,
the catchment area game could be embedded not in physical space, but rather in consumer decision space such that accessibility
and costs are balanced. This would extend the application to virtual markets such as social media connecting advertisers and users
(Facebook/Instagram and Google/YouTube), or digital distribution services that provide downloadable content.

An interesting future direction would be to test whether the ICT data accurately estimates not only trip times but also the ground
ccess mode choice. To analyze the data for this purpose requires the identification of a set of ‘gateways’, namely locations visited
long the trip that enable predictions as to the mode chosen. For short trips, the data would need to be collected consistently, with
mall inter-event times, such that the trip through a gateway is identified reasonably accurately. Finally, we note that big datasets
omplement, rather than substitute, consumer surveys. Due to the requirements to anonymize the data, we could not directly connect
assengers with socio-economic information, such as age, gender and income. This impeded our ability to directly assess specific
lasticities. As stated in Harvey (1987), who investigated the multi-airport San Francisco Bay area using a passenger survey, it is
mportant to pay attention to ground access in planning for multi-airport systems, but it is difficult to predict airport utilization
ithout information about market-specific airline schedules. Furthermore, Lieshout (2012) found that Schiphol airport’s catchment
rea changes according to the route served. In conclusion, combining ICT data with consumer surveys in order to approximately
dentify the final destination of the traveler would further strengthen the results of the catchment area game.

RediT authorship contribution statement

Nicole Adler: Developed the economic models and undertook the formal economic analysis, Writing – original draft. Amir
rudner: Developed the economic models and undertook the formal economic analysis, Writing – original draft. Riccardo Gallotti:
eveloped the algorithms and methodology to create the datasets, Writing – original draft. Filippo Privitera: Provided the raw GIS
ata. José J. Ramasco: Developed the algorithms and methodology to create the datasets, Writing – original draft.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The anonymized trajectory data is proprietary and access must be requested from Cuebiq. The rest of the aggregated data and
461

oftware for analyses are available in the main text, supplementary materials and links provided.



Transportation Research Part B 166 (2022) 444–467N. Adler et al.

f

2

F

J
1
g
p

A

A

𝛼

Acknowledgments

We would like to thank two anonymous reviewers and the Associate Editor at Transportation Research part B: Methodological
or very useful comments and suggestions on earlier versions of this paper. Any remaining errors are our own.

We would like to thank participants in SIDs 2018, ATARD European COST project, ORSIS 2018, Euro 2019, ITEA 2019 and GARS
020 for helpful discussions.

unding

This project was supported by the European Union Horizon 2020 BigData4ATM grant (699260) funded by SESAR. José
. Ramasco also acknowledges funding from MCIN/AEI/10.13039/501100011033/FEDER/EU under project APASOS (PID2021-
22256NB-C22) and from MCIN/AEI/10.13039/501100011033 under the María de Maeztu Program for units of Excellence in R&D
rant MDM-2017-0711. Nicole Adler thanks the Asper Center for Entrepreneurship at the Hebrew University Business School for
artial funding of this research.

ppendix A. Analytical solutions of the catchment area game cases

We assume throughout this paper that the passenger’s willingness to pay to travel is higher than the cost of providing the service.

ssumption 1. 𝑉 > (𝛼 + 𝑐).

A.1. Competitive scenario (i)

Assuming no collusion, the airport and airline profits are given by Eqs. (9) and (10), respectively. We solve the maximization
problem as a two-stage game where, in the first stage, airports set their charges (𝑝𝐿 and 𝑝𝑆 ), and in the second stage, airlines set
airfares (𝑝𝐸 and 𝑝𝑅) and airports set the prices of amenities (𝑘𝐿 and 𝑘𝑆 ). The solution procedure starts with the second stage and
subsequently estimates the results of the first stage. In the symmetric case, we denote 𝑉𝐸 = 𝑉𝑅 = 𝑉 , 𝑐𝐸 = 𝑐𝑅 = 𝑐, 𝛽𝐿 = 𝛽𝑆 = 𝛽𝑗 and

and 𝛿 replace 𝛼𝐿, 𝛼𝑆 and 𝛿𝐿, 𝛿𝑆 respectively. Therefore, the airfares are given by:

𝑝(𝑖)𝐸 = 𝑝(𝑖)𝑅 = 𝑝(𝑖)𝑖 =
(𝑑𝑡 + 2𝑉 )(51𝑟 − 208𝛽𝑗 𝑡) − 204𝛽𝑗 𝑡(𝑐 + 𝛼)

102𝑟 − 620𝛽𝑗 𝑡
. (A.1)

The airport amenities prices are:

𝑘(𝑖)𝐿 = 𝑘(𝑖)𝑆 = 𝑘(𝑖)𝑗 =
51𝑟 (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 )

620𝛽𝑗 𝑡 − 102𝑟
, (A.2)

and the demand in the monopolistic area is given by:

𝑦𝑚,(𝑖)𝐿 = 𝑦𝑚,(𝑖)𝑆 = 𝑦𝑚,(𝑖)𝑗 =
𝑟
(

204𝛽𝑗 (𝑉 − 𝛼 − 𝑐) + 51𝑑𝑟 − 208𝛽𝑗𝑑𝑡
)

620𝛽𝑗 𝑡 − 102𝑟
. (A.3)

The airport charge is:

𝑝(𝑖)𝐿 = 𝑝(𝑖)𝑆 = 𝑝(𝑖)𝑗 =
𝑐(280𝛽𝑗 𝑡 − 102𝑟) + (51𝑟 − 140𝛽𝑗 𝑡)(𝑑𝑡 + 2𝑉 ) − 340𝛼𝛽𝑗 𝑡

102𝑟 − 620𝛽𝑗 𝑡
, (A.4)

The airlines and airports profits are given by:

𝜋(𝑖)
𝐸 = 𝜋(𝑖)

𝑅 = 𝜋(𝑖)
𝑖 =

3468𝛽2𝑗 𝑟𝑡 (2𝑉 − 2𝛼 − 2𝑐 + 𝑑𝑡)2

(102𝑟 − 620𝛽𝑗 𝑡)2
, (A.5)

𝜋(𝑖)
𝐿 = 𝜋(𝑖)

𝑆 = 𝜋(𝑖)
𝑗 =

51𝛽𝑗𝑟(280𝛽𝑗 𝑡 − 51𝑟) (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 ) 2

2(102𝑟 − 620𝛽𝑗 𝑡)2
. (A.6)

A.2. Airport-airline vertical collusion scenario (iv)

Under the assumption that airports collude with their hubbing airline, the profits of the joint airport–airline combination (𝜋𝐸+𝜋𝐿
and 𝜋𝑅 + 𝜋𝑆 ) are maximized in a single stage with respect to airfare and the prices of amenities. The airfares are given by:

𝑝(𝑖𝑣)𝐸 = 𝑝(𝑖𝑣)𝑅 = 𝑝(𝑖𝑣)𝑖 =
(𝑑𝑡 + 2𝑉 )(51𝑟 − 70𝛽𝑗 𝑡) − 210𝛽𝑗 𝑡(𝑐 + 𝛼)

. (A.7)
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The excess profit is then equally distributed between the airport and the airline according to the Nash bargaining solution (Nash,
1950). The airport amenities prices are:

𝑘(𝑖𝑣)𝐿 = 𝑘(𝑖𝑣)𝑆 = 𝑘(𝑖𝑣)𝑗 =
51𝑟 (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 )

350𝛽𝑗 𝑡 − 102𝑟
, (A.8)

and the demand in the monopolistic area is given by:

𝑦𝑚,(𝑖𝑣)𝐿 = 𝑦𝑚,(𝑖𝑣)𝑆 = 𝑦𝑚,(𝑖𝑣)𝑗 =
𝑟
(

210𝛽𝑗 (𝑉 − 𝛼 − 𝑐) + 51𝑑𝑟 − 70𝛽𝑗𝑑𝑡
)

350𝛽𝑗 𝑡 − 102𝑟
. (A.9)

In a vertical case scenario, the charges and profit are set through the Nash bargaining game. Therefore we present only the combined
profit:

𝜋(𝑖𝑣)
𝐸+𝐿 = 𝜋(𝑖𝑣)

𝑅+𝑆 = 𝜋(𝑖𝑣)
𝑖+𝑗 =

3𝛽𝑗𝑟(2450𝛽𝑗 𝑡 − 867𝑟) (2𝑉 − 2𝛼 − 2𝑐 + 𝑑𝑡)2

2(102𝑟 − 350𝛽𝑗 𝑡)2
, (A.10)

.3. Airport horizontal collusion scenario (v)

In the first stage, airports maximize their joint profits (𝜋𝐿+𝜋𝑆 ) with respect to charges. In the second stage, the airlines separately
aximize their profit with respect to the airfare and the airports jointly maximize their profits with respect to the pricing of

menities. The optimal airfares in this scenario are:

𝑝(𝑣)𝐸 = 𝑝(𝑣)𝑅 = 𝑝(𝑣)𝑖 =
(𝑑𝑡 + 2𝑉 )(51𝑟 − 238𝛽𝑗 𝑡) − 204𝛽𝑗 𝑡(𝑐 + 𝛼)

102𝑟 − 680𝛽𝑗 𝑡
. (A.11)

The airport amenities prices are:

𝑘(𝑣)𝐿 = 𝑘(𝑣)𝑆 = 𝑘(𝑣)𝑗 =
51𝑟 (2𝑉 − 2𝛼 − 2𝑐 + 𝑑𝑡)

680𝛽𝑗 𝑡 − 102𝑟
, (A.12)

and the demand in the monopolistic area is given by:

𝑦𝑚,(𝑣)𝐿 = 𝑦𝑚,(𝑣)𝑆 = 𝑦𝑚,(𝑣)𝑗 =
𝑟
(

204𝛽𝑗 (𝑉 − 𝛼 − 𝑐) + 51𝑑𝑟 − 238𝛽𝑗𝑑𝑡
)

680𝛽𝑗 𝑡 − 102𝑟
. (A.13)

The airport charge under case (v) is:

𝑝(𝑣)𝐿 = 𝑝(𝑣)𝑆 = 𝑝(𝑣)𝑗 =
𝑐(340𝛽𝑗 𝑡 − 102𝑟) + (51𝑟 − 170𝛽𝑗 𝑡)(𝑑𝑡 + 2𝑉 ) − 340𝛼𝛽𝑗 𝑡

102𝑟 − 680𝛽𝑗 𝑡
, (A.14)

The airlines and airports profits are given by:

𝜋(𝑣)
𝐸 = 𝜋(𝑣)

𝑅 = 𝜋(𝑣)
𝑖 =

204𝛽2𝑗 𝑟𝑡 (2𝑉 − 2𝛼 − 2𝑐 + 𝑑𝑡)2

(102𝑟 − 680𝛽𝑗 𝑡)2
, (A.15)

𝜋(𝑣)
𝐿 = 𝜋(𝑣)

𝑆 = 𝜋(𝑣)
𝑗 =

25.5𝛽𝑗𝑟 (2𝑉 − 2𝛼 − 2𝑐 + 𝑑𝑡)2

680𝛽𝑗 𝑡 − 102𝑟
(A.16)

A.4. Full collusion scenario (viii)

Under full collusion, the single profit function (𝜋𝐸 + 𝜋𝐿 + 𝜋𝑅 + 𝜋𝑆 ) is maximized with respect to airfares and prices of amenities
jointly. The optimal airfares are:

𝑝(𝑣𝑖𝑖𝑖)𝐸 = 𝑝(𝑣𝑖𝑖𝑖)𝑅 = 𝑝(𝑣𝑖𝑖𝑖)𝑖 =
(𝑑𝑡 + 2𝑉 )(51𝑟 − 102𝛽𝑗 𝑡) − 204𝛽𝑗 𝑡(𝑐 + 𝛼)

102𝑟 − 408𝛽𝑗 𝑡
. (A.17)

The airport amenities prices are:

𝑘(𝑣𝑖𝑖𝑖)𝐿 = 𝑘(𝑣𝑖𝑖𝑖)𝑆 = 𝑘(𝑣𝑖𝑖𝑖)𝑗 =
51𝑟 (2𝑉 − 2𝛼 − 2𝑐 + 𝑑𝑡)

408𝛽𝑗 𝑡 − 102𝑟
, (A.18)

and the demand in the monopolistic area is given by:

𝑦𝑚,(𝑣𝑖𝑖𝑖)𝐿 = 𝑦𝑚,(𝑣𝑖𝑖𝑖)𝑆 = 𝑦𝑚,(𝑣𝑖𝑖𝑖)𝑗 =
𝑟
(

204𝛽𝑗 (𝑉 − 𝛼 − 𝑐) + 51𝑑𝑟 − 102𝛽𝑗𝑑𝑡
)

408𝛽 𝑡 − 102𝑟
. (A.19)
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In a full collusion case scenario which includes vertical collusion, the charges and profit are set through the Nash bargaining game.
Therefore we present only the combined profit:

𝜋(𝑣𝑖𝑖𝑖)
𝐸+𝐿 = 𝜋(𝑣𝑖𝑖𝑖)

𝑅+𝑆 = 𝜋(𝑣𝑖𝑖𝑖)
𝑖+𝑗 =

25.5𝛽𝑗𝑟 (2𝑉 − 2𝛼 − 2𝑐 + 𝑑𝑡) 2

408𝛽𝑗 𝑡 − 102𝑟
, (A.20)

Based on Eqs. (A.1)–(A.19), we conclude with the following corollary, focusing on the access cost, 𝑡, which is impacted by ground-
access policy. Fast and convenient access modes, for example, will reduce the value of travel time and, therefore, the general access
cost.

Corollary 1. To ensure non-negative demand for an airport in the monopoly and the competitive areas then 𝑡 > 102𝑟
350𝛽𝑗

. As defined in (A.2),
(A.8), (A.12) and (A.18), the denominator of the demand function must be positive. The equation that sets the lowest possible limit on 𝑡 is
Eq. (A.8), 350𝛽𝑗 𝑡 − 102𝑟 ≥ 0.

Appendix B. Ranking the analytical results

B.1. Analyzing airline and airport profits

Proposition 1. The individual profits of an airline (airport) under horizontal collusion (scenario (v)) are lower (higher) than the profits
under full competition (scenario (i)).

𝜋(𝑣)
𝑗 ≥ 𝜋(𝑖)

𝑗 and 𝜋(𝑣)
𝑖 ≤ 𝜋(𝑖)

𝑖 .

roof of Proposition 1. Comparing profits in scenario (i) to those in scenario (v):

𝜋(𝑖)
𝑖 − 𝜋(𝑣)

𝑖 =
360𝛽3𝑗 𝑟𝑡

2(325𝛽𝑗 𝑡 − 51𝑟) (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 ) 2

(51𝑟 − 310𝛽𝑗 𝑡)2(3𝑟 − 20𝛽𝑗 𝑡)2
(B.1)

𝜋(𝑣)
𝑗 − 𝜋(𝑖)

𝑗 =
675𝛽3𝑗 𝑟𝑡

2 (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 ) 2

(51𝑟 − 310𝛽𝑗 𝑡)2(20𝛽𝑗 𝑡 − 3𝑟)
(B.2)

Eqs. (B.1) and (B.2) are positive under Corollary 1. □

For scenarios that include vertical collusion we propose:

Proposition 2. The aggregate profits under vertical collusion (scenario iv) are lower than those under full collusion (scenario viii).

𝜋(𝑖𝑣)
𝑖+𝑗 ≤ 𝜋(𝑣𝑖𝑖𝑖)

𝑖+𝑗

Proof of Proposition 2. Comparing aggregate profits in scenario (iv) to those in scenario (viii), we find:

𝜋(𝑣𝑖𝑖𝑖)
𝑖+𝑗 − 𝜋(𝑖𝑣)

𝑖+𝑗 =
𝛽2𝑗 𝑟𝑡(96𝑟 − 1225𝛽𝑗 𝑡) (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 ) 2

4(51𝑟 − 175𝛽𝑗 𝑡)2(𝑟 − 4𝛽𝑗 𝑡)
(B.3)

which is positive under Corollary 1. □

Proposition 3. If 𝑡 ≥ 0.434 𝑟
𝛽𝑗

> 102𝑟
350𝛽𝑗

, the aggregate profits under vertical collusion (scenario iv) are higher than the aggregate profits
under full competition (scenario i).

𝜋(𝑖𝑣)
𝑖+𝑗 ≥ 𝜋(𝑖)

𝑖 + 𝜋(𝑖)
𝑗 , if 𝑡 ≥ 0.434 𝑟

𝛽𝑗

Proof of Proposition 3. Comparing aggregate profits in scenario (iv) to those in scenario (i):

𝜋(𝑖𝑣)
𝑖+𝑗 −

(

𝜋(𝑖)
𝑖 + 𝜋(𝑖)

𝑗

)

=
3𝛽2𝑗 𝑟𝑡

(

18865000𝛽2𝑗 𝑡
2 − 8000625𝛽𝑗𝑟𝑡 − 83232𝑟2

)

(−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 ) 2

4(51𝑟 − 310𝛽𝑗 𝑡)2(51𝑟 − 175𝛽𝑗 𝑡)2
(B.4)

which is positive under the condition that 𝑡 ≥ 0.434 𝑟
𝛽𝑗

□

B.2. Ranking fares analytically

To understand the relationship between the airfares across scenarios, we search for a threshold that permits rankings. Assuming
demand is strictly non-negative, we propose the following:
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Proposition 4. 𝑝(𝑖𝑣)𝑖 ≤ 𝑝(𝑣𝑖𝑖𝑖)𝑖 ≤ 𝑝(𝑖)𝑖 ≤ 𝑝(𝑣)𝑖 , i.e., the airfare is lowest under vertical collusion, followed by full collusion, full competition,
nd horizontal collusion.

roof of Proposition 4. Comparing scenarios (i) and (iv):

𝑝(𝑖)𝑖 − 𝑝(𝑖𝑣)𝑖 =
3𝛽𝑗 𝑡(4900𝛽𝑗 𝑡 − 51𝑟) (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 )

2(51𝑟 − 310𝛽𝑗 𝑡)(51𝑟 − 175𝛽𝑗 𝑡)
. (B.5)

The conditions required for Eq. (B.5) to be positive are:

1. 𝑉 > (𝛼 + 𝑐)
2. 𝑡 > 51𝑟

175𝛽𝑗
or (𝑡 < 51𝑟

310𝛽𝑗
and 𝑡 > 51𝑟

4900𝛽𝑗
)

Both conditions are met under Assumption 1 and Corollary 1.
Comparing scenarios (iv) and (v):

𝑝(𝑣)𝑖 − 𝑝(𝑖𝑣)𝑖 =
3𝛽𝑗 𝑡(5950𝛽𝑗 𝑡 − 51𝑟) (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 )

2(51𝑟 − 340𝛽𝑗 𝑡)(51𝑟 − 175𝛽𝑗 𝑡)
. (B.6)

The conditions required for Eq. (B.6) to be positive are:

1. 𝑉 > (𝛼 + 𝑐)
2. 𝑡 > 51𝑟

175𝛽𝑗
or (𝑡 < 51𝑟

340𝛽𝑗
and 𝑡 > 51𝑟

5950𝛽𝑗
)

Both conditions are met under Assumption 1 and Corollary 1.
Comparing scenarios (iv) and (viii):

𝑝(𝑣𝑖𝑖𝑖)𝑖 − 𝑝(𝑖𝑣)𝑖 =
3𝛽𝑗 𝑡(3570𝛽𝑗 𝑡 − 51𝑟) (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 )

2(51𝑟 − 204𝛽𝑗 𝑡)(51𝑟 − 175𝛽𝑗 𝑡)
. (B.7)

The conditions required for Eq. (B.7) to be positive are:

1. 𝑉 > (𝛼 + 𝑐)
2. 𝑡 > 51𝑟

175𝛽𝑗
or (𝑡 < 51𝑟

204𝛽𝑗
and 𝑡 > 51𝑟

3570𝛽𝑗
)

Both conditions are met under Assumption 1 and Corollary 1.
Comparing scenarios (i) and (viii):

𝑝(𝑖)𝑖 − 𝑝(𝑣𝑖𝑖𝑖)𝑖 =
5406𝛽2𝑗 𝑡

2 (−2𝛼 − 2𝑐 + 𝑑𝑡 + 2𝑉 )

2(51𝑟 − 204𝛽𝑗 𝑡)(51𝑟 − 310𝛽𝑗 𝑡)
. (B.8)

The conditions for Eq. (B.8) to be positive are:

1. 𝑉 > (𝛼 + 𝑐)
2. 𝑡 > 51𝑟

204𝛽𝑗
or 𝑡 < 51𝑟

310𝛽𝑗

Both conditions are met under Assumption 1 and Corollary 1. □

B.3. Ranking the prices of airport amenities analytically

The ranking across scenarios of the price of amenities at the airports is in reverse order to that of the airfares:

Proposition 5. 𝑘(𝑣)𝑗 ≤ 𝑘(𝑖)𝑗 ≤ 𝑘(𝑣𝑖𝑖𝑖)𝑗 ≤ 𝑘(𝑖𝑣)𝑗

Proof of Proposition 5. The numerators of Eqs. (A.2), (A.8), (A.12) and (A.18) are identical and, given Assumption 1, are also
positive. Following Corollary 1, the denominators are also positive and the ranking is immediate. □

Appendix C. Regression results
465

The two regression results depicted visually in Fig. 5 are presented numerically in Table C.10.
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Table C.10
Airport demand regressions.

Dependent variable:

MSOA to airport demand (0,1) ln(MSOA to airport demand)
logistic OLS

(1) (2) (3) (4)

Constant −31.833∗∗∗ −31.133∗∗∗ −164.185∗∗∗ −155.785∗∗∗

(0.890) (0.899) (3.693) (3.707)

Population size 0.134∗∗∗ 0.133∗∗∗ 0.606∗∗∗ 0.644∗∗∗

(0.007) (0.007) (0.031) (0.032)

Income 0.201∗∗∗ 0.195∗∗∗ 1.281∗∗∗ 1.147∗∗∗

(0.009) (0.009) (0.034) (0.035)

Air traffic movements 0.117∗∗∗ 0.117∗∗∗ 0.474∗∗∗ 0.478∗∗∗

(0.002) (0.002) (0.009) (0.009)

Overlapping area −0.481∗∗∗ −0.486∗∗∗ −0.246 −0.407∗∗

(0.047) (0.048) (0.170) (0.169)

Closest alternative (h) 0.055∗∗∗ 0.057∗∗∗ 0.164∗∗∗ 0.180∗∗∗

(0.004) (0.004) (0.012) (0.012)

Access time (h) −0.378∗∗∗ −0.378∗∗∗ −1.076∗∗∗ −1.068∗∗∗

(0.006) (0.006) (0.013) (0.013)

Car ownership −0.081∗∗∗ −0.070∗∗∗ −0.859∗∗∗ −0.692∗∗∗

(0.004) (0.006) (0.016) (0.022)

Number of bus stops −0.009∗∗∗ −0.088∗∗∗

(0.003) (0.010)

Has coach station 0.333∗∗∗ 0.759∗∗∗

(0.038) (0.165)

Has rail station 0.127∗∗∗ 1.011∗∗∗

(0.031) (0.129)

Has metro station 0.172∗∗∗ 2.089∗∗∗

(0.065) (0.221)

Observations 43,197 43,167 15,981 15,956
Pseudo R2 0.398 0.400
R2 0.542 0.550
Adjusted R2 0.542 0.549

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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