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Aging-induced continuous phase transition

Oriol Artime,* Antonio F. Peralta, Raúl Toral, José J. Ramasco, and Maxi San Miguel
Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain

(Received 7 May 2018; published 4 September 2018)

Aging is considered as the property of the elements of a system to be less prone to change states as they get
older. We incorporate aging into the noisy voter model, a stochastic model in which the agents modify their
binary state by means of noise and pairwise interactions. Interestingly, due to aging the system passes from a
finite-size discontinuous transition between ordered (ferromagnetic) and disordered (paramagnetic) phases to a
second order phase transition, well defined in the thermodynamic limit, belonging to the Ising universality class.
We characterize it analytically by finding the stationary solution of an infinite set of mean field equations. The
theoretical predictions are tested with extensive numerical simulations in low dimensional lattices and complex
networks. We finally employ the aging properties to understand the symmetries broken in the phase transition.
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I. INTRODUCTION

Stochastic binary-state models are a versatile tool to
describe a large variety of natural phenomena. The individual
elements of a system are given a state that evolves via
interactions with their neighbors. This framework is rather
general, and it has been used to model many systems, such
as magnetic materials [1], percolation [2], epidemic spreading
[3,4], neural activity [5,6], language dynamics [7,8] or eco-
nomics [9,10]. All these spin-like, agent-based models extract
the basic features of the phenomena they want to describe.
Extensions or modifications of the dynamical rules sometimes
lead to dramatic changes with respect to the original models.
For example, the inclusion of temporal correlations in the
activation of the elements of a system [11–13], the role of noise
[14], or the presence of nontrivial structures in the connectivity,
such as graphs formed by communities [15,16] or multilayer
networks [17–20] bring staggering new dynamical effects.

The implications of aging have been widely explored in dif-
ferent areas of research, although with different meanings. In
computational biology literature, aging is taken as the increase
in the mortality of a species as its population gets older [21–23].
In nonequilibrium statistical physics, aging appears when the
relaxation toward the stationary state of a system displays
slow dynamics (i.e., it is nonexponential), there is dynamical
scaling, and the time-translational invariance is broken [24].
In chemistry, chemical aging comes to the fore when the
properties of a material change over time without any forces
acting on it but due to slow reactions with the surroundings
[24], such as thermal degradation [25,26] or photo-oxidation
[27,28]. Here we take the approach of considering aging as the
influence that persistence times have on the state transitions
in a system [29–31]. Aging (also called inertia in Ref. [32])
constrains the transitions in a way that the longer an element
remains in a given state, the smaller the probability to change it.

We study the effect of this type of aging in the noisy
voter model, also known as the Kirman model [9]. It has
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appeared in several contexts, such as percolation [33], surface-
catalytic reactions [34,35], probability theory [36], opinion
dynamics [37–41], and economics [9,42,43]. The dynamics
of this binary-state model is driven by two mechanisms: noise,
defined as spontaneous state changes at a rate a, and a pairwise
interaction by which an element blindly copies the state of
a randomly chosen neighbor. With these simple ingredients,
the system displays a discontinuous finite-size transition as
a function of the control parameter a. The transition point
depends inversely on the system size and, hence, it is located
at a = 0 in the thermodynamic limit. Statistical and critical
properties of the transition have been studied in Ref. [33].

In this paper we describe the rich phenomenology intro-
duced by aging, which transmutes the nature of the transition to
second order, makes it fall into the Ising universality class and,
more importantly, places it at a finite a in the thermodynamic
limit. We are able to compute the value of the mean magne-
tization in the stationary regime in the well-mixed scenario,
hence finding an expression for the critical point as well as
the magnetization critical exponent. The characterization of
the phase transition is completed by numerically studying the
system in other embedding dimensions than mean field and
obtaining other critical exponents. Finally, we exploit the aging
properties to give an alternative characterization of the phase
transition with an order parameter based on the age of the
elements of the system.

The paper is organized as follows. In the next section we de-
scribe the original version of the noisy voter model, and we give
a brief overview of its properties. Section III is the core of the
paper: The noisy voter model with aging is introduced, the ana-
lytical calculations are carried out, and the numerical results are
reported and contrasted with the theoretical predictions. The
final section contains a summary and a discussion of the results.

II. STANDARD NOISY VOTER MODEL

We introduce first the standard noisy voter model, which
acts as a base case for comparison with its version with aging.
Let N be the number of elements of a system, the so-called
agents or nodes, each of them endowed with a binary variable
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FIG. 1. Numerical simulations of (a) the noisy voter model and (b) the noisy voter model with aging. In (a), the stationary probability density
function (pdf) of the magnetization in the three different regimes. The points come from simulations, and the solid lines are the theoretical
curves, Eq. (3). The insets show one typical trajectory of the dynamics in each of the regimes. In (b), the stationary pdf for the noisy voter
model with aging in the different regimes. The insets show 50 trajectories of the magnetization. The considered range of the insets is always
[−1, 1]. In (c), the maxima of the pdf of the two models as a function of the noise parameter a for different system sizes. The filled symbols
correspond to (a), the empty symbols are for (b). In the latter case, the points corresponding to the two sizes overlap so much that they are
almost indistinguishable from one another. The vertical lines are the predictions for the critical noise of the noisy voter model without aging
for the two sizes considered in the plot.

sj = {0, 1}. The possible contributions to the change of sj are
due to either noise, in the form of random flips sj → −sj , or
a pairwise interaction with one of j ’s neighbors (voter update)
where node j randomly chooses one of her connections and
adopts that state. Let n = ∑

j sj be the total number of agents
in state 1. The microscopic transition rates for each agent j in
an all-to-all topology can be written as

ω+
j ≡ ω(sj = 0 → sj = 1) = a

2
+ (1 − a)

n

N
,

ω−
j ≡ ω(sj = 1 → sj = 0) = a

2
+ (1 − a)

N − n

N
. (1)

The first term on the right-hand side is the contribution of
the noise. At each interaction, with probability a the agent is
chosen to perform a noisy update, resulting in state 1 half of
the times and state 0 the other half, regardless of the former
state. With the complementary probability 1 − a, the voter
update is performed. The case of the classical voter model
is recovered when a = 0 [44]. By writing the global rates in
a master equation and expanding them in the inverse of the
system size N , one obtains a Fokker-Planck equation for the
probability density function P (m, t ),

∂P (m, t )

∂t
= − ∂

∂m
[A(m)P (m, t )] + 1

2

∂2

∂m2
[B(m)P (m, t )],

(2)

with drift A(m) = −am and diffusion B(m) = 2[a + (1 − a)
(1 − m2)]/N , where m = 2n/N − 1 ∈ [−1, 1] is the magneti-
zation. This equation can be solved explicitly [45], but valuable
information can be extracted from the stationary solution too.
Setting the time derivative to 0, one gets

Pst (m) = Z−1[1 + (a − 1)m2]
2−a(N+2)

2(a−1) , (3)

with the normalization constant being Z = 2 2F1( 1
2 , 1

+ aN
2(a−1) ,

3
2 , 1 − a), where 2F1 is the hypergeometric function.

The sign of the exponent of the steady state solution changes
the convexity of the function. If it is positive, the solution
becomes convex with two peaks at the borders of the interval
m = ±1. On the contrary, if it is negative we encounter a

concave solution with one maximum in the center of the
interval (m = 0, equal coexistence of states). This transition
occurs at ac = 2/(N + 2), and precisely at this value the
stationary probability density function is flat, meaning that
any magnetization is equiprobable. These three regimes are
shown with numerical simulations in Fig. 1(a). The maximum
(maxima) ofPst (m) can be used to appreciate the discontinuous
nature of the transition as well as the size dependence of the
critical point position [Fig. 1(c)].

III. NOISY VOTER MODEL WITH AGING

In the model with aging, each agent has her own internal
time i = 0, 1, 2, . . . accounting for the time elapsed since her
last change of state in Monte Carlo units. When it comes to
pairwise interactions, the node must be first activated with a
probability 1/(i + 2). The motivation behind this choice is that
the longer an agent has spent in a given state (i.e., the larger
i), the more difficult it is for her to change state via the voter
update. The performance of the noisy update is not affected by
aging. All nodes begin with their internal time equal to 0, so
the effects of aging develop with the model evolution. When
an agent changes state, due to either a noisy or a voter update,
her internal time is reset to 0. On the contrary, this internal
persistence time increases by one unit when the agent does not
change state. This type of aging mechanism has been chosen
because it induces features observed in several real-world
systems, such as power-law interevent time distributions [29].

Numerical simulations of the noisy voter model with aging
are shown in Fig. 1(b). It is interesting to note that there
is still a transition from bimodality to unimodality but of a
completely different nature. The bimodality centered at ±1
occurs only for a = 0. As the noise increases, the peaks
of Pst (m) continuously move toward m = 0 [see Fig. 1(b)].
The trajectories of the magnetization individually tend to a
stationary m value as shown in the inset of Fig. 1(b). The
maxima of Pst (m) continuously merge in a single peak for a
given value of noise ac. In contrast to the noisy voter model, the
position of ac weakly depends on the system size [Fig. 1(c)].
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In the following we characterize the aging-induced contin-
uous transition by finding a curve for the stationary magnetiza-
tion. It is useful to introduce the variable n+

i (respectively, n−
i ),

corresponding to the fraction of nodes in state 1 (respectively,
state 0) and internal time i [32]. The total number of agents
in state 1 is then n = ∑∞

i=0 n+
i and equivalently N − n =∑∞

i=0 n−
i . We start by writing the transition rates that now

depend on the internal time,

�1(i) = n+
i

(
a

2
+ 1 − a

2 + i

N − n

N

)
,

�2(i) = n−
i

(
a

2
+ 1 − a

2 + i

n

N

)
,

�3(i) = n+
i

(
a

2
+ (1 − a)(1 + i)

2 + i
+ 1 − a

2 + i

n

N

)
,

�4(i) = n−
i

(
a

2
+ (1 − a)(1 + i)

2 + i
+ 1 − a

2 + i

N − n

N

)
, (4)

The first rate accounts for a node in state 1 changing state,
thus resetting its internal time, i.e., n+

i → n+
i − 1 and n−

0 →
n−

0 + 1. The second rate is equivalent to the first but for a node
in state 0. The third rate corresponds to the case of an agent in
state 1 that is not able to change state, that is n+

i → n+
i − 1 and

n+
i+1 → n+

i+1 + 1. It has several contributions: either a noisy
update that does not result in a change in state, either the agent
cannot beat the aging when activating, or the agent overcomes
the aging but it copies another node of her same state. The
fourth rate is equivalent to the third but for a node in state 0.
Note that �1(i) + �3(i) = n+

i and �2(i) + �4(i) = n−
i .

We can write the temporal evolution of 〈n±
i 〉 as

d〈n+
i 〉

dt
= −〈�1(i)〉 + 〈�3(i − 1)〉 − 〈�3(i)〉, (5)

d〈n−
i 〉

dt
= −〈�2(i)〉 + 〈�4(i − 1)〉 − 〈�4(i)〉 (6)

valid for times i � 1. For the particular case of i = 0,

d〈n+
0 〉

dt
=

∞∑
i=0

〈�2(i)〉 − 〈�3(0)〉 − 〈�1(0)〉, (7)

d〈n−
0 〉

dt
=

∞∑
i=0

〈�1(i)〉 − 〈�4(0)〉 − 〈�2(0)〉, (8)

with 〈·〉 standing for the average over realizations of the
dynamics. Equations (5)–(8) form an infinite set of coupled
differential equations, which is hard to tackle analytically.
However, valuable information can be extracted from the
stationary solutions, obtained by setting the time derivative
to 0.

By combining Eqs. (5) and (7), we have that

d〈n〉
dt

= 0 =
∞∑
i=1

〈�2(i)〉 −
∞∑
i=1

〈�1(i)〉

+ 〈�2(0)〉 − 〈�1(0)〉. (9)

Subtracting Eq. (7) from Eq. (8) and comparing with Eq. (9),
we obtain the first condition for a stationary solution 〈�1(0)〉 +
〈�3(0)〉 = 〈�2(0)〉 + 〈�4(0)〉, which leads to 〈n+

0 〉 = 〈n−
0 〉.

That is, in the stationary regime the number of agents in states 1
and 0 that just reset their internal time is equal. The stationarity
in Eq. (5) leads to condition 〈�1(i)〉 + 〈�3(i)〉 = 〈�3(i − 1)〉.
It is a recursive relation for 〈n+

i 〉, whose solution reads

〈n+
i 〉 =

i∏
k=1

(
a

2
+ (1 − a)

x + k

1 + k

)
〈n+

0 〉

=
(

1 − a

2

)i 1

�(2 + i)

(
2 + 2(1 − a)x

2 − a

)
i

〈n+
0 〉, (10)

where x = 〈n〉/N and (z)n ≡ z(z + 1) · · · (z + n − 1) is the
Pochhammer symbol. The stationarity in Eq. (6) leads to the
same equation for 〈n−

i 〉 but with variables 〈n−
0 〉 and 1 − x

instead of 〈n+
0 〉 and x. Luckily, Eq. (10) and the corresponding

one for nodes in state 0 can be summed analytically so that we
obtain the implicit equation,

〈n〉 = 1

a + 2(1 − a)x
(2

−2+2(a−1)x
a−2 a

a+2(1−a)x
a−2 − 2)〈n+

0 〉

≡ f (a, x)〈n+
0 〉, (11)

where x = 〈n〉/N and the function f (a, x) has been intro-
duced to ease the notation. Another condition of stationarity
leads to the very same equation but with variables 〈n−

0 〉 and
1 − x instead of 〈n+

0 〉 and x, i.e., N − 〈n〉 = f (a, 1 − x)〈n−
0 〉.

Using the condition that 〈n+
0 〉 = 〈n−

0 〉, we find that

x

1 − x
= f (a, x)

f (a, 1 − x)
, (12)

whose solutions x(a) give the noise dependent curves of the
magnetization in the stationary state, also called the equation
of state. One trivial solution is x = 1/2, which can be checked
by direct substitution in Eq. (12). This corresponds to the sym-
metric case with equal coexistence of agents in both states. It is
a stable solution for a > ac and unstable for a < ac. Moreover,
for a < ac, two new stable and symmetrical solutions appear,
corresponding to the two ferromagnetic branches.

At the critical noise ac, the derivatives with respect to x on
the two sides of Eq. (12) coincide when evaluated at x = 1/2.
After simple but lengthy algebra, one obtains the equation for
the critical point,

(2 − ac )2

1 − ac

= ln

(
2

ac

)[
1 −

(ac

2

) 1
2−ac

]−1

, (13)

which gives ac = 0.075 56 · · · . With this information, we can
readily obtain the critical exponent of the magnetization β such
that m ∼ tβ , where t ≡ (1 − a/ac ) is the reduced noise.

Since m = 2x − 1, the behavior of x close to the critical
point will be the same as m. We Taylor expand the two sides
of Eq. (12) around x = 1/2 and a = ac, so

x

1 − x
∼ 1 + 4(x − 1/2) + 8(x − 1/2)2

+ 16(x − 1/2)3 + O(x4),

f (a, x)

f (a, 1 − x)
∼ 1 + [4 − 21.1(a − ac )](x − 1/2)

+ 8(x−1/2)2+10.5(x − 1/2)3+O(x4, a2).

(14)
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(a) (b) (c)

FIG. 2. (a) Stationary magnetization [analytical expression Eq. (12) and simulations], (b) the Binder cumulant, and (c) susceptibility for
the noisy voter model with aging for different system sizes in a complete graph (CG). The insets show the collapses with the corresponding
Ising critical exponents [46]. The vertical lines are located at the critical point to guide the eye.

Equating both sides, the smallest nonvanishing order is β =
1/2.

So far the results are in the form of mean field analytical
expressions, and we computationally verify next their validity
and study the finite-size scaling. The numerical simulations
for the equation of state of |m| is displayed in Fig. 2(a) for
different system sizes along with the theoretical solution x(a).
To test the accuracy of the prediction for the critical point
ac, we can employ the technique of the Binder cumulant
computing U4(a) = 1 − 〈m4〉st /3〈m2〉2

st [47], being 〈mn〉st the
nth moment of the magnetization in the stationary state. This
provides an accurate estimate of the critical noise as the
crossing point of the Binder cumulant curves for different N ’s
[Fig. 2(b)]. We obtain ac = 0.0753(6), which is compatible
with the mean field theoretical value. It is important to note that
we can define neither an internal energy nor a specific heat since
the aging noisy voter model does not possess a Hamiltonian.
Nevertheless, the susceptibility χ (a) = N (〈m2〉st − 〈m〉2

st ),
understood as the fluctuations in the magnetization, is well
defined. In Fig. 2(c), we plot the susceptibility for different
system sizes and confirm that χ (a) diverges at ac when N →
∞.

We use the techniques of finite-size scaling to collapse
the data and determine the critical exponents of this system.
The scaling hypothesis predicts that close to the critical
point (i.e., t = 1 − a/ac → 0) the magnetization behaves as
m = N−vf1(t Nu) and the susceptibility as χ = Nw f2(t Nu)
with v = β/dν, u = 1/dν and w = γ /dν, where d is the
dimension in which the system is embedded and γ and ν are
the critical exponents for the susceptibility and the correlation
length. Above the critical dimension dc, the exponents become
mean field, and they do not depend on d anymore. Compactly,
we write that v = β/ν̄, u = 1/ν̄, and w = γ /ν̄ where ν̄ = dcν

in the case that d � dc, otherwise ν̄ = dν [48]. This has a direct
consequence when studying phase transitions of a system
above its critical dimension—as in an all-to-all topology, such
as the present case—we can have access to β and γ but not
to ν. What one obtains is the quantity ν̄, so in order to know
the actual value of ν, we must know the critical dimension dc

beforehand.
We analytically proved that β = 1/2 for the noisy voter

model with aging in complete graphs. It coincides with the
mean field exponent of the Ising model, so this universality
class is a reasonable candidate for our model. In the mean field

regime of this class γ = 1, ν̄ = 2, and the critical dimension
is dc = 4. By data collapsing the magnetization, the Binder
cumulant, and the susceptibility [insets of Figs. 2(a)–2(c)]
we confirm that β, γ , and ν̄ take these values, although we
cannot establish dc from an all-to-all framework as discussed.
To proceed, we can compute the same quantities in lower
dimensions and collapse the curves using the corresponding
Ising critical exponents assuming dc = 4. In case the collapses
neatly overlap, we can conclude that the Ising universality class
is a solid candidate for the noisy voter model with aging. We
show these analyses for lattices of dimensions d = 2, 3 and 4
and Erdős–Rényi networks, which have an effective infinite
dimensionality, in Fig. 3. We find excellent overlaps, ratifying,
thus, that our system is compatible with the universality class
of the Ising model.

An explanation of the mechanism behind aging-induced
phase transition can be given in terms of symmetry breaking as-
sociated with the internal times of the nodes. In the disordered
(paramagnetic) phase there is no predominant state since the
dynamics is driven mainly by noise: In this case all nodes are of
similar age. In the ferromagnetic phase, the system is ordered
towards one of the states, displaying a net magnetization. In
this scenario, noisy updates are less frequent than voter ones,
which take into account the neighbor states. If there is a global
majority opinion, then nodes holding this opinion will flip less
times than those of the minority. This introduces an asymmetry
in the age distribution of the nodes. Consequently, on average
we have that older nodes belong to the majority in the region
a < ac. These arguments can be quantified by using the average
age of each node population. The mean internal time [17] of the
majority population is τM = ∑

i i〈nM
i 〉/∑

i〈nM
i 〉 where the

index M is + or − depending on which population dominates.
A complementary expression follows for the mean internal
time of the minority population τm. Figure 4 shows these
quantities: In the region a < ac the asymmetric aging in the
populations is evident by the separation in the upper branch
(older nodes, belonging to the majority) and the lower branch
(younger nodes, in the minority). These two branches merge
at the critical point a = ac. In the disordered phase a > ac,
there are similar numbers of nodes in state 1 and in state 0,
and the internal times of both populations are the same. Thus,
�τ = |τM − τm| can be used as an alternative order parameter:
In the paramagnetic phase �τ = 0, and in the ferromagnetic
one �τ 	= 0.
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(a) (b) (c)

(f)
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(j)

FIG. 3. Stationary magnetization (a, d, g, j ), Binder cumulant (b, e, h, k), and susceptibility (c, f, i, l) for the noisy voter model with aging
for different system sizes. From the top to the bottom row: lattices of d = 2, d = 3, d = 4, and Erdős-Rényi network with 〈k〉 = 6. The insets
show the collapses with the corresponding Ising critical exponents [46]. The vertical lines are located at the critical point to guide the eye.

IV. DISCUSSION

To summarize, we have explored the effect of aging in a
stochastic binary-state model. The agents have now an internal
time counting the time spent in the same state with older agents
less prone to update. When aging is added to the noisy voter
(Kirman) model, we find numerically and analytically that the
system passes from a discontinuous transition, whose transi-
tion point vanishes in the thermodynamic limit, to a robust
second order phase transition of the Ising universality class.
Indeed, the Ising model gives some intuition to understand

the reported phenomena in this article: It is a model that at
temperature T = 0 coarsens and its ergodicity is broken due
to its absorbing states. When the temperature is finite, the
ergodicity is restored, and, at a critical temperature T = Tc,
the system displays a continuous phase transition. Similarly,
incorporating aging into the voter model generates an algebraic
coarsening dynamics and an ergodicity breaking as shown
in Ref. [29] for complete and random graphs. Hence, the
combination of aging and noise (with a similar role as the
temperature in the Ising model) induces a continuous phase
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FIG. 4. Mean internal times and their difference �τ . The points
are obtained from simulations, and the solid lines are obtained from
theory [49].

transition at a well-defined critical point, despite the coarsening
characteristics in both models can be different. Therefore,
one can hypothesize that adding a mechanism that produces
coarsening, such as aging, in a model in which random spin
flips are allowed may lead to an Ising-like phase transition.

This conjecture, observed here, requires further research to
be generalized. Finally, we show how aging properties of
the agents can be employed to understand the spontaneous
symmetry breaking between states below the critical point,
proving that aging plays a central role in modifying the critical
properties of a system.
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