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Chapter 1

Introduction

Sometime before writing this paragraph, [ was reading Weinberg’s book
about the discovery of the subatomic particles [Weinberg 1990]. In this book,
when a new topic is introduced, the author reviews the subject from a histor-
ical point of view. So, when he arrives to the question of why a cathodic ray
is deviated by a capacitor, a flashback on the history of electric an magnetic
forces is included. Concerning electricity, it was known since the times of
ancient Greece that when a piece of amber is rubbed with an animal skin,
the amber acquires the strange property of attracting other objects, e.g. hair.
More recently, many school children play a similar game in which a plastic
pen or comb is rubbed with a woolen sweater. The pen, treated in this way,
is able to attract small pieces of paper or even to deviate the water poured
from a glass.

Nowadays, electric forces are pretty well characterized. During the 70’s
and 80’s the theory called Quantum Electro-Dynamics (QED) was developed
and tested. The final result is more than incredible: the QED is able to
predict experimental results with more accuracy than any other physical
theory. Despite of that, the way in which the amber piece or the plastic pen
get charged remains still a mystery. The exact Weinberg’s words were: the
reader may well also wonder why when amber is rubbed with fur the electrons
go from the fur to the amber [...]? Oddly enough, we still don’t know. The
question involves the physics of surfaces of complex solids as silk or hair,
and this branch of physics has still not reached a point where we can make
definite predictions with any certainty. 1 suppose this to be a good reason
for writing a thesis on this subject.

This thesis deals with interfaces, the way to characterize them and how
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they appear and grow in heterogeneous media. I have even included the word
surface explicitly in the title. I consider important to explain the meaning
of this concept. This is a formal definition:

Interface: surface separating two phases of matter, each of which may
be solid, liquid, or gaseous. An interface is not a geometric surface but a thin
layer that has properties differing from those of the bulk material on either
side of the interface. A common interface is that between a body of water
and the air, which exhibits such properties as surface tension, by which the
interface acts somewhat like a stretched elastic membrane. Interfacial effects,
or processes that occur at interfaces, include the evaporation of liquids, the
action of detergents and chemical catalysts, and the absorption of gases on
metals. [Enciclopedia Britannical.

One of the main reasons to study interfaces is the importance that they
have in transport processes. For instance, let us consider the cellular mem-
brane: all the molecules used by the cell as food come into through the
membrane. If something, energy or mass, is transferred through an inter-
face, the total amount depends on the extension of that surface. Finally, the
area of the interface is determined by its geometry.

Everybody knows what is felt when one touches a piece of polished mar-
ble. From those kind of experiences, we infer the idea of flatness. On the
other hand, the opposite to the previous concept is the idea of roughness.
Clearly, the extension of a surface is related to how rough it is. These in-
tuitive concepts may be described within a mathematical framework called
fractal geometry.

1.1 Fractals

1.1.1 Self-similar fractals

A fractal is a mathematical set that remains invariant under scale transfor-
mations. Fractals were discovered as a group of structures that presented a
paradox for the theory of measure. This theory was developed during later
19th century and early 20th century by a group of mathematicians like Can-
tor, Peano, von Koch, Hausdorff and Besicovitch. Most of whom gave later
their names to examples of fractal sets that they discovered.

The paradox consisted in the impossibility of measuring the size of some
sets by a standard medium. When one wants to measure the length of a
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Figure 1.1: The Koch’s curve, a fractal with Hausdorff dimension D =

log(4)/log(3). Ref. [Mandelbrot 1982]

circumference, the simplest way is to cover it with small segments of known
size [. The sum of all segment sizes may be considered as an approximation
to the circle perimeter. The shorter the segments are, the more exact this
approximation is. In the limit [ — 0, the sum of all segment lengths must
tend to 27r, where r is the radius of the circle. This procedure to measure
the size of a set is known as the box-counting method. The paradox arises
when one tries to employ the same procedure with a set as the one shown
in the figure 1.1. That set, Koch’s curve, has in the limit [ — 0 an infinite
length. This fact is not very surprising, there is a great number of simple
non-selfcrossing curves with an infinite perimeter. However, none of them
may be enclosed within a finite area as happens with Koch’s set. This kind
of problems won the fractals the appellative of a gallery of monsters.

The solution to the paradox arrived with the modification of the concept
of dimension. Let us suppose that p is the magnitude to be measured; length,
area or volume of a certain set. The method used to estimate it is to cover
the original structure with small sets of known pu, say p;, and linear size [. If
p(l) = >; p; is the approximation of p on the scale [, the Hausdorff dimension
is defined as

)
D= o1 /l) - (11)

The Hausdorff dimension is an integer for classical geometrical objects,
as points (D=0), lines (D=1), squares (D=2) or cubes (D=3), and takes
a non-integer value for fractals. In the case of Koch’s curve, it is D =
log(4)/log(3) = 1.2618, a value between the dimension of a line, D = 1, and
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Figure 1.2: Two methods to grow a fractal. This is the Vicsek [Vicsek 1989]
fractal.

. % o

that of a surface, D = 2.

The reason why D is expected to be a finite number is the particular
functional form of u(l). If we consider a segment of length L, the mass, (1),
is the number of small segments of length [ needed to cover L. This quantity
is: u(l) = L/I. So, the function u(l) behaves as a power law with [. In
this case, the exponent of the power law is —1, coinciding with the —D for
a segment. The important feature of power laws is that they are the only
functions whose form is scale invariant. As was previously mentioned, this is
the symmetry which defines fractal geometry. Therefore, most properties of
fractals are expressed via power laws.

A fractal set may be constructed by two different methods, as is shown in
fig. 1.2. In the first procedure the set grows: i.e. a unit figure is chosen and
copies of it are added to the set maintaining some pre-established symmetries.
There are many real-world systems that use a similar technique of growth,
examples are electro-deposition, bacteria colonies or crystal growth, with
ions, cells and atoms playing the role of units of growth, respectively. As a
result, most of those systems produce fractal structures that will be further
discussed later. On the other hand, the construction of a fractal may also
start from a figure with a dimension d bigger than that of the future set,



Section 1.1. Fractals 5)

and drill it producing holes of all sizes. If the distribution of hole hyper-
volumes is a power law; P(s) ~ s77, the final set is a fractal with a dimension
D = d(vy — 1). This process is similar to erosion in real rocks. The two
methods give different kind of fractals. Those produced holing have a finite
size in the host space (they may be enclosed within a finite hyper-volume),
so upper a certain scale they loose their fractality. On the contrary, those
generated by aggregation of small pieces present an infinite size, but also own
a lower cutoff in resolution and scale invariance.

The fractals mentioned so far are isotropic. They remain invariant when
the scale is changed equally in all directions. However, it is easy to find
situations where two or more directions are not equivalent. For instance, in
a fractal growth by aggregation a main direction can easily be introduced if
the particles arrive to the set only from one side. The set, grown in this way,
is not a classical self-similar fractal, but belongs to a different type named
self-affine fractals.

1.1.2 Self-affine fractals

A self-affine fractal is a set that remains invariant under an anisotropic scale
transformation. Despite their differences, in a scale transformation, direc-
tions are not completely independent. If one axis changes in a factor b,
x1 — bxq, the others must be rescaled in a factor b, x; — b%x;, in order to
preserve the set invariant. The exponents «; are called Hurst exponents and
give information about the degree of anisotropy of the set. There is a special
case of the latter definition particularly important for this thesis. That is the
case in which all the directions but one are equivalent. In interface growth,
the special dimension corresponds to the growth direction. The existence of a
privileged direction implies that there is only one nontrivial Hurst exponent,
which is called roughness exponent a. In figure 1.3, several surfaces with
different values of the roughness exponent are plotted.

In some occasions, fractal sets may be expressed as single-valued functions
depending only on the position h(z1, xs, ...). One of those functions represents
a self-affine fractal whenever the following condition is satisfied

h(bl‘l, b(ml‘g, ) = b_ah(l‘l,ﬂfg, ) . (12)

If there is only one Hurst exponent different from one, the previous equa-
tion takes the simpler form: h(bz) = b~*h(Z). This expression will appear
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Figure 1.3: Self affine fractals with different roughness exponent. Ref
[Barabdsi 1995]

profusely through out this work.

Apart from the height of a surface over the substrate, the function h(¥)
may correspond to many other different magnitudes . It can be a density
of mass or charge, a magnetic or a electric field, the velocity of an element
of mass in a fluid, etc. In general, a function F'(xq, s, ...) that verifies the
equation 1.2 is called a homogeneous function. It is easy to demonstrate that
for a function F(Z) to be homogeneous is necessary and sufficient that

F(xy,z0,3...) = 27 “g(xa /22, x5 /252, ...) . (1.3)

The proof is as simple as substituting b in equation 1.2 by 1/x;. That
change leads to g(@) = F(1,4). Homogeneous functions are very important
to describe other kind of fractal sets.

All the fractal sets described till now are generated by the repetition,
on different scales, of a unitary scheme. Namely, the addition of a certain
number of particles, or the holing of a figure maintaining some prefixed sym-
metries. If the process includes the possibility of failures (the number of
added particles fluctuates or directions are randomly chosen), the resulting
set is a very particular fractal named random fractal. These sets do not
fulfill scale invariance condition. If they are rescaled, the resulting set does
not match exactly the original fractal. However, when they are viewed as
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random variables, their probability density functions (PDF) do not contain
characteristic scales apart from those shared by all fractals. The maximum
size L in growth by aggregation (the size of the smallest hole a in fractals
developed by holing), which are a consequence of the finite character of the
construction process of real fractals. This supposes that those PDFs, and
their moments, behave as homogeneous functions of two variables: the scale
of observation [ and the characteristic scale L, or a, of the system.

1.1.3 Scaling of Interfaces

Interfaces are considered as random self-affine fractals [Mandelbrot 1982].
Usually, the growth of an interface starts from a flat configuration. So, its
width, defined as the variance of the height distribution, is initially zero.
The width then increases in time as a power law, w(t) ~ t”. The roughening
goes on for a while, till it finally stops at a time t,. The value of ¢, is a
function of the system size. From this moment on, the width depends on
the system size, w ~ L. The exponent 3 is called growth exponent and «
is the roughness exponent, already mentioned in the previous section. The
functional dependence of w may be written in a compact form as

w(L,t) =t f(t/t,) =t f(t/L*P) . (1.4)

Where f() is a scaling function; f(u) is constant for small values of u and
f(u) ~u=? when u > 1.

The width is a homogeneous function that depends on two variables:
system size and time. Different values of a and [ are expected to clas-
sify interface growth phenomena in different universality classes, as happens
in equilibrium phase transitions [Stanley 1971]. This scheme is purely phe-
nomenological and is based on the presence of only one characteristic scale in
the problem. This scale is the mean size of correlated clusters in the height
profile, £&. The value of € is expected to increase as & ~ t%/¢ till it reaches
the system size £ = L, and to be constant further on. This framework is
known as scaling hypothesis and was firstly proposed by Family and Vicsek
[Family 1985].

The utility of fractals to describe natural phenomena was firstly pointed
out by Benoit Mandelbrot [Mandelbrot 1977, Mandelbrot 1982], and later
studied in many other monographs [Feder 1988], [Vicsek 1989], [Barabési 1995]
or [Meakin 1998]. In following sections, several experimental examples, where
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Figure 1.4: AFM image of amorphous SiO, deposited by chemical vapor
deposition at T = 723k. The scale of the side of the image is 30000 A and
that of the vertical bar is 4000 A. Ref [Ojeda 2000].

interfaces play an important role, are reviewed.

1.2 Molecular Beam Epitaxy

In nature, solids may only appear in two kind of structures. They may be
either amorphous -their atoms or molecules have a not defined spatial order-,
or crystals -an atomic configuration is repeated periodically in space. In both
cases, a solid grows from a solution or from its fluid (liquid or gaseous) phase.
Inside the fluid, nucleation starts around a defect or a micro-crystal. This
happens whenever a difference between the chemical potentials of solid and
fluid phases exists. While non-equilibrium conditions are maintained, new
atoms arrive to the surface and attach to it, increasing thus the size of the
solid. The growth goes on till the system reaches an equilibrium state or till
all the matter is in the solid phase.

Most of the modern technological devices, as computers chips or the
smallest lasers, are based on the usage of high quality semiconductor crys-
tals. There are several methods to grow a crystal. Essentially, the process
of growth was described previously, but some external conditions may be



Section 1.2. Molecular Beam Epitaxy 9

Figure 1.5: Silicon (001) vicinal surface, each side of the image is 100 Along.
In this case, the crystal surface is smooth though the limits between different
terraces are rough. Ref. [Pimpinelli 1998]

changed. For instance, the simplest method is to prepare a solution with
the elements that must form the crystal. When the liquid is evaporated the
residue is the desired crystal. However, the quality of such crystals is not too
high.

Molecular beam epitaxy (MBE) is the finest method to construct a solid.
Inside a high vacuum chamber, atoms of selected elements are thermally
evaporated from a source and deposited onto the surface of the growing crys-
tal. Once atoms reach there, they diffuse over the surface till an energetically
favorable position is found or till they are detached. Both processes, diffusion
and desorption, are function of temperature and substrate material. Diffu-
sion length, /;, and the probability of desorption by unit of time, 1/7, increase
with temperature following Arrhenius laws; Iy ~ e %/*T and 1/1 ~ e~ Fp/kT
where k is the Boltzmann constant, T" the temperature and Ep and E, the
activation energies for diffusion and desorption respectively.

Although desorption is usually negligible for most MBE processes, diffu-
sion is of crucial importance for the properties of the crystal interface. The
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lower the diffusion length is, the rougher the surface results. This is because
the diffusion length represents the limit of atomic mobility. If the mobility is
very high, all atoms may reach the most stable configuration, in which they
are rounded by the largest number of neighbors. As a consequence, interfaces
of crystals that are grown at temperatures with low value of the coefficient
E,/kT are smooth, their width does not depend on the observation scale [
and they cannot be described with fractal geometry. On the other hand,
interfaces produced with high values of the coefficient E,/kT are rough. In
the next table, roughness and growth exponents of some experiments on the
latter category of growth are shown.

Growing crystal/ T(k) Q I6; Ref.
Substrate
Fe/Fe(001) 313 0.79 0.22 [He-YL. 1992]
Au/Si(111) 220 0.42 0.42 [You 1993]
Ag/Si 300 0.70 0.26 [Thompson 1994]
Ag/quartz(SiOs) 300 0.82 0.29 [Palasantzas 1994]
Cu/Cu(001) 200 1 0.561 [Ernst 1994]
160 1 0.26
CuCl/CaF,(111) | 383,353 |  0.84 - [Tong 1994]
Si/Si(111) 548 1 0.25 [Yang 1994]
Pt/glass 300 0.9 0.26 [Jeffries 1996]
Ag/Ag(111) 300 0.88=17 - [Heyvaert. 1996]
Ge;_,Sn, /Ge(001) 373 0.66<0.45° - [Desjardins 1999]
linear poly p-xylene | 300, 243 0.72 0.25 [Zhao 2000]
(-CgHyo-)/Si 4
Si0,/Si(100) * 723 0.75=0.42 | 0.42=0.26 [Ojeda 2000]

Such a detailed description of MBE phenomenon had not been possible
without the experimental methods used to visualize crystal interfaces. Most
of them are based on diffraction of electrons, x rays or atoms by a surface.

L An early unstable growth with pyramid-like surface profile for T' = 200K is reported.

2The symbol ”=" represent a cross-over from one scaling regime to other with different
exponents.

3The value of a reduces with an increasing proportion of Sn (x).

4In these experiments a technique known as chemical vapor deposition is used instead
of classic MBE.
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The rougher the interface is, the more abundant the radiation diffracted
out of Bragg angles. There is, however, other technique worthy to mention
apart. The scanning tunneling microscope (STM), firstly constructed by
Binning and Rohrer in 1985, consists of a metallic tip placed very close to
a crystal interface and controlled using a group of piezoelectric resorts. If
the interface corresponds to a metallic or a semiconductor material, some
electrons are moving almost freely through out the conduction band. In
these conditions, if an electric potential between the tip and the surface is
applied, some electrons are able to escape from the interface due to tunnel
effect. The number of jumps depends on the density of electrons, which
is higher close to atoms. So, with this technique individual atoms may be
resolved, and though it does not work for all materials, its applicability is
wide enough to offer detailed information about interface morphology. The
figure 1.4, for example, is produced using a STM. The figure 1.5 is acquired
using other technique named atomic force microscope (ATM).

1.3 Fire fronts

Experiments with fire fronts take place on scales very different from those
of MBE. Actually, the range of scales for fire fronts goes from burning of a
paper sheet to a big forest fire, from centimeters to kilometers.

In this section, some experiments on paper burning are reviewed. In labo-
ratories, conditions of experiments must be easier to handle and to reproduce.
Following this idea, experiments on fire fronts must avoid uncontrollable ele-
ments as flames and turbulent air currents. Inside a well ventilated chamber
a sheet of paper is lied down (to avoid the transport of heat by convention).
The paper is, in many occasions, impregnated with some substance to pre-
vent flame formation or to ensure uniform heat distribution (as K NO3). The
sheet is fired from one of its extremes, starting the combustion front from a
configuration as flat as possible. The advance of the front is recorded by a
camera. Typical fronts are shown in figure 1.6.

The correlation function (which behaves as the width) is represented in
figure 1.7. In both, the dependence on time (¢) and on observation scale ({),
there is a cross-over from a regime with high « and 5 (« = 0.8—0.71 and § =
0.4 [Zhang-J. 1992, Maunuksela 1997]) to other with values of the exponents
a = 0.48 and # = 0.32 [Maunuksela 1997, Myllys 2000, Myllys 2001]. The
interpretation of this result is under debate [Amaral 1998, Maunuksela 1998,
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Figure 1.7: Correlation function vs observation scale in a paper burning
experiment . The two regimes with different values of « are clearly marked.
Ref [Myllys 2001].
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Myllys 2000, Myllys 2001]. Despite of that, what is not under suspicion is
the utility of fractals to modelize those experiments.

1.4 Fluid flow through porous media

As in the previous section, the scale of this phenomenon coincides with our
daily life experience. So, it is easy to find some well-known cases of this
phenomenon. For instance, examples of a fluid flowing through a porous
media are: watering a plant (water is absorbed by the ground), preparing an
espresso (hot water percolates through coffee powder) or pouring that coffee
on the tablecloths (coffee spot expands through the fibers of the cloths).

As happens with fire fronts, in the laboratory experimental conditions
must be carefully controlled. The setup of these experiments consists usually
of two transparent plates placed at a fixed distance. The space between the
plates is filled with a heterogeneous medium. Examples of how to construct
such a medium are: a pack of small balls with controlled size, a sheet of
paper or even the copper strips of electronic circuits. In all cases, a wetting
fluid (water, oil, glycerin, ...) displaces other with poorer wetting properties,
very often air. If the experiment was performed in the opposite direction,
e.g. air pushing oil, some instabilities quite similar to fingers would appear
[Ben-Jacob 1983, Langer 1980]. Fronts are recorded by a camera outside the
transparent plates, allowing an exhaustive study of its geometry. One of
these experimental fronts may be seen in figure 1.8.

In the next table, some of the exponents measured in this type of exper-
iments are shown. In these experiments, there are two possible operational
modes depending on what is kept fixed during the experiment: either the
volume of injected fluid by unit of time or the pressure. The first method pro-
duces experiments with constant velocity fronts, while in the second, fronts
are decelerated, v ~ t77.
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0 10 20 30 40 50 60 70 80 90 100 110
X (mm)

Figure 1.8: Two fluid flow experiments, the liquid is oil pushing air. The het-
erogeneous medium is formed by randomly distributed copper strips grown
onto the lowest plate. In the figure b, the strip distribution is columnar. Ref.
[Hernédndez-M 2001, Soriano 2002].
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Fluids Disorder medium o I} Ref.
water /air glass beads 0.73 - [Rubio 1989
water/air glass beads 0.88 - [Horvath 1990]
glycerol/air glass beads 0.81=-0.49 0.65 [Horvath 1991]
ink(coffee) /air paper 0.63 - [Buldyrev 1992]
water /air glass beads 0.65=-0.91" — [He-S. 1992]
ink/air a block of paper 0.5 - [Buldyrev 1992b]
3 dimen. (2+1)
water /air paper - 0.56 [Horvéth 1995]
water /air paper 0.67 0.24 [Kwon 1996]
water /air isotropic and 0. - [Zik 1997]
anisotropic paper 0.46
ink/air two papers of 0.74 0.86-0.47* [Balakin 2000]
different density 0.64 0.61-0.352
silicone oil/air copper strips 0.9=0.6 0.47 [Herndndez-M 2001]

1.5 Cosmological distribution of matter

Although this subject is still matter of a big controversy, I would like to finish
this chapter saying a few words about it. If the distribution of mass in the
universe is fractal (at least, it is fractal for some scales), this is an example of
fractals at much larger scales than those of previous sections. Actually, the
scale of described phenomena has increased along sections, from inter-atomic
to cosmological distances. Secondly, a considerable effort is being spent on
this question, showing thus the importance it has for cosmology.

This is a very old problem. In 17th century, Newton’s concept of the uni-
verse as a static place was widely accepted. In that model, all stars were at
fixed positions in the empty space and, though this distribution was gravita-
tionally unstable (in a finite universe), there was no other alternative model
for several centuries. This idea changed with the work carried out by E. Hub-
ble at the early 20th century. He measured the departing velocities of several
galaxies (most galaxies are moving away from us) and found a linear relation
between velocity and distance. The universe expansion was the most likely

IThe exponent a varies with fluid injection velocity and, though not so clearly, with
the capillary number
2The value of 3 depends on the orientation of the front respect to the fibers of paper.
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Figure 1.9: The distribution of galaxies on a sky sector centered in the south
galactic pole. Ref. [Wu 1999]

explanation for this strange fact. That possibility had already been theo-
retically predicted several years before by Friedmann using Einstein’s field
equations of general relativity. One of the assumptions on which Friedmann’s
solutions are based is homogeneity and isotropy of mass distribution in the
universe. Isotropy must be accepted to prevent the existence of privileged
observers, but this is not the case for homogeneity.

On solar system scales, mass distribution is clearly heterogeneous. The
density of mass in the space between the Earth and the Moon is almost zero,
while it is, in average, 5.5 tons/m? inside our planet. On the other hand,
there is some evidence, as the monopole in the cosmic microwave background
(CMB), pointing to a homogeneous mass distribution on very large scales. In
figure 1.9, the distribution of galaxies, an intermediate scale between CMB
and solar system, is plotted for a sky sector. There are some places with
a high concentration of galaxies and also some randomly distributed areas
which are almost empty. This kind of distribution is what would be expected
for a fractal set. So, figures as the previous one could be analyzed using fractal
tools. This analysis was carried out by several authors with different results.
They measured the Hausdorff dimension: D = 1.2 = 2.2 [Guzzo 1991], D =
2.25 = 2.77 [Martinez 1994], D = 2 [Lemson 1991, Labini 1998], D =1 = 3
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[Martinez 1998], D = 2.93 [Scaramella 1998] or D = 3 expected from x rays
and CMB.

This work deals with surfaces, hence it would be adequate to explain how
this problem about the distribution of matter in universe may be mapped
into a fractal interface. As was mentioned in section 1.1.2, the function h(Z)
may correspond to many magnitudes apart from the height of a point over a
substrate. In particular, its value may represent the density of matter in each
position (h(Z,t) = p(Z,t)) of the space. Consequently, the density may be
viewed, in time, as a surface within a four dimensional space. The dynamics
of the system is then driven mainly by two opposite tendencies. Gravitational
collapse increases the value of the density wherever it has a peak, and the
expansion of the universe makes p smoother. The previous values for the
Hausdorff dimension would correspond to roughness exponents a = 3 — D,
in the range from a = 1.8 to a = 0.

All those different results in the measured dimensions have led to a strong
debate. Are they due to a non fractality of the universe?. To the lack of better
statistical samples?. Or to the methods used to measure D?.

1.6 Conclusions

In last sections, some experiments (and observations) where fractals were
used to modelize a physical system have been presented. In all of them, the
final aim was to measure a fractal dimension or the roughness and the growth
exponents. This is because, as in the case of equilibrium Statistical Physics,
those exponents are expected to inform about the underlying symmetries
of the problem. As a consequence, it would be possible to classify physical
systems that share the same microscopic symmetries in universality classes.
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Chapter 2

Theoretical models

Mathematical models are the working tools for theoretical physicists. Models
are simplified versions of real systems settled in the easier treatable field of
mathematics. Surface growth, as a part of Statistical Physics, is not an
exception to this general rule. The first step in a theoretical framework
is not an equation. In classical mechanics, for instance, the final product is
Newton’s second law, but before reaching that point it is necessary to specify
how particles, their positions, and forces enter in the model.

2.1 Characterization of interfaces

In order to simplify the theoretical work, interfaces are usually represented
by single-valued functions, h(Z,t), where h is the height of the surface over
the substrate position & at the time ¢. The procedure to define a h profile is
not always well established. In many real situations, the surface may curve
over itself, producing thus a very complicated multi-valued height distribu-
tion. Several solutions have been tested to solve this problem. The simplest
possibility is to consider only the maximum of A at each position. While the
overhangs have a characteristic size, this method or any other similar, may
be valid.

The height profiles, h(Z,t), are the basic ingredients of surface growth.
Each experiment, either in a computer or in a laboratory, gives as result
one of those profiles for each time of measurement. If that experiment is
repeated, the resulting height profile will be obviously different. This fact
add a certain complexity to the process of definition of mean quantities. Let
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us consider, for instance, the simplest magnitude, the mean height. For a
particular height profile, the average height is defined as

()a(t) = z > hilt) ~ 2 [ drne. (2.1)

The second expression on the right hand is the continuous case approxima-
tion. This estimator for the average height is missing some crucial infor-
mation that comes from the other realizations of h(z,t). With it, only a
determined value for a stochastic quantity that is actually characterized by a
whole probability distribution is found. In order to obtain a more useful es-
timator, the average over different realizations must be taken. The definition
of the mean height is then

((0) = {()a} = {7 3 (o)} (2.2

The symbols {..} represent the average over a set of different height profiles
while (..), correspond to an average over the space for a single disorder
realization.

Ah

Figure 2.1: Representation of [Ah| for a rough interface. This is the quantity
that takes the role of the mass of a fractal set.
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The basic quantity to be studied is the fluctuations of each front from
its mean height , Ah(z,t) = h(z,t) — (h), (t). This magnitude is expected
to behave as the mass or hyper-volume in random fractals of the previous
chapter. The main difference is that it can take positive or negative values.
Indeed, the average of Ah in space is always zero by definition, (Ah(x,t)), =
0. The first magnitude to be analyzed is then the second order momentum;
the global width of the interface.

W(t, L) = {{[a(z,t) = (k) }/? = {{[Ah(z, 1))} (2.3)

Interfaces are supposed to be random self-affine fractals, but only in their
final state. Typically, the initial condition of these systems is very far from
that situation. For instance in many practical cases, a flat surface is taken
as initial state h(x,t = 0) = 0. This means that the global width is zero at
t = 0. Later, the system evolves and the interface becomes rougher. The
lack of a characteristic scale imposes that the growth of the width happens
as a power-law in time, W (t,L) ~ t°. The roughening of the interface
goes on till the system reaches a stationary state. Further on, the width of
the surfaces depends on the only characteristic scale left; the system size,
W(t > tsqr) ~ L*. These two asymptotical tendencies may be included in an
unique compact expression,

W(t, L) =t f(t/t) =t f(¢/L*P) (24)

where « is the roughness exponent, § the growth exponent, L the system
size and f() a scaling function that asymptotically behaves as:

const ifu<l1
flu) ~ { u?  otherwise . (2.5)

This ansatz for the width scaling is the so called Family-Vicsek scaling
[Family 1985].

In many practical situations as, for example, in experiments, the width of
the whole front cannot be estimated. However, a local width may be defined
considering only a fraction of the system with a lateral size [ < L. In that
case, the mean values (..), are restricted to that small area. In order to
distinguish them from the global averages, they will be denoted by (..);. The
definition of the local width is then

w(t,1) = {([A(w, 1) = (M%) = {{[Ah(, )} (2.6)



22 Chapter 2. Theoretical models

The Family-Vicsek scaling for this function is assumed to be the same as for
the global width, but substituting L by I: w(t,l) = t?g(t/1*/5). The function
g() has the same asymptotic behaviour as f(). The change from global to
local scale is not so innocent as may seem, it is specially complicated when
the scaling of the system cannot be described by the FV ansatz (see chapter
3).

Another important aspect to be studied in all random systems is the cor-
relation, the spatial correlation in the case of surface growth. This function
is defined as

C(t,1) = {(Ah(z + 1, ) Ah(z, 1)), } . (2.7)

Typically, for a fixed time, the correlation function takes a (large) positive
value at [ = 0. Actually, the function C'(¢,1 = 0) is equal to the square of the
global width. Further, when [ is increased the correlations decay, and they
become zero above a certain distance £. This basic scheme is maintained for
every moment, but the distance at which the correlations vanish increases
with time, & ~ t'/?. The exponent z is known as the dynamic exponent and
gives information about how fast the correlations expand through out the
system. That exponent is related to o and [ by a simple scaling relation;
z = a/ 3. This expression is motivated by the fact that correlations can not
expand for ever in a system of finite size, L. Hence, the expansion must
stop at a certain time, ty ~ L? for which {(tx) = L. After that time,
the dynamics of the system reaches a stationary state, where the width or
correlations change no more.

There exists another function that is second order in Ah, and that must
be mentioned. It is the height-height correlation function at equal time,

G<t7 l) = {<(h(w + 1, t) - h(l‘, t))2>:0} =
{{(AR(x +1,t) — Ah(x,t))%).} .

The function G is a bridge between the global width and the correlation
function, G(t,1) = 2W?2(t,L)—2C(t,1). Tts scaling behaviour is quite similar
to that of the local width. Indeed, in some occasions, as for values of « close
to one [Buceta 2000], it may be a better estimator for the exponents.

The functions presented so far are all in the direct space. There are,
however, many mathematical tools that employ other reciprocal spaces. The
most famous of those techniques is the Fourier transform. The Fourier trans-
formation of Ah ( h(t, k) = (2r)~%2 [ dk Ah(t, ) exp(—ikz)) is in general a
complex function and, as a consequence, it is not very useful directly. How-
ever, this is not the case for the transformation of the correlation function;

(2.8)
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the power spectrum S(k,t). The function S() is real due to the symmetry
[ — —I that is satisfied by the correlations, C(t,1) = C(t,—1). Finally, as the
correlation function is the convolution of Ah with itself, its Fourier transform,
the function S(), is related to h by the equation: S(k,t) = {h(t, k) h(t, —k)}.
The latter expression is often used as a definition for S().

The scaling of the power spectrum is the transformed version of the pre-
ceding Family-Vicsek ansatz for direct space magnitudes. The main func-
tional form remains still as power laws, but the correlation length & trans-
forms now in a characteristic wave-length k. ~ 1/£. This wave-length de-
crease in time as ky ~ t~'/%. The compact expression for the power spectrum

FV scaling is

1

The scaling function Sy () presents the following asymptotic behaviour

const otherwise . (2.10)

Spy { u?etd if u < 1

The power spectrum is also related to other second order functions of
Ah: To the global width, as a result of the Parseval identity, W?2(¢t,L) =
[ dk S(k,t), and to the height-height correlation function G() by the equa-
tion G(t,1) o« [dk[l — cos(kl)] S(k,t). It has been shown that the direct
space methods, except for the global width, are not able to measure rough-
ness exponents bigger than one [Leschhorn 1993]. This circumstance makes
S() one of the most reliable estimators for a and z exponents [Roux 1994,
Schmittbuhl 1995].

The basic functions (basis) of Fourier transform are plane waves, e’
Those waves are very well determined in frequency (k), but completely un-
localized in space (x). The wide spatial spread of its basis leads Fourier’s
method to take an average over space during the transformation. Hence,
some important information about the local behaviour of the transformed
function may be lost. To avoid this effect, the so called wavelet transform
was developed in the field of signal analysis during the last two decades. The
basis used by this transform is composed by functions with a compact local-
ization (finite domain) both in space and in frequency. There is not a unique
functional form for that basis. Any function, U(z), holding the conditions
[ Y (z)dxr = 0 and [ V*(z) ¥(z)dr < oo may be a good candidate to
mother wavelet. From that mother wavelet, the basis for the transform is

kx
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\Ija,b:\y<x_b> )
a

and the wavelet transformation as

defined as

WIAH](a,b) = \}a [ b1 Wy (o) do (2.11)

If the function to be transformed is a random self-affine fractal, as happens
with Ah for t > t.; ~ L7, after taking averages over the disorder the de-
pendence of the wavelet transform on the scale a goes as AW[A](a,b) =
{W[Ah](a,b)} ~ a®+(/2) allowing thus the determination of the roughness
exponent [Simonsen 1998, Ahr 2000].

The preceding methods are all based on integrations or integral transfor-
mations of the function Ah. There is other family of procedures that use a
different approximation to measure the exponent «. If a fractal set of dimen-
sion D is intersected by a hyper-plane of dimension d < D, the resulting set
is other fractal with a Haussdorf dimension D’ = D — d. The same happens
with a self-affine fractal, but in that case the Haussdorf dimension of the
intersection is D' = d, + 1 — a — d, where dg + 1 is the dimension of the
embedding space. Hence, measuring directly or indirectly the dimension of
that set, D', it is possible to estimate the roughness exponent. For instance,
in (141) dimension an interface is a random self-affine curve. The intersec-
tion of that curve with a line is a group of points with Haussdorf dimension
1 — a. As happens in all self-similar fractals, the distribution of holes (the
distance between consecutive points of intersection) presents a probability
density function that goes as p(d) ~ d=*=P" ~ d=**®. This method is known
as the first return probability [Schmittbuhl 1995], and may also be general-
ized to determine any return probability. This latter probability, which is
called the multi-return probability, shows a different functional dependence
on the distance p,,,(d) ~ d=“.

2.2 Models and equations with annealed dis-
order

Theoretical models are simplified versions of real phenomena. This simplifi-
cation is expected not to miss the crucial elements of the real counter-part.
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Models constitute, thus, an easy to handle system that still conserves part
of the original behaviour. Classically, those models were expressed by equa-
tions that describe the evolution of the whole system or of elements that form
it, as the Langevin’s equation for Brownian motion. Later, with the arrival
of computers, it has become possible to simulate processes directly, starting
from a few suppositions about the basic components of the problem and the
interactions among them. Those interactions may be local, as in the Ising
model, or non local when a field, e.g. electric field in a group of charge par-
ticles, or the conservation of a global quantity, as mass in the fluids, requires
it. In the next subsections, some of the most important models in surface
growth are introduced.

2.2.1 The Edwards-Wilkinson equation

Let us imagine a pool filled with a quiet fluid; e.g. water. Some granular
material is poured onto the fluid. That material is composed by small grains
that, due to friction, reach quickly a regime with a constant and low velocity.
The grains are deposited onto the substrate and attach to the interface in the
most stable of all local configurations; i.e. the local minimum of the surface.

This system may be easily implemented in a computer program. The
resulting algorithm is known as the random deposition with surface relaxation

1

Figure 2.2: Rules of the algorithm for a model of random deposition with
surface relaxation.
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model [Barabasi 1995]. In this algorithm, the substrate is represented by a
square lattice configuration with L? sites. In each time step, a site, i, is
randomly chosen. If the height at this site, h;, is lower than that of its
neighbours, it is updated, h; — h; + 1. Otherwise, the lowest of the nearest
neighbours is updated. The exponents measured in the computer simulation
of this model in (1+1) dimension are o = 0.48 £ 0.02 and § = 0.24 + 0.01
[Barabési 1995] from [Family 1986].

In order to write down an equation for the coarse-grained interface of this
system, we can split the problem into two independent processes. The first
element to be taken into account during the growth is the flux of incom-
ing particles. The flux is constant in time except for the shot noise. This
behaviour may be included with a term of the kind F' + n(z,t). Where F
is a constant and 7 is a white noise with zero average. Then, there is the
relaxation of deposited particles. The main characteristic of this process is
the conservation of mass. The mass in each site is proportional to the height,
m; = p;h;. Therefore, the relaxation may be described by a current point-
ing to the minima of the interface and proportional to the local gradient,
j(z,t) o« =Vh(z,t). Putting together these two independent ingredients, we
get the continuous equation

Z]Z =vV?h+ F +n(z,t), (2.12)
where the correlations of noise term 7 satisfy {n(z,t)n(a’,t")} = A*5(x —
x')0(t — t'). This linear coarse-grained Langevin equation is known as the
Edwards-Wilkinson (EW) equation [Edwards 1982]. The exponents « and /3
may be easily obtained for this system with a simple scaling argument. If
in a substrate of (d+1) dimension, space and time variables are rescaled as
T — bx and t — b*t, the height function as h — b*h, and we introduce those
changes in the EW equation we have

oh
ot "
The constant force F' does not appear because the only effect this term
produces in the surface growth is a constant velocity that may be eliminated
by a Galilean transformation h — h+ F't, and, consequently, has no influence
on the interface roughness. If we now impose scale-invariance, the exponents
of b should vanish: z =2 and o = Z;d. In (141) dimension, the exponents

1 1

are z = 2, a = 5 and 3 = alz = 3. Note that a < 0 for dimensions

+d)

B2 W2k 4 b 0T (a1 (2.13)
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d > 2, what implies that the interfaces of this model are flat for substrates
of dimension higher than one.

These results may also be obtained solving directly the EW equation
[Nattermann 1992]. By Fourier transforming equation (2.10) we obtain

—iwh(k,w) = —v k* h(k,w) + 7k, w) , (2.14)

where the term 7j(k,w) = [ dkn(z,t) e"**+t The function 7 has zero av-
erage and its correlations are {7j(k, w)ij(k',w")} = A20(k + k') [5° dr @),
To calculate the latter correlations is necessary to have into account the ini-
tial condition of the interface; h(z,t = 0) = 0, this can be included with the
restriction n(z,t) = 0 for ¢ < 0. The equation 2.12. implies that

hk,w) = 7(k,w)/(vk* —iw) . (2.15)

Performing an inverse Fourier transformation of this expression, it is pos-
sible to calculate the amplitude of modes h(k,t), and

{h(k,t) h(K )} = (A2/20 k)1 — e 2P D@20 (k+ k). (2.16)

Finally, the power spectrum, S(k,t), may be obtained from the latter
equation by making &’ = —k and by integrating over all the possible direc-

tions of k. ot
S(k, t) = W(l — € 2vk t)(2 7T)d (217)

The constant Sy comes from the integration of the solid-angle element to
all directions in a space of dimension d. The exponents then are « = (2—d) /2,
z=2and = (2 —d)/4. For d = 2, the power spectrum goes as 1/k for
k > ky ~ t'/2, this means that the width presents a logarithmic dependence
on the system size. For dimensions higher than d. = 2, the surface is flat,
a < 0.

2.2.2 The Kardar-Parisi-Zhang equation

In the argument that led us to the EW equation was explicitly supposed that
the particles were deposited in a ballistic way. The particles arrived from a
direction perpendicular to the substrate. There are many cases of surface
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0 F+n

Figure 2.3: The growth of an interface usually occurs in the local normal
direction to the surface. This lateral growth is what produces the nonlinear
term in KPZ equation.

growth in which this condition is not satisfied. For instance, if the deposited
grains were very small and were immersed in hot water, those grains should
suffer diffusion (they would move following Brownian trajectories) before
arriving the surface. In addition, if those grains could easily be adhered to
the interface, they would attached to the surface in the first point of contact,
or in a near place. The interface then would tend to grow in the direction
that is locally normal (as it is shown in the figure 2.3). That lateral growth
introduces an important correction to the original EW model.

In the EW equation, the term 0h/0t takes into account the growth in the
perpendicular direction to the substrate. So, if the force, F', and the shot
noise, 7, lay in the local normal direction to the interface (see figure 2.3), only
their projection onto the vertical axis will contribute to the growth equation.
This implies the substitution of the latter force-noise term by other of the

kind [F + n(x,t)] cosd = [F + n(z,t)]/y/1+ (Vh)2. In the limit |Vh| < 1,
that expression takes the form [F +n(z,t)] cos 0 = [F +n(xz,t)|(1—5(Vh)* +
3(Vh)* + - ). Introducing the term at the lowest order in Vi in a EW-like
equation, we obtain

oh A
a5 = vV2h + 3 (Vh)? + F +n(x,t) . (2.18)
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Where v, A and F' are constants, and the noise term 7 has the same prop-
erties as the EW equation counterpart {n(x,t)} = 0 and {n(z,t)n(a’,t")} =
A%5(x —a")6(t —t').

The expression (2.18) is the KPZ equation, firstly proposed by M. Kardar,
G. Parisi and Y.-C. Zhang [Kardar 1986]. This equation can be mapped onto
two other important physical problems. By the change of variable v = —Vh
and in the case A = 1, the KPZ equation transforms into the noisy Burgers
equation [Burgers 1974], a classic system in the field of fluid dynamics and
turbulence. While the nonlinear change of variable w(z,t) = exp Ah/2v
maps the KPZ model onto the evolution equation of the Boltzmann weight
of directed polymers in random media [Kardar 1987].

Due to the great physical significance of this model, it is important to
obtain its exponents for all substrate dimensions. As a first approach, we
can apply a scaling argument performing the scale transformation: z — bz,
t — b*t and h — b*h, getting to

88? =vb2V2h + ; 2 (Vh)? + b2 p(x,t) . (2.19)

To hold the condition of scale invariance, the exponents of b must be
zero. However, this implies that a and 3 should satisfy simultaneously three
incompatible relations: z = 2, a4+ 2 = 2 and a = Z;d. In order to avoid
this problem, the most relevant contributions to scaling must be chosen.
The expression a + z = 2, coming from the nonlinear term, has been found
to result from the Galilean invariance of Burgers equation [Krug 1987], and
consequently it is always fulfilled. If we consider as the second relation that
coming from the diffusion, the final exponents would be z = 2 and a = 0.
The same exponents as in the case of the EW equation for d > 2. On the
contrary, if the expression coming from the noise is considered, the result
would be z = (4 +d)/3 and a = (2 — d)/3.

As well as numerical integrations of the equation [Amar 1990, Moser 1994,
Newman 1996, Lam 1998], there exist many discrete models that are thought
to belong to KPZ universality class. Therefore, it is possible to obtain the
exponents of the KPZ equation by the simulation of those models. Some
examples are the Eden model [Plischke 1984, Zabolitzky 1986, Wolf 1987] or
the ballistic deposition [Meakin 1986]. The simplest of those automata is the
Kim-Kosterlitz model [Kim 1989]. The components of this model are the
sites of a hyper-cubic lattice. The growing site, 7, is randomly chosen among
the L? possible positions, and it is updated, h; — h; + 1, only if the RSOS
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condition, |h; +1 — hi1| < 1, is satisfied. The exponents measured in this
model for dimensions (14d) are [Kim 1989, Ala-Nissila 1993]:

a | 1/2] 0.40(1) | 0.308(2) | 0.139(2) - — —
B 1/310.250(5) | 0.180(2) | 0.245(1) | 0.107(2) | 0.10(2) | 0.08(2)

The exponents of that table do not agree with those predicted by the
scaling argument. To obtain a more reliable result, a Flory-type approach
may be used [Hentschel 1991]. Essentially, this method is equal to the previ-
ous argument but a different scaling is supposed the noise term, n(bx, b*t) ~
b=*/2=2d/2p(z t). This allows to have an idea of what is happening on inter-
mediate scales, which are important in the strong-coupling regime of KPZ
equation. The exponents evaluated with this method are o = 2/(d + 3),
z=2(d+2)/(d+3)and 8 = 1/(d+ 3). Those values were also proposed,
based on their numerical results, by Kim and Kosterlitz [Kim 1989]. They
are actually an upper cutoff for the real exponents.

More elaborated theoretical techniques have also been applied to find the
values of those exponents. Techniques such as perturbation of the linear
equation followed by dynamic renormalization group analysis [Kardar 1986,
Medina 1989, Frey 1994], functional renormalization group [Nattermann 1991],
mode-coupling theory [Doherty 1994, Moore 1995, Stepanow 1997, Colaiori 2001],
mapping onto directed polymers [Doty 1992, Lassig 1997], quantized scaling
[Lassig 1998], real-space renormalization [Castellano 1998, Castellano 1999]
and width distributions [Marinari 2001].

In order to gain a further insight into the problem, it may be a good idea
to review the perturbation method. The starting point of this technique is
the Fourier transformation of the KPZ equation

—iwh(k,w) = —vk?h(k,w)+7(k,w) + ;\ /dq dQ q (q—k) h(q, Q) h(g—k, Q—w) .

With a small reorganization on this expression, the integral equation

h(k,w) =n(k,w) G,(k,w) + ;\ Go(k,w) /dq dQq(q—k) ;L(q, Q) h(g—k, Q—w)

is obtained, where G,(k,w) = 1/(vk? — iw). The terms h within the integral
may be substituted by the whole right part of the latter expression. When
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this process is repeated, we obtain a series with terms of increasing power
of \. If A < 1, it is possible to neglect the high order terms of the expan-
sion. Finally, if an average over disorder realization is taken, we obtain an
expression for h. At first order in ), the integrals that appear are divergent.
Hence, it is necessary to apply a renormalization group technique to extract
some information of how that divergence behaves. The flow equations for
this one-loop renormalization method can be obtained. One has

D =Na+z—2]

L — vz —2+4 S16° (2 —d)/(4d)] (2.20)

%:A[%(z—d)—éaﬂL%Sde],

where g (¢ = (AA)?/(2v3)) is a dimensionless parameter, called coupling
constant. S, is the area of a d-dimensional hyper-sphere of unit radius. The
equations for v and A are not independent, since both contain a term with
g%, and ¢ is a combination of v, A and X. These two equation may be reduced
to only one on g,

dg 2—d 2d—3
=g 9t S g (2.21)

Looking for the fixed points of the flow equations for A, the expression
of the Galilean invariance a + z = 2 is recovered. The fixed points in the
equation for g present a richer behaviour, the number of fixed points and
their attractive or repulsive character depend on the dimension d. In d =1,

there are three fixed points g; = 0 and g3 3 = £4/2/Sy, among which only

the latest two are attractive. Those fixed points imply that a+1) = 1/2
and z*Y = 3/2. These values are also obtained from a master equation
approximation and are exact for d = 1. However, for d = 2 the situation
changes. There exists only one fixed point at ¢ = 0, and it is repulsive.
Finally, for d > 2 there are again three fixed points, but only ¢* = 0 is
attractive (see the figure 2.4). The region of values of g where the flow is
divergent is known as the strong-coupling regime for KPZ. This region is not
accessible by perturbation procedures. This has motivated the application
of a wide range of different analytical methods, without the consecution (by
now) of conclusive results. The small zone close to the attractive fixed point
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Figure 2.4: The flow of the coupling constant g for (a) d =1 and (b) d > 3.

g7 = 0 for d > 3 belongs to EW universality class. The surfaces are smooth
because the dimension is higher than the critical d. for EW. On the other
hand, interfaces are rough in the strong coupling regime (at least below d = 4;
dimension that some authors believe to be the critical dimension of KPZ).
Hence at the two repulsive fixed points g3 3 = j:\/2 d(d —2)/Sa(2d — 3) there
is a roughening transition.

2.2.3 The MBE growth equations

The situation in crystal growth by MBE is similar to the model of deposition
that motivated the introduction of EW equation. However, there exists a
crucial difference in the behaviour of the deposited particles, atoms in the case
of MBE. Once an atom arrives to the surface, it diffuses with a probability
that follows an Arrhenius law, R ~ exp(—FEy/kT). The activation energy
E; depends on the number of bonds that the atom has with its neighbours,
E; = E, + nE,, where n is the number of neighbours and F, and FE, are
activation energies. Hence, the higher is the number of neighbours, the more
stable that configuration results. The atoms also have some probability of
leaving the interface. But in general the desorption is more unlikely than the
diffusion and atoms are able to find a stable position.

The implementation of this process in a computer program is made via
a kinetic Montecarlo (KMC) method [Tamborenea 1993]. In this model,
diffusion and desorption rates are calculated from the external parameters;
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Figure 2.5: Rules for the algorithms of (a) DT model and (b) WV model.

the temperature, 7', and the activation energies. Every atom that reaches
the surface moves or is detached with those probability rates till it is covered
by other atoms or is desorbed. The exponents measured from this model
vary with temperature. If T' is very low, the atoms are not able to diffuse
or detach. So, this model behaves as a random deposition, while, in the
high temperature regime, the atoms may diffuse along great distances, and
they only stop when find a very stable configuration, producing thus smooth
interfaces.

Wolf and Villain [Wolf 1990] and Das Sarma and Tamborenea

[Das Sarma 1991] proposed independently two simple deposition models that
were supposed to mimic the main characteristics of KMC model in the
intermediate temperature regime. The substrate in both models is repre-
sented by a square lattice. The simulation begins when an atom reaches
the surface at a randomly chosen position (i). The next step is slightly
different for each model (see figure 2.5). In the Wolf-Villain (WV) algo-
rithm, the particle moves to the site with the highest coordination number
among ¢ and its nearest neighbours. In the case of Das Sarma-Tamborenea
model (DT), a site that increases the coordination number is randomly se-
lected in the neighborhood of 7. Though the exponent values and the uni-
versality classes of these models have been widely discussed [Kotrla 1992,
Das Sarma 1992, Krug 1993, Tamborenea 1993], early simulations of both
models gave as result the exponent value @ ~ 1.5 and § ~ 0.365 in 1+1
dimension [Das Sarma 1991, Wolf 1990].

The growth equations that describe the MBE phenomenon must take into
account the major characteristics of the problem. The mass is conserved
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during the diffusion and the atoms tend to establish in the places with a
high coordination number. The mass conservation symmetry implies that the
equation must be of the type 0h/0t = ~-Vj 7, where 7 is the particle current
that depends on the local topology (Vh, V(V?2h), V(Vh)?, etc) of the surface.
Thus, this symmetry prevents the existence of a KPZ nonlinear term. On the
other hand, the tendency of atoms to move to the sites with a higher number
of neighbours, i.e. positions of high curvature of the interface u = V2h, may
be included in a equation by means of a current j o« =V = —V(V?2h). The
final expression one gets to is then

(?Z = -KV*'h+F +n(z,t), (2.22)
where K is a constant and 7 is a white noise with zero average and with a
variance A%. This equation is known as Mullins-Herring equation [Lai 1991].
It may be exactly solved as the EW equation, but a simple scaling argument
is enough to obtain the exponents. If, in the latter expression, the space and
time variable are re-scaled as x — bx, t — b*t and h — b“h, we obtain

oh

—K b4V b*—a . 2.23
i Voh + (2.23)

When the exponents over b are zero, the following relations must be fulfilled:
z =4 and a = (4 — d)/2. The high value of z implies a very slow dynamics
of the model. The value of @ = 1.5 > 1 (for d = 1) is an example of
super-roughness, a very special case of scaling that will be discussed further
in the next chapter. The values of @ and § = «/z = 0.375 coincide with
the exponents found in the initial simulations of WV and DT models. In
2 4+ 1 dimension, the exponents become o« = 1 and g = 0.25. The critical
dimension for this equation is d. = 4.

Some authors have suggested that a nonlinear term of the kind V?(Vh)?
should be included in the growth equation [Sun 1989, Lai 1991, Villain 1991].
The origin of this term would be a preference of the particles to be attached
to the flattest areas (close to the extremes of h). The resulting equation is

Oh
o =K VAh 4+ M VA(VR)? + F 4 n(x,t) . (2.24)
This model is referred to as the Lai-Das Sarma-Villain (LDV) equation. As

happens with the KPZ model, a scaling-type argument is not valid for this
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nonlinear equation. The exponents, however, may be obtained using the
dynamic renormalization group. The flow equations for the parameters of
the LDV model in the one-loop approximation are

U [ 4y Sy (A2/2K7) (6 — d)/(4d)

D1 =)\ [z 4 a—4] (2.25)

The existence of a nontrivial fixed point in those equations implies the follow-
ing relations between the exponents: z +a =4 and z — 2a = d. From them,
the following exponent values may be extracted: a = (4—d)/3, z = (8+d)/3
and 3 = (4 — d)/(8 + d). These formulae give a(!*1) = 1, 0+Y = 1/3 and
a(2+1) — 2/3’ /6(2—4—1) — 1/5

The exponents of the linear and nonlinear equations in 2 + 1 dimensions
may be compared with those obtained in the experiments described in the
first table of chapter one. As already mentioned, the exponent values depend
crucially on the temperature. However, there is a clear tendency for the
exponents to be close to the values predicted by the Mullins-Herring and
the LDV equations. This general trend is only broken, within the group
presented in that table, by the experiments [Ojeda 2000], [Desjardins 1999]
and [You 1993]. These deviations from MBE universality may be explained
if the coarse-grained equations that describe those experiments include other
higher order nonlinear terms.

A similar situation raised with more detailed studies on the discrete mod-
els [Smilauer 1994, Das Sarma 1996, Das Sarma 1997, Punyindu 1998]. Ac-
tually, in the stochastic equation that describes the WV model a term of
the kind V(Vh)?, which renormalizes into a EW diffusion term, must be
included. Analogously, the DT model belongs to the LDV universality class
instead of to the linear Mullins-Herring class. Indeed, some discrete MBE
models, where the rules of diffusion take into account the possibility of dif-
fusion along the vertical direction, are clearly in the KPZ universality class
[Yan 1992, Kessler 1992].



36 Chapter 2. Theoretical models

2.3 Models with quenched disorder

The models presented in the previous section are not able to explain the
exponents measured in the experiments of fluid low through porous medium
or paper burning. The roughness exponents of those experiments, as may be
seen in the previous chapter, are higher than those expected from KPZ or
EW universality. This means that a key ingredient of the dynamics of those
experiments is missing by KPZ or EW equations. One possible solution was
proposed by [Bruinsma 1984], [Koplik 1985] and [Parisi 1992]. It is based on
the use of a different kind of disorder.

The noise of the equations KPZ or EW is a function of both space and
time. The disorder modeled in such a way must vary in time in every point
of the interface. However, the disorder in the fluid experiments is of a quite
different nature. The heterogeneous media through which the fluid, or the
fire front, moves is prefixed for each experimental realization. This type of
disorder is better represented by a noise that depends on the surface position
inside the medium, n(z, h), and not on time.

The introduction of quenched disorder in the preceding models leads to
a very rich and novel behaviour. In those models, as KPZ for instance, the
roughness or dynamic exponents of the surfaces were the same if the term
of the pushing force, F', was present or not. The average velocity of the
front was the only characteristic controlled by F. Hence, a simple change
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Figure 2.6: Velocity versus distance to critical driving force for a DPD model
with system size L = 800. The figure on the right is the log-log plot of the
same data. The slope of the straight line is 6 ~ 0.64.
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of variable, as a Galilean transformation, maintained invariant the fractal
properties of the interface. If the disorder is quenched, this is no longer true.
When the driving force is too low, the interfaces are pinned by the disorder,
and consequently they are smooth. On the other hand, when the surfaces are
moving very fast, {(0;h),} = v > 0, the quenched noise term reduces to an
annealed one, n(z, h) = n(z,vt) if h ~ vt, and the KPZ or EW universality
are recovered.

Between those two regimes, at a determined value of the force, F,, there
is a phase transition called depinning transition, which often has continuous
character[Middleton 1992]. In that case, the correlation length, (, corre-
sponds to the average size of the pinned (depinned) sites when we approach
the transition from above (below). This correlation length diverges when the
critical force is approached as ¢ ~| F' — F,. |7%. The mean velocity of the
front plays the role of the order parameter, and F' (though this is not the
only possibility as will be shown in the chapter 4) is the control parameter.
For values of the pushing force close above the transition, the velocity shows
a power law dependence, v ~ f?, on the relative distance to the critical point
f = (F — F.)/F. (see figure 2.6). In this regime, the motion of the front
is quite jerky, most of time driven by avalanches that present a critical size
distribution, p(s) ~ s~ 7, at the transition point. The roughness and dynamic
exponents at the transition and above are manifestly higher than those of
KPZ or EW equations.

The discrete models and equations in the literature on this topic may be
separated essentially into two universality classes [Amaral 1994]. Following
this idea, I have divided this section in two subsections.

2.3.1 The quenched EW equation

If in the EW equation the noise term is replaced by a quenched noise , we
obtain

g’; =vV?h+ F +n(x,h) . (2.26)

As in the original equation v is the diffusion coefficient, F' the driving force
and 7 is a noise with zero average and white correlations: {n(z, h)n(x’,h')} =
AZ6%(x—a')A(] h—h']). Where A(z) is a short-range fast decaying function
of z. This is the quenched Edwards-Wilkinson (QEW) equation. It was firstly
proposed by [Bruinsma 1984] as a suitable model for the borders of magnetic
domains in random field Ising model, and by [Koplik 1985, Kessler 1991] as
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a model for fluid moving in heterogeneous media. This equation can also be
obtained minimizing a Hamiltonian, which corresponds to an elastic string
inside a heterogeneous medium. That medium is represented by a quenched
random potential with the Hamiltonian

H[h, F] = g / (Vh)2dz + / dz /0 "o 1Y) — Fldh (2.27)

The QEW equation is recovered by the Hamilton equation: d;h = —H /dh.
The mapping of this problem onto a elastic string moving in a disordered
medium allows the straightforward construction of discrete models. Those
models are composed by discrete elements with an elastic interaction among
them, and impulsed by a constant force, F', inside a medium with randomly
distributed wells of the potential [Dong 1993, Jensen 1995]. The values of the
exponents of this universality class have been obtained from those models.
However, the most accurate estimation of the exponents are due to a cellular
automata proposed by [Leschhorn 1993b], which is based on a simplification
of the continuous equation. The height of the interface over each substrate
position is represented by an integer variable h;. The surface advances (h; —
h; + 1) whenever the following condition v; = A%h; + Gn;j, > 0 is hold. A? is
the lattice Laplacian, GG is the amplitude of the dichotomous quenched noise
7.

This model presents a depinning transition for a value of G, G.. The
exponents measured by Leschhorn close and above to the critical point were
o) = 1.25, g0+D ~ 0.88, 0+D) ~ 0.25 and v!+Y) ~ 1.33 for dimensions
1+1, and @Y ~ 0.74, f*D = 0.47, 6@+ ~ 0.65 and Y ~ 0.8 in 2+1
dimensions. In a more recent work, M. Jost and K.D. Usadel [Jost 1998]
reported the existence of a cross-over from oY) ~ 1.25 to 1) =1 on
very big scales. They also measured a®+!) x 0.33 and SG3+Y ~ 0.21. The
avalanches of this discrete model have also been studied in low substrate
dimensions [Pang 1997]. The value of the exponent found in that work for
the avalanche size distribution in 14+1 was: 7 & 2.0.

The explicit dependence of the noise on the surface height, h, makes more
complex the use of the standard theoretical tools to obtain the exponents
of this model. One simple argument, proposed initially by [Larkin 1970],
allows to gain some insight in the depinning transition of QEW equation.
It is based on a rough estimation of the influence that each term of the
equation has on the roughness of the interface. Let us consider a portion of
the surface with longitudinal size ¢, and whose width is less than one lattice
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space a. The diffusion term, whose value is approximately vaf=2, tries to
make the interface flat. While the quenched noise, A(0)Y/2¢=%2 tries to make
it rough. We can evaluate the dominant term by dividing the contribution
of the diffusion by that of the quenched noise, (va/A(0)Y/2)¢@=4/2 This
ratio tends to oo when ¢ — oo for d > 4, and it tends to zero for d < 4.
If it tends to oo, the interfaces generated by the model are flat because the
diffusion term is dominant. Hence, there exists a critical dimension for the
QEW equation of d. = 4.

The contributions of both terms are equal for a distance
le ~ (va/A(0)V/?)2/4=d) For d < d, = 4, the interface is rough on scales
¢ > /(. and flat below £.. This argument also allows us to have a first esti-
mation of the critical force of this model. All the interfaces are moving if
the force compensate the quenching effect of the noise F, ~ A(0)'/2¢;4/? =
A(0)Y2(A(0)Y2 /va)¥ =4 for d < 4 and F. = 0 for d > 4.

A first approach to the exponents of this equation may be obtained by
the simple power counting method as the one used in previous sections.
If the variables of the QEW equation are rescaled as * — bz, t — bt
and h — b%h, and the noise term is supposed to scale as n(bx,b*h) —
b=4/2=2/2y(x, h). The exponents for this model would be z = 2 and o =
(4 —d)/3. A more developed theoretical tool, the functional renormalization
group, was applied to this equation by [Nattermann 1992b, Narayan 1993,
Leschhorn 1997]. This method is similar to the dynamic renormalization
used with KPZ equation, but instead of considering only one coefficient for
the noise, all the terms of a power expansion of A(z) are renormalized. The
results, the first elements of a ¢ = 4 — d expansion, are « = ¢/3 and z =~
2—(2€/9),0 ~ 1—(2¢/3(6—¢)) and v ~ 3/(6—¢). The exponents predicted by
these formulae are closer to those obtained numerically for the small values
of e. Hence, it is still necessary further work to understand the exponents in
low dimensions.

2.3.2 The quenched KPZ equation

The importance of lateral growth leads to the inclusion of the KPZ nonlinear
term in the EW model. We can also add a nonlinear term in the QEW
equation to obtain the Quenched KPZ equation (QKPZ) [Parisi 1992]:

g? = vV2h + M(Vh)> + F +n(x, h) . (2.28)
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[Tang 1992] and [Buldyrev 1992] demonstrated that a couple of models
proposed by them showed a depinning transition very different from QEW
universality. Those algorithms are known as directed percolation depinning
models (DPD). In Tang’s version, the height of the interface over the sub-
strate is an array of integer values h;. The quenched disorder is represented
by a random number between 0 and 1 assigned to every lattice position n;(h;).
In each time step, a site () is randomly chosen. If any of its neighbours is
lower than h; by two or more lattice spaces, h; — hjnni > 2, this neighbour
site grows, h; — h;+1. In case that more than one neighbour fulfills the pre-
vious relation, one is selected at random to grow. Otherwise, the quenched
noise in ¢ is compared with the external pushing force F. If F' > n;(h;), the
interface advances: h; — h; + 1.

This model shows a pinning-depinning transition at a fixed value of the
force, F.. At F,, the blocked sites (those for which n;(h;) > F') are enough to
form a continuous cluster that spans through the whole system. In these cir-
cumstances, the interface is stopped by the lowest hyper-surface of those
pinning clusters. Hence, by knowing the characteristics of those hyper-
surfaces (or of the clusters), it is possible to infer the exponents of the DPD
model at F.. Typically, the mean size of the pinning clusters diverges as
¢ ~| F—F.|™ and ¢ ~| F—F, |7"* when the critical force is approached.
This behaviour implies that, for instance, the width of the interface of the
correspondent DPD model goes as w ~ (| ~| F' — F, | "t~ QTL/V”. Hence,
a = v, /y; at F = F,. Similarly, the time needed by a surface to over-
come a cluster of blocked sites depends on the cluster lateral size. Actually,
t ~ (| because the lateral growth is the only permitted motion. So, the
velocity close to the critical force behaves as v ~ (, /(| ~| F — F, ["I7"+ | s0
0= IJH — V.

In (1+1) dimension, the cluster of blocked sites at F. forms a directed
percolation (DP) path. DP is a very well known problem [Hinrichsen 2000],
for a more general introduction to percolation theory see [Stauffer 1994]. The
exponents measured for DP are v = 1.733 and v; = 1.097, with a critical
density p, = 0.5387 = 1— F*Y. Hence, oY = v /y; = 0.633 and U+ =
v —vi = 0.636. It has been also measured 20+ =1 [Tang 1992]. In (2+1)
dimension, the latter mapping onto DP is no longer valid. Instead of directed
percolation paths, now it is necessary to consider directed surfaces (DS). DS
and the DPD model in dimensions d > 1 were analyzed by [Amaral 1995b].
The results are shown in the next table. The dynamic exponent in those
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dimensions may also be obtained from a mapping onto isotropic percolation
[Havlin 1995]. From this mapping, it was found that the exponent z increases
with d (see the following table) till it reaches the mean field value z = 2 for
d = 7. This is the critical dimension (at least for the dynamics) of this model.

It is also important to note that the exponents measured from this model
close to and above the critical transition are not equal to those of the pre-
ceding table. Generally, they are a bit higher («,, = 0.75 and f,, = 0.74
for 1+1) [Makse 1995] and suffer a cross-over to those of KPZ universality
for large scales [Amaral 1995]. The size where the cross-over takes place is
the usual lateral correlation length, ¢ ( the mean size of the pinning clus-
ters). The scaling of the avalanches of DPD model was estimated using a
cellular automaton by [Barabdsi 1996], the values measured in this work were
70+ ~ 1.7 and 73+ & 2.2. Those exponents were also determined directly
from the DPD model [Amaral 1995b]: 7(*V ~ 1.26 and 7?+1) ~ 1.51.

dimension o z Y| 0
141 0.633 | 1 |1.733]0.636
2+1 048 | 1.15| 1.16 0.8
3+1 0.38 | 1.36 | 0.95 1.0
4+1 0.27 | 1.58 | 0.66 1.0
5+1 0.25 | 1.7 | 0.6 -
641 0.2 1.8 0.5 -

This has been a rough description of DPD, a discrete model that presents
a depinning transition different from the QEW universality. But, can the
QKPZ equation be included in the same universality class?. The answer is
affirmative, as was shown by [Amaral 1994, Amaral 1995]. Apart from direct
integration of QKPZ equation [Csahdk 1993, Csahék 1993b, Leschhorn 1996],
the way to know if a KPZ nonlinear term is present in the effective equation
describing a discrete model is by the addition of an overall tilt to the inter-
face; h' — h+max. If that effective equation is as QKPZ, the mean velocity of
the front must show a parabolic dependence on the tilt {(9;h),} = v, + Am?.
When this method is applied to DPD model, a clear parabola is observed.
The curvature of that parabola diverges when the critical force is approached,
A ~| F — F, |7®. Hence, discrete models may be classified in two different
classes close to the depinning transition, depending on how they behave when
an overall tilt is added to the interface. If the velocity does not change with
the tilt or the curvature of the parabola vanishes when F' — F, they belong
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Figure 2.7: Velocity versus tilt for a Tang’s DPD model of lateral size L =
800. The curves are for different driving forces; (O) F = 0.56, (¢) F = 0.52
and (A) F = 0.48. On the right, two of the precedent curves are analyzed
following Neshkov’s formula. The fits correspond to a couple of parabolas of
curvatures A\; ~ 0.36 and A\ ~ 0.38.

to QEW universality. On the other hand, if the curvature of that parabola
diverges, the model is in the QKPZ class.

Actually, that divergence is due to an incorrect interpretation of the effect
of the tilt on the velocity of surfaces [Neshkov 2000]. In fact, the velocity goes
as v ~ (v,+Am?)/v/1 + m? (see the figure 2.7), and not as a simple parabola.
When this new formula is employed, discrete models have again two possible
behaviours close and above to the transition. Either the curvature of the
parabola tends to zero when F' — F, they belong to QEW universality, or
remains constant and greater than zero at the transition, the models are in
the DPD or QKPZ universality class.

The nonlinearity of KPZ equation is due to the lateral growth of the
surface. So, it was expected to be proportional to the velocity. But, as it
has been explained in the previous paragraph, some models are described by
an effective QKPZ equation with a non vanishing nonlinearity even at the
depinning threshold where v = 0. The question is: Which is the origin of
this non-vanishing KPZ term?. Some authors [Tang 1995] proposed that it
is generated by the anisotropy of the quenched disorder. A bit more clear
is the effect that the presence of the KPZ nonlinearity has on the interface,
the local slope is constrained to low values as happens in restricted solid on
solid discrete models [Makse 1995b].
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Finally, it is important to note that the QKPZ equation may exhibit
a very different behaviour at the depinning transition when the product
AF' is positive or negative. In the "classic” case A\F' > 0, all mentioned
above is valid, and this model may be included in the DPD universality class
[Leschhorn 1996]. On the contrary, if A F' < 0 the QKPZ equation presents
a discontinuous phase transition at F, [Jeong 1996, Jeong 1999, Szabé 2001].
The interface, at the critical point of this case, is formed by facets of constant
slope.

2.3.3 Self-Organized Depinning models

There are a great number of physical systems whose fluctuations follow a
power law distribution. Initially, they presented a big challenge for physics
because the prediction of the central limit theorem is a Gaussian functional
form for that distribution. Only in the very special case of a critical point
was expected a scale-free distribution. However, the probability that a real
system is in a critical point starting from a random configuration is almost
zero; it is just a point in a parameter space with dimension D > 1. Hence, a
new ingredient was necessary to explain the profusion of power-law distribu-
tions in experiments. Self-organized criticality (SOC) is one of the possible
theoretical solutions for this problem [Bak 1987, Bak 1988]. The idea is that
the dynamics of a system may be trapped , with no need of any external in-
tervention, by an attractor including a critical point and its neighbourhood.
In that case, the distribution of fluctuations is critical.

As was explained in the previous subsections, fronts moving inside a het-
erogeneous medium suffer a depinning transition at a critical value of the
driving force. Hence, it is possible to look for a SOC model whose attractor
lies close to F.. The first couple of self-organized depinning (SOD) models
were proposed by [Sneppen 1992]. In both, the height of the interface over
the substrate takes the form of an integer array, h;. The disorder is simulated
by a random real number, 7;(h;), between zero and one assigned at every site
of the lattice, as in the DPD model. The difference respect to that model
comes from the dynamics. In the first algorithm, model A, there are some
special sites where the interface may advance without breaking the RSOS
condition (| h; + 1 — hjnn; |< 1). The site with the lowest value of the dis-
order 7 is chosen to grow among those privileged sites. In the second model
(B) the site with the lowest value of 7, i, is directly selected, the surface
advances there, h; — h; + 1, and an avalanche starts till the RSOS condition



44 Chapter 2. Theoretical models

(Ah < 1) is reestablished.

The first version, model A, exhibits faceted interfaces quite similar to
those reported by [Jeong 1996] for the depinning transition of QKPZ with
AF < 0. The early measurement of the exponents of this model gave as
result = 1 and § ~ 0.95 in 1+1. Though a more complete study about its
scaling and exponents will be included in chapter three.

The second version, algorithm B, corresponds to a SOC model close to the
DPD critical point. The roughness exponents of this model are oY ~ 0.63
and oY) ~ 0.50 [Falk 1994]. Those values, as in DPD, are caused by
the identification of interfaces with a directed percolation cluster (directed
surfaces for d > 1) composed by the biggest values of ) [Tang 1993]. Although
the geometry of the front admits a simple explanation, the same cannot be
applied to the dynamics [Sneppen 1993, Sneppen 1993b]. As may be seen
in the figure 2.8, the motion of interfaces tends to concentrate the activity.
In general, the next site to grow will be close to one that has been recently
actualized, producing thus a motion by avalanches. The size distribution
of those avalanches, or associated processes as they are referred to in the
literature, follows a power-law, P(s) = s~ 7f(s/Af7). Where Af gives an
idea of the distance of the model to the criticality; if n,, is the biggest noise
among those of the sites already chosen to grow, Af = Neritic — Nim-

Figure 2.8: Associated processes (avalanches) for Sneppen’s B model. The
lateral size of the system is L = 512.
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The exponents measured numerically for the associated process of model
B are 7071 a2 1.25 [Leschhorn 1994, Olami 1994] and 73+Y) s 1.45 [Falk 1994].
These exponents may be obtained analytically from the interface geometry.
The steady state motion of this model is characterized by a sequence of
surfaces corresponding to the advance of the interface. Two consecutive
surfaces may overlap in many sites, and they are different in the places
affected by an associated process. The geometry, roughness exponent, of
those interfaces is known, hence it is possible to relate it to the distribu-
tion of the hyper-volumes enclosed between the surfaces. Initially, there
were two proposals for that relation: 7 = 2/(1 + «), v = (1 + a)/a by
[Olami 1994, Olami 1995] and 7 =1 + (d—(1/v))/(d+«) and v = (d+«) /v
by [Maslov 1994, Maslov 1994b, Paczuski 1996]. In the latter formulae v =
v is the exponent measuring the divergence of the lateral cluster (directed
surface) in the DP model when the critical density is approached from below.

The punctuated motion that the interfaces of B model suffer due to the
associated processes generates temporal multiscaling in the width and cor-
relations. If a new correlation function is defined as Gy(t,1) = {((h(z +
[,t) — h(z,t))?),}, the early time scaling G,(t,1) ~ t%% is observed, where
By # (q/2)B>. In fact, following the same ideas as for the distribution of
sizes of associated processes, it is possible to establish the relation 3, =
(gqa +d) /(g + ¢d) for g > 0.

As for the DPD, there also exists a SOC model whose dynamics takes
place close to QEW depinning transition. Instead of choosing the site with
the lowest noise value to grow, the selected site is that where V2h + n;(h;) is
minimum [Roux 1994]. The exponents measured from this model are equal
to those of QEW at the critical pushing force.

2.4 Non-local models

There exist many physical systems where non-local laws must be taken into
account to obtain a realistic model. Examples of those type of systems are
DLA [Witten 1981], competitive needle growth models as the grass model
[Krug 1997], bacteria or fungus colonies [Lépez 1998], etc. The physical ori-
gin of non-locality may have several sources. It may be due to a shadowing
effect in the growth process. In such systems, the competition for the grow-
ing material, as happens in a forest for the sunlight, produces that the peaks
evolve faster than the valleys (they are shadowed by peaks). That effect has
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a very long range influence, so local models are not useful to characterize
this problem. It may also be due to a global conservation law. Some exam-
ples of this are fluid fronts, where the total mass is conserved, or fracture of
brittle materials , where the energy travels through the whole system till it
is dissipated in the crack front.

I will come back later to fracture experiments, in last chapter of this the-
sis. By now, let us focus on fluid motion in porous media to have an applied
example of a non-local model. As it was explained in chapter one, experi-
ments with fluids are carried out in two different working modes. Either with
constant injection rate, or with constant pressure. As a consequence of mass
conservation, in the first case fronts move with a fixed velocity. While in the
second one, interfaces decelerate, v ~ t7 with v < 1, till they finally stop.
The geometry of those pinned fronts was initially thought to correspond to
a Directed Percolation (DP) cluster [Buldyrev 1992]. However, this identifi-
cation has recently been questioned [Lam 2000, Dubé 2001, Lam 2001]. The
problem is the locality of DP theory, which does not take into consideration
the global mass conservation rule.

To surpass local models a phase-field model was recently proposed [Dubé 1999,
Herndndez-M 2001]. The main ingredient of this model is a field ¢(Z,¢),
which takes a different value for each of the two fluids; ¢ = +1. The poten-
tial for ¢ is V(@) = —(¢*/2) + (¢*/4) — a(Z)¢, what ensures that there are
only two stable values for ¢ (those of the two fluids), and that ¢ is not going
to diverge anywhere. The dynamics is governed by a continuity equation to
satisfy the mass conservation law,

Op =V [-V?¢— ¢+ ¢ —a(F)] —Ve. (2.29)

a represents the disorder of the medium where the fluids are moving, and
v is the injection rate. The exponents that are obtained from a numerical
integration of this model are a!*Y ~ 1.25 and pU+Y ~ 0.32 [Dubé 2000].
From the previous equation is possible to get an expression for the evolution
of the interface,

/oo dx' 6h' g(x, h|2', WO (2, t) o< V2h +n(z, h) , (2.30)

and also to recover some of the well known fluid dynamics equation as Darcy
law or Poisson equation for pressure [Hernandez-M 2001].
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2.5 Conclusions

This has been a sketch of the theoretical development in this field during
the last two decades. Though those models are able to explain some of the
features observed in the experiments, they are still far from being a complete
description of the experimental behaviour. I hope what is coming in next
chapters to be a step further in that direction.
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Chapter 3

Anomalous scaling

Interfaces of many growth models or experiments follow the scaling behaviour
proposed by Family and Vicsek (FV) [Family 1985] for the evolution of the
width. However, this is not a general rule. There are many other cases where
this scaling is not able to represent the dynamics of the system.

3.1 Why is a new scaling needed?

In the Family-Vicsek scaling ansatz, growth universalities are characterized
by three exponents. The roughness exponent «, the growth exponent [,
and the dynamic exponent z. Only two of those exponents are independent
because of the self-consistency condition z = a/f. The exponents « and
(# may be measured, as was explained in the previous chapter, using both
global or local width estimators.

In a self-affine fractal, the system size, L, acts as an upper cutoff for the
scale invariance symmetry. Hence, when a magnitude is estimated close to
that scale the power-law functional form is lost. This effect may be taken
into account in a theory by means of a simple artifact known as finite-size
scaling. For instance, for an interface after saturation, the local width goes
as w(l) ~ [* up to system size scale L. The upper cutoff may be included
in that formula as w(l, L) ~ 1*f(I/L). Where the function f(u) is constant
for small values of u (u < 1), and it is equal to u=® for v ~ 1. One of
the consequences of the previous argument is that it gives a way to deal
with global scales. If it is valid, the global width must increase with growing
system size as W (L) ~ L. The same power law dependence, and the same

49
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exponent, as for the local width. This means that the comparison of widths
of two systems of different sizes follows the same law as local widths of two
scales inside only one system. Indeed, if the ratio (Ls/L1) = (l2/l1) is hold,
it can be extrapolated to the widths; (W (Lq)/W (Ly)) = (w(l2)/w(ly)). The
FV scaling is based on a finite-size scaling argument. Hence, global and local
estimators are expected to give the same values for the exponents.

There are, however, some theoretical growth models in which the symme-
try between global and local magnitudes has been found to be broken. This
phenomenon was initially discovered in super-rough interfaces [Leschhorn 1993].
Examples of this kind of surfaces appear in models as common as the QEW
equation at the critical point [Leschhorn 1993b, Roux 1994, Lépez 1997], or
the linear MBE equation [Wolf 1990, Lai 1991]. Let us focus on the linear
MBE model described by the Mullins-Herring equation

Ooh

ot

where K is a constant, and 7 is a white noise of zero average and a variance
A?. As may be seen in figure 1, the local and global width behave in a very
different way. The roughness exponent measured from the local width is
Qo &= 1, while the global width gives o = 1.5, closer to the value calculated
analytically in the previous chapter. In this particular case, the problem is,
as was shown in [Leschhorn 1993], that a local estimator cannot grow faster

= —KV'h+ F +n(z,t), (3.1)

log,, (W(t,,1)
Q
log,, (W(t,L))

1
0.0 1.0 2.0 3.0 0.5 1.0 15 2.0 25
log,, () log,, (L)

Figure 3.1: The local (left) and global (right) width of linear MBE equation
in saturation. The circles () represent data from simulation, the slope of
the straight lines are ag,. = 1 on the left, and o ~ 1.46 on the right.
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than the scale [. Hence, ;.. = 1 is an upper cutoff for local magnitudes. This
is not the only possibility for anomalous roughening. As was demonstrated
in [Lépez 1997¢], there can be anomalous scaling without super-roughening.

A second property that characterizes the anomalous scaling is the time
evolution of the mean square slope. This function is defined as s(t) =
{{(Vh)?*,}. Tts discrete version is the height-height correlation function
at equal time evaluated for nearest neighbours: G(t,l = 1) = {{(h(z +
1,t) — h(x,t))?),}. In the Family-Vicsek scaling, the function G(t,1) reaches
a steady state situation for a time ¢y (l) ~ [*. Thus, the smaller [ is, the
faster the function G(t,[) saturates. Due to that, s(¢) should remain con-
stant for all value of time ¢ > 0. However, in systems with anomalous
scaling s(t) increases in time as a power law, s(t) ~ G(t,l = 1) ~ t** till
the whole system saturates at t, ~ L?. This behaviour, as will be estab-
lished in following sections, is a consequence of the different scaling depen-
dence of the global and local scales. It was firstly observed in MBE models
[Amar 1993, Krug 1994, Das Sarma 1994, Das Sarma 1996, Dasgupta 1996,
Lépez 1996, Dasgupta 1997, Punyindu 1998], both linear and LDV equations
but it is also present in QEW [Lépez 1997].

In experiments, anomalous scaling has been observed in a wide range of
fields: MBE growth [Yang 1994, Jeffries 1996, Zhao 2000], electro-deposition
[Huo 2001], fracture [Lopez 1998b, Morel 1998, Morel 2000] or fluid displace-
ment inside heterogeneous media [Soriano 2002].

3.2 The anomalous scaling ansatz

The FV scaling was firstly proposed as a finite-size scaling argument for the
evolution of the width of growing interfaces. The anomalous scaling ansatz
may be also defined for the width, but the final result is more compact
in the reciprocal space (that of power spectrum). Both scaling schemes,
FV and anomalous, are based on the same assumption about the dynamics
of the system. That postulate is the existence of only one characteristic
scale &, ky in reciprocal space. The scale £ is the mean lateral size of the
clusters of correlated growing sites. It increases in time as a power law
€ ~ tY% ky ~ t71/% till it becomes equal to the system size £ = L, and
then the evolution reaches a steady state. If we put together this idea with
the expected long-range correlations in the stationary regime, we obtain the
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following scaling ansatz for the power spectrum

1 1
S(kt) = sgara sk/kx) = 1507 s(kt'/?) . (3.2)

Where « is the roughness exponent and the space where the interface is
moving is (14d)-dimensional. This functional form is common for FV and
anomalous scaling. The difference comes in the asymptotic behaviour of the
function s(). In the case of Family-Vicsek ansatz, it is

u2atd if 4 < 1
const otherwise .

The value of s() in the region with v > 1 (k > k) ensures that, on small
scales | ~ 1/k < & the power-spectrum is independent of time. In this
regime, S(k) decays as a power-law with k, S(k) ~ 1/k***4. In direct space,
this means that the correlations become constant in time on scales below
¢, including the mean square slope. This is not the case when anomalous
scaling is present, as was explained in the previous section. Hence, the way
to introduce the anomalous scaling in that ansatz is to add a new asymptotic
power law dependence in the function s() for k > k. [Lépez 1997b].

4
= )
< =
x
e z
o < 0
o o
o
0 -4
-3.0 -2.0 -1.0 0.0 1.0 10 00 1.0 2.0 3.0 4.0
10g,, (K) log,, (k t*%)

Figure 3.2: Power spectra for different times and their collapse using (3.4).
Those power spectra are obtained form the discrete model proposed by
[Bianconi 1999] with parameters (p = 0.75, a = 1). The slopes of the dashed
lines are —(2a5 + 1) = —2 (on the left) and 26 = 1 (on the right).
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uetd if 4 < 1

sa(u) ~ { .

U otherwise ,

(3.4)

the new exponent 6 may be written as the difference between other two
exponents = a — as. In such a way that the asymptotic functional form
of the power spectrum for k > ky decays also as a power law with k, but
now with a new exponent ay; S(k,t) ~ t20/%/as+d) - After saturation, this
expression for the power spectrum becomes S(k,t > tyq) ~ L@ /f2asHd,
The new exponent «y is called spectral roughness exponent. As it is shown
in the appendix A, the spectral exponent is not always observable with direct
space methods. However, it plays a very important role in how the scaling
of direct magnitudes are.

3.3 Scaling in direct space

The scaling ansatz has been introduced in the reciprocal space. To extract
further information, and also to compare clearly with the FV scaling, it is
necessary to find how the second order momenta of Ah behave in the direct
space. As may be seen in the previous chapter, the power spectrum is related
to (local) global width and correlation functions by integral transformations.
For instance, the global width of the interface may be obtained from S(k,t)
with the following Parseval identity

1 w/a
W2t L) = — 3 S(k1) = /2 |, S (h1). (3.5)
k ™

The lower cutoff in k-space, 27/ L, is due to the finite lateral size of the inter-
face L. While, the upper cutoff, Nyquist’s frequency 7/a, must be introduced
because of the discrete character of the system. The constant a corresponds
to the lattice spacing.

Similarly, we can find an expression relating the power spectrum to the
local width. However, mathematically it is easier to use the height-height
correlation function instead. This change has not a special significance be-
cause both quantities show a similar scaling; G(t,1) ~ w(t,l). The function
G(l,t) may be obtained by an integral transformation of S(k,t),

7/

G(t, 1) = a2L > 11 —cos (k)] S(k,t) ~ / "k [1 —cos(kl)]S(k,t). (3.6)

2w /L
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Hence, in order to find the scaling of direct space magnitudes, we must
carry out those integrals with the scaling ansatz (3.4) of the latter section.
This process presents different characteristics, difficulties and results depend-
ing on the values of the exponents a and a,. As a consequence, we may
classify the scaling behaviour in four different groups:

as = a = Family-Vicsek scaling
as # a = Intrinsic anomalous
as = a = Super-roughening

as # o = Faceted interfaces

if ay < 1= qqoe = Qg
ifa,>1= qp=1

The value of oy, is deduced from the scaling ansatz for G(I,t) in direct
space; taking into account that this function goes as G(I,t > tyq) ~ [*“ec in
the saturated regime. The step by step calculation of FV direct space scaling
is carried out in the appendix A. For the sake of simplicity, the more complex
mathematical formalism has been separated from the physical conclusions.
Let us analyze the results for each particular case.

3.3.1 Family-Vicsek scaling

This is the scaling version proposed by Family and Vicsek [Family 1985].
As was explained in a previous section, it is based on a finite size scaling

2.0

1.0 r

log,, (G(L.1)

0.0
0.0 1.0 2.0 3.0 4.0

log,, ()

Figure 3.3: Temporal evolution of the height-height correlation function for
KPZ model. The different curves correspond, from bottom to top, to scales
[ = 16,32,64,256. The system size is L = 512 and the slope of the straight
line is 23 =~ 0.61.
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argument applied to the width estimator. This scaling may be recovered as
a particular case from the general anomalous scaling ansatz. It corresponds
to a = oy < 1. In the appendix A, it is shown (expressions A.4 and A.5)
that, with those restrictions for roughness exponent and starting from the
power spectrum ansatz (3.4), the global width must behave as

1207 if t <ty

2
Wit L) { L2 otherwise . (3.7)

Similarly, it is found (equations A.8, A.10 and A.17) that the height-
height correlation function scaling is (see fig. 3.3) given by

Gt N{ 2/ if t <ty (1) (3.8)

2 otherwise .

As an example of this scaling, the temporal evolution of the height-height
correlation for KPZ equation is shown in figure 3.3. As well, the power
spectrum for different times for the same model may be seen in figure 3.4. In
this figure, it is also plotted a collapse of those data following the ansatz (3.4).
The KPZ and EW universalities show, as many other systems, a Family-
Vicsek scaling behaviour. The interfaces of those systems at saturation may
be geometrically described by just one roughness exponent lower than unity.
This fact implies that those interfaces are actual self-affine fractal objects. It

0.0

log,, (S(k.b)

1.0 20 -10 00 1.0 2.0 3.0
log,, (K) log,, (k )

Figure 3.4: Power spectrum for different times for KPZ equation. The slope
of that straight line is — (2« + 1) &~ 2. The second figure is the collapse of
four of those spectra following the ansatz (3.4) with a = 0.5 and z ~ 1.7.
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also means that their only characteristic length, the system size L, enters in
a simple finite-size scaling manner. There is thus no real distinction between
local and global magnitudes. As a consequence, the estimators saturate for
the smallest scales faster than for the global ones; on scale [, the saturation
time is t«(I) ~ [*. This leads to the fact that the dispersion of local slope
profile, s(t), does not grow in time.

3.3.2 Intrinsic Anomalous roughening

This scaling happens when o # o, < 1. This is a more general (and complex)
situation than the previous Family-Vicsek case. From the equations (A.4)
and (A.5), we find that the global magnitudes still behave in a similar way

as before
128 if t <ty

L?*  otherwise . (3.9)

W2(t, L) ~ {

However, the same can not be applied for the local estimators (equations
A.8, A.11 and A.18), which are found to scale as

12/ if t < t,(1)
G(t,1,L) ~ { t¥emes)/z2asif ¢ (1) <t <ty (3.10)
[2os [2@=as)  otherwise .

3.0
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log,, (w(t,))) log,, (W(t,L))
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Figure 3.5: The global and local width for Bianconi’s model. The curves are
simulation data corresponding to the next scales from top to bottom: system
size L = 1024, | = 256,64, 32 and 2. The slopes of the two lines are 5 ~ 0.5
and k ~ 0.25.
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From the previous expression, we can identify o, = a5 and kK = (o —
as)/z. For a practical example see figures 3.1 and 3.5. Surfaces that show
intrinsic anomalous behaviour might still be confused with self-affine fractals
(their roughness exponent ay,. is lower than one), though they have other
novel properties. The global scales do not enter in this problem by means
of a simple finite size scaling. On the contrary, local functions of saturated
interfaces depend on the system size L. Indeed, the roughness exponents
measured from global and local estimators are different (qj,. = a5 # «).
This difference implies that the saturation of local quantities takes no longer
place at £y () but at ¢, (L), at the same time as for the whole system. That
behaviour also affects s(t); the dispersion of the slope profile increases at
early times (¢ < ty) as t**. In saturation, this function also depends on the
system size, s(t > t,) ~ L2@7a),

3.3.3 Super-roughness

The global roughness exponent is now higher than one, a« = a, > 1. Even
so, the global quantities scaling is the same (eq. A.4 and A.5)

20/ it <ty

W2(t,L) ~ . 3.11
(t,L) L?**  otherwise . ( )
0.0
2 e
< =
e <
5 € 40
o ]
g
-8.0
1.0 =20 -10 00 10 20 30
log,, (K) log,, (k t**7)

Figure 3.6: Power spectrum of the QEW model at the critical point. The
slope of the straight line corresponds to o & 1.25. The figure on the right is
a collapse using ansatz (3.4).
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Local magnitudes, on the other hand, show some special features (see eq.
A8, A.13, A.19, and figure 3.7)

128 if t <ty (1)
G(t,I,L) ~{ t2o=V/212 ift (1) <t <ty (3.12)
1221 otherwise .

The local roughness exponent is clearly aj,. = 1 # 4. Although this
asymptotic behaviour looks too much like the scaling for the intrinsic anoma-
lous case (apart from the fact that . # as), the origin is very different.
Super-rough interfaces cannot longer be considered as self-affine objects. For
instance in a (1+1) dimensional space, the fractal dimension of those surfaces
would be D = 2 — a < 1, which corresponds to a group of points instead
of to a curve. Despite of this fact, the local and global functions have the
same characteristics as in the previous case. The local exponent has always
as upper cutoff the value 1 [Leschhorn 1993], which is its actual value under
these circumstances. It is that difference between o and «y,. what produces
the anomalous behaviour of s(t), see fig. 3.7.

6.0

20

log,, (G(t.1))

0.0 1.0 2.0 3.0 4.0
log,, ()

Figure 3.7: The height-height correlation function for QEW equation at the
critical depinning transition. The scales of the different curves are from top
to bottom [ = 256, 64, 32,16 and 2. The system size is L = 512. The slopes
of the dashed lines are 23 ~ 1.76 and 2x = 0.4 respectively.
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3.3.4 Faceted surfaces

This is the latest scaling behaviour that has been found [Ramasco 2000]. It
appears when ag > 1 and a, # «. This happens, for instance, at the critical
transition of the QKPZ with (A F') < 0. The global magnitudes go as (see
eq. A.4 and A.5)

1207 if t <ty

2
WAt L) { L?*  otherwise . (3.13)

In the same way as in previous cases. The local magnitudes, however, show
a singular behaviour (eq. A.8, A.15, A.20 and fig. 3.8)

t2e/z if t < ty(l)
G(t,I,L) ~{ t2o=D/=12 if ¢ (1) <t <ty (3.14)
12 .21 otherwise .

Again, the local roughness exponent is equal to one, o, = 1. But, this
is no the only information that we can extract from the latter expression.
The value of ay is higher than one by definition, and it could be thought
that this fact does not affect a. However, the asymptotic behaviour of the
height-height correlation leads to the condition o« > 1. On the contrary, the
function G() would decrease in time in the intermediate regime. If o > 1,

3.0

1.0

log,, W(t.D) log,, (W(t.L))
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log,, (1)

Figure 3.8: Time evolution of local and global width for Sneppen A model.
The scales of observation are from bottom to top | = 2,128,512 and L =
2048. The slope of the dashed line is 5 ~ 0.93.
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Figure 3.9: Power spectrum for different times obtained from Sneppen A
model. The slope of the dashed line on the left is 2a, + 1 & 3.7. The second
plot is a collapse of those spectra employing the ansatz (3.4). The value of
the exponents used in the collapse are a =1 and z = 1.

the scaling of direct space local magnitudes cannot be distinguished from the
super-rough case. On the other hand, if & = 1, the height-height correlation
behaves in a similar way as in F'V scaling. The main difference between those
scaling forms and this one is in the power spectrum displacement in time.
This may be seen in figure 3.9.

As was mentioned at the beginning of this section, the QKPZ with
(AF) < 0 equation shows this scaling behaviour at the depinning criti-
cal point. At that point, a first-order phase transition takes place. The
geometry of the interfaces at the transition is like a train of consecutive
facets. One example of those interfaces, obtained from the SOD model pro-
posed by [Sneppen 1992|, is plotted in figure 3.10. Let us consider only
one of those facets, simplifying it as a triangle with base L and an an-
gle ¢ between the base and its sides (¢ = tan¢). This object may be
analyzed using the same techniques that are applied to interfaces. The
mean height is then (h) = (1/L) [} dxh(z) = aL/4, the global width
W2(L) = (h?) — (h)*> = a® [?/48, and the height-height correlation func-
tion goes as G(I, L) = ([h(x + 1) — h(2)]?) ~ a®® — a*I3/(3L). The latter
expression has been calculated with periodic boundary conditions. From
those identities, the roughness exponents are a« = 1, and .. = 1. On the
other hand, the power-spectrum of that figure may be also calculated. The
leading term of the spectrum is S(k, L) ~ L™ /k*. Comparing this expression
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Figure 3.10: Interfaces of Sneppen A model for different times, L = 2048.

with the asymptotic behaviour of the power spectrum in anomalous scaling
S(k) ~ k~2astD) [2(e=as) e find that a, = 3/2. Hence, the scaling of that
simple object belongs to this group. The roughness exponent o for the SOD
model is a bit lower o, &~ 1.35; an interface of this model is not composed
only of one facet but of a random number of them of different sizes. It follows
the same kind of scaling, though.

In general, this type of scaling may be expected when structures of a
definite shape are involved in the problem. They do not have to be only
triangles, but any kind of mound formation. Similar objects appear for in-
stance in MBE growth for a determined region of experimental parameters
[Ballestad 2001]. However, it is important to note that those structures must
reach a stationary state in dispersion; their width cannot grow forever.

3.4 How to predict the presence of anoma-
lous scaling

In the second chapter, it was mentioned that many growth universalities may
be represented by continuous equations. This was the case, for example, for
the Kim-Kosterlitz model [Kim 1989] and KPZ equation [Kardar 1986]. We
may then formulate the following question: Are we able to know with a
simple technique how the scaling behaviour of a given growth equation is?.
The answer is affirmative in some cases, as was shown by [Lépez 1999]. Let
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us suppose that we have a growth equation

g}; = ®(Vh) + n(x,t), (3.15)
where h is, as usual, the height of the interface over the substrate, ®() is a
functional that defines the growth model, and 7 is a zero average white noise
with a variance A2. In the previous sections, it has been demonstrated that
the presence of super-rough, intrinsic anomalous or faceted scaling, implies
that the variance of the slope profile must grow in time in the intermediate
regime. This happens even in the marginal cases where s(t) grows logarith-
mically. To find how the slope behaves, we can apply the gradient operator
to the previous equation, obtaining

oxr o9
ot Y

The function Y(x,t) is the gradient of h, T = Vh. Without loosing gen-
erality, we can assume that (Y), = 0 in each direction of the substrate .
For instance, this condition is exact for an interface with periodic bound-
ary conditions. The following step is to calculate the dispersion of Y ;
Wr(t, L) = {{X%(x,1))}"/? = 5(t)"/2. Whenever a scaling behaviour dif-
ferent from Family-Vicsek is present, that function has a temporal regime
where it grows as Wy ~ G(t,1 = 1)/2 ~ t* with K > 0. The » exponent
is connected to the roughness exponents a and «y,. by the scaling relation
Kk = (o — ayee) /2. Hence, if we were able to find how W~ behaves in time
(as well as which is the value of « or ay,.), the scaling of the model would be
completely determined.

In order to have some practical examples, this method may be applied
to several of the growth equations with annealed disorder mentioned in the
previous chapter. The reason to do so is twofold: their exponents may be
obtained analytically using a simple Flory-type scaling argument, and on the
other hand they represent universality classes. The first model to be taken
into consideration is KPZ equation,

VY + Vi (3.16)

oh

5 v V2h + X (Vh)? +n(z,t) . (3.17)
As usual, the term 7 is a zero mean white noise with a dispersion A. In
the second chapter, a Flory argument was already used with this equation.
The exponents found with this method are exact only in (1+ 1) dimensions,
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for higher dimensions they are only an upper cutoff for the actual exponents.
The estimation for the exponents were a = 2/(3+d) and z = (4+2d)/(3+4d).
Note that the value predicted for « is less than one in any dimension.
If a gradient operator is applied to the latter growth equation, it becomes
oY

where Y = Vh. This is a conservative equation; it may be written as 9, =
~VJ with J = —vVY — AY? — 5 . If the function Y is treated as a
rough interface, a Flory argument may be employed to obtain the exponents;
both ay (roughness) and k (growth). Let us then consider a fluctuation
of X, T;, which takes place on a scale [, and lives for a time ¢;. Each
term in the equation (3.18) may be approached as: (| 9Y /0t |); ~ Y/t
(| VY |); ~ Y/, and (| VX2 |); ~ T?/l. The noise term is a special
case, it may be estimated as (1), ~ [=0F4/2 1,712 or as (), ~ 171 (1, T§) /2
depending on the relative importance of [ and T;. For the KPZ equation in
the strong coupling-regime, T, is more significant and 1 must be approached
by the second expression [Hentschel 1991].

The nonlinear term dominates on large scales over the diffusion. Thus by
equating it to (| Y /0t |);, we get a characteristic fluctuation scale Y, ~ [/t;.
On the other hand, by equating the noise and (| 9Y/dt |);, we find that:
Tl1+d/ 2~ tll/ ?/1. Joining those expressions for Y}, the result is T; ~ tl_l/ ),
The growth exponent for the field Y is then kK = —1/(4 4+ d). It is always
negative, what implies that for KPZ the scaling is Family-Vicsek. The same
asseveration is valid for the EW universality. The EW equation is obtained
when A = 0 in KPZ equation. The value of « is then k = —d/4.

The next models to be analyzed concern MBE growth. The simplest
equation of this group is the Mullins-Herring’s

gl; = -KV*'h+n(x,t). (3.19)
This equation may be solved analytically, as was mentioned in the previous
chapter, and the exponent values are a = (4 —d)/2 and z = 4. Ind =1
dimension, the roughness exponent is higher than unity. Hence, a super-
rough (or faceted) scaling may be expected. The application of a gradient
operator on that equation transforms it into

oY

o =K VY + V. (3.20)
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Using an argument similar to that of KPZ equation, we can estimate the
terms of the latter equation: (| VAY |); ~ Y;/I* and (| Vi |); ~ (1%+2¢,)71/2,
If they are equated to the left hand side term, it is found that Y; ~ tl(%d)/ 5,
This model shows thus a super-rough scaling for d = 1. With a = 3/2 and
Kk = (@ — aqee)/z = 1/8. There is a critical dimension at d = 2, and finally
Family-Vicsek scaling for d > 2.

Other local model proposed to describe MBE phenomenon is LDV equa-
tion (see chapter two),

oh

ot

The exponents of LDV equation may be obtained by a dynamic renor-
malization group technique, & = (4 —d)/3 and z = (8 +d)/3. The roughness
exponent a < 1 for all space dimension. Consequently, there is no reason
a priori to expect a scaling behaviour different from FV (except for d = 1,
which could be marginally super-rough). If the gradient operator is applied
to that equation, we obtain

oY

ot

As before, a Flory-type argument may be employed to find the exponents
of this new equation. As was done for KPZ, each term can be estimated as
(| VAY |); ~ Y/l and (] VV?X? |); ~ Y?/[3. For this equation, as happened
for KPZ, the intermediate scales are important due to the nonlinearity. Thus,
the noise term must be approximated by (| Vi |); ~ (12T{#)~'/2. From those
expressions, the temporal evolution of a fluctuation is Y; ~ tll/ (B+3d)  Thig
model presents, as far as this approximation to find the exponents is valid,
intrinsic anomalous roughening with a = (4 — d)/3 and e = a — 2k =
(8+d—d?)/(8+ 3d).

Unfortunately, the only equation that may belong to faceted scaling,
QKPZ with A F' < 0, can not be solved by a Flory-like approach of the kind
above described. Neither it is possible to treat the general QKPZ equation
by simple analytical means.

= —K V*h+ X\ V3(Vh) +1n(x,t) . (3.21)

= —K V'Y + A\ V(V2Y?) + Vn . (3.22)

3.5 Conclusions

Anomalous scaling is the behaviour that arises from the interplay between the
geometrical difference between global and local scales, and the existence of a
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unique correlation length that grows in time as a power law. The difference
between local and global scales is a feature that probably appears in many
other situations where fractals are involved, no matter if time is present or
not. However, it is not evident that these scale-invariant structures may go
on receiving the name of fractals, at least with its classical meaning. A better
understanding of the geometry of these sets remains still as an open question.

On the other hand, when the system under consideration evolves in time,
we have proved that the different global and local scaling properties affect
the dynamics of the system. In the case in which the unique correlation
length increases in time as & ~ t'/%, the Family-Vicsek scaling is no longer
the only possible behaviour, actually other three different cases may appear.
The main characteristic of these new scaling cases is the peculiar behaviour
of the quantity (| VA [),. This function grows in time as (| VA |), ~ ",
where £ = (o — aqee) /2 > 0. The local and global roughness exponents are
independent quantities and, in contrast to F'V scaling, three exponents are
now required to describe the scaling of the system. This is a very important
point, because in many cases only the local exponents have been measured.
This is the case, for instance, of many fracture front experiments, for a re-
view see [Bouchaud E. 1997]. The proposal of a unique universality class for
mode II fracture [Bouchaud E. 1990] had to be reconsidered when the global
roughness exponents were measured [Lopez 1998b, Morel 1998]. The use of
only local magnitudes may thus lead to the loss of a great deal of information
about the surface scaling properties.
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Chapter 4

Inside heterogeneous media

This chapter deals with a different but related problem to that of the previous
chapter. The scaling is an ubiquitous question in surface growth, but in this
case, we will focus on a more particular aspect; local growth in quenched
disorder. As was explained in chapter two, when quenched disorder is present
at the critical transition there are essentially two universality classes. The
question is: Is there any relation between them?.

4.1 Other way to get depinned

The object of study in this chapter is the QKPZ equation. It is similar to
the usual Kardar-Parisi-Zhang growth equation, but with the annealed noise
term substituted by a quenched noise. This kind of disorder depends only
on the spatial position and not on time. In this way, this sort of models are
expected to be able to mimic more closely the conditions of fronts moving
through heterogeneous media. The QKPZ equation is then

ZL =vV?h+ A (Vh)>+ F +n(x,h), (4.1)
where, as usual, h(x,t) represents the height of the surface over the substrate
position x at time t. v, A and F' are constants, and 7 is a zero average white
noise with variance A2

As was already mentioned, this model suffers a depinning transition for
a determined value of F, F.. For values of the driving force below F,, the
interface remains pinned. On the other side, above the critical point, it
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moves with a constant velocity and belongs to the KPZ universality class
(on very large scales). The question here is to check if that transition may
be realized using other quantity as control parameter. In order to find a
candidate for that role, we can start by taking an spatial average over the
previous equation.

v =< 0ih >= X < (Vh)? > +F+ < n(x,h) >x . (4.2)

When A is zero, the only two terms that remain on the left hand side are the
driving force and the noise. If the force is positive, below the transition the
interface is pinned in the sites (x, h) where the quenched noise is such that
the global condition F'+ < n >, < 0 is satisfied. This means that the surface
essentially matches with the sites with the lowest value (the most negative)
of the quenched disorder. On the other hand, the term < (Vh)? >, is always
positive. Thus, it can also contribute to free the interface. That contribution
is a dynamic effect. It starts being zero due to the original flatness of the
surface, and increases later because of the roughness induced by the noise.
Hence, the only possible candidate to free pinned interfaces, apart from the
pushing force, is the nonlinear lateral growth term A (Vh)2.

At first sight, this conclusion seems to be in contradiction with several
papers published in the 90’s [Amaral 1994, Amaral 1995, Makse 1995b]. In
those works, an overall tilt, h — h + mz, is added to interfaces of discrete
models close to the depinning transition. If the model may be described
with an effective growth equation similar to QKPZ, it is expected that the
velocity shows a parabolic dependence on the tilt, v ~ vy + Am?. With
this method, it was found that the known local growth models lay in two
categories. The effective nonlinearity either vanishes or diverges as a power
law when the critical point is approached from above; A ~ (F — F.)~% with ¢
either positive or negative. Those models, as the Random Field Ising model,
whose effective A vanishes belong to the QEW universality class. While
the others, those with diverging A, are in the DPD universality class. The
origin of the nonlinearity is different for each class. In the QEW universality,
it appears due to a dynamic effect. In the DPD universality, it may be
originated by the anisotropy of the quenched disorder [Tang 1995]. These
results suggest that an infinite A is necessary to depin surfaces.

The interpretation of the tilt method was revised by [Neshkov 2000]. He
claimed that the velocity actually goes as v ~ (vg +Am?)/v/1 + m?2 with the
tilt, m. With this functional form, the effective A\ does not change signifi-
cantly close to and above the transition. Apart from this, a simple Larkin
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[Larkin 1970] argument may be used to evaluate the effect of the nonlinearity
at the depinning transition. This argument is based on a rough estimation
of each term of the growth equation close to the depinning transition. Let
us ¢ be a lateral scale on which, in average, the roughness of the interface
is lower than a lattice spacing a. The diffusion term, which on this scale is
approximately v V?h ~ va =2, tends to make the surface flat. On the con-
trary, the quenched disorder, which may be estimated as n ~ A¢~%2q=1/2
tries to make it rougher. The interplay between these two terms produces
a characteristic length scale £, ~ (va®?/A)?“=9_ Above this scale the
interface is rough and below is flat. To get a rough estimation of the crit-
ical force, we can equate the maximum contribution of the disorder (that
on scale £,) with the pushing force to get: F, ~ (AY4/ya+d)/d)d/(4=d) for
d < 4. The same can be applied, when the pushing force is zero, to the
nonlinear term; A\, ~ va. Or, if the two terms are present, to a combina-
tion of both: F, + \.{;2a* ~ Aa"'/2(;%2 which leads to the expression
Ne(F,) ~v/a — (vald=1/2/A)4/4=d) [, Hence, this argument predicts that
there exists a finite value of A.(F = 0) to depin the interface, and that the
relation between F,. and . is linear. The higher A, the lower driving force is
needed to free the surface.

4.2 The model

In order to check which of the preceding arguments is correct, it is necessary
to integrate QKPZ equation in (141) dimensions. The discretization scheme
that we have used is an Euler algorithm, which gives

+A ((hi-i-l(t) - hi—l(t>)> + F—I—Af(l,ilz(t))] 7

2

where A is the time step, h represents the integer part of h and £ is a Gaussian
zero average noise that is delta-correlated in space, {€(i, h) £(j, h')} = 6, Siis-
The simulation always starts with a flat interface h;(t = 0) = 0 for all 7, and
periodic boundary conditions are used.

Our intention here is to use this discretization scheme to explore the
region of high values of A\. There are however several works warning of
instabilities in that region [Amar 1990, Newman 1996, Lam 1998]. We have
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also observed those instabilities in our simulations. The instability is due
to the way in which the nonlinearity is discretized. For instance, let us
suppose that there is no noise and that the initial condition is a flat interface
except for one site that has a height h,. With this method, the nearest
neighbours of that site suffer an advance Ah,,; = A[vh, + Ah?/4] during
the first time step. The advance rate decreases when their heights become
closer to that of the site ¢, but they may grow further whenever the condition
Ahyy i = Al—vh, + Ah%/4] > 0 holds. This relation imposes a maximum
value for h,, h, = 4v/X. All perturbations above that value spread laterally
and increase till some infinities are generated in the algorithm. The results
about QKPZ reported hereafter lay in a stable region of parameters. In most
of our simulations, we have used natural units with » =1 and A = 1.

4.3 What we found

The first question to be taken into account is the existence or not of a depin-
ning transition caused by the nonlinear term. To check this, we have decided
to consider the QKPZ equation without pushing force. Hence, most of our

3.0

log,, (<h>)
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log,, (t)

Figure 4.1: Mean height versus time of the QKPZ equation for a system of
size L = 4096 with only one disorder realization. The driving force is F' = 0.
The bottom curve corresponds to A = 2.6 and the top to A = 4.6.
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results correspond to F' = 0. As may be seen in figure 4.1, a few realizations
are enough to check that actually the transition may be obtained by tuning
the parameter A\. The next step is to characterize that transition in detail.

4.3.1 The depinning transition

Apart from what has been mentioned about how the models with quenched
disorder may be classified by its behaviour when an overall tilt is introduced,
other elements are needed to define a universality class. Those elements are
the critical exponents. In a continuous phase transition, it is expected to
find an order parameter that vanishes (as a power law in the neighborhood
of the critical point) when the system changes from one phase to another.
In this case the order parameter is the velocity. As was explained in chapter
2, it goes as v ~ (F — F.)? when the critical driving force is approached
from above. The force does not play any role now, its place is taken by
the nonlinear constant A\. We can tune up the relative importance of the
nonlinearity upon the other terms of the equation. In the figure 4.2, it is
plotted how the velocity changes when A is varied within the stable region.

The form of v may be fit by a function of the kind v ~ (A — \.)? as is
shown in the next figure. The critical value of the nonlinear parameter that
best fits that dependence is A\, = 3.60 £ 0.01, while the value of the critical
exponent is found to be # = 0.635 + 0.007.
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A l0g, (A = A)

Figure 4.2: The variation of the velocity with the nonlinearity constant A for
a system size L = 8192. On the right, it is the same figure but with a log-log
scale. The slope of the straight line is § = 0.635 and \. = 3.60.
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4.3.2 Which universality does this transition belong
to?

Once the first critical exponent has been estimated, we can face the question
of which is the universality class this transition settles in. The corresponding
exponent for the velocity in the QEW class is grw ~ 0.25, and that of the
DPD model 0ppp =~ 0.636. The value of 8 obtained from the simulations
point clearly towards the DPD universality, but it is necessary some further
results to conclude safely in which universality class this model lies.

That something else might be the exponent v associated to the correlation
length. The correlation length, ¢, is the mean size of the clusters of sites that
are in the minority phase. For instance, if A > )., the length { represents
the average size of the clusters of pinned sites. The correlation length is
function of the distance to the critical point € = (A — \.); actually it shows
a power law divergence as that point is approached, ( ~ ¢7. Unfortunately,
this is a quantity very difficult to estimate numerically. However, above the
transition, its presence is clearly reflected in well known magnitudes such as
the global or local width [Kertész 1989, Amaral 1995]. This is a well-known

log,, (G(l,t,)

Figure 4.3: The height-height correlation function for QKPZ in saturation.
The data are for different values of ¢; () € = 2.16, (A) € = 1.152 and ()
e = 0.648. The slopes of the two solid lines are 2a, ~ 1.5 and 2a = 1.
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effect in all the roughening transitions. The scaling of those magnitudes is
affected by the correlation length on scales below (. For example, the local
width scales at saturation as

w(l, tgar) ~ 17 (7 g(1/C) ~ 1% e2g(le”) (4.4)

where a, is an effective roughness exponent (which may be different from
that measured at the critical point «.), and ¢ is a new exponent. The
function g() goes as g(u) ~ u®~* for u > 1 and is constant otherwise. This
behaviour ensures that the common exponent for [ is recovered far above
the transition (KPZ in this case), but with a shift in the curves for different
values of € w(l,tsq) ~ [* €57z, All these different exponents are related
by the self-consistency condition ¢xpz = ¢ + v (o — a,). In the figure 4.3,
the height-height correlation function is displayed for a range of values of .
From those data, we find that ¢ ~ 0.13 and a, ~ 0.75.

The same applies to the temporal scaling below a certain characteristic
time t. ~ (*. The global width before saturation behaves as

W(t, L) ~ 5177 f(t/t,) ~ t% € f(te™) (4.5)

where, again, (3. is an effective growth exponent found in the proximities of
the critical point, and x is a new exponent to take into account the shift of
the curves with e. Asymptotically, the function f() goes as f(u) ~ u’~% for
u > 1, and is constant for small arguments. A shift with € is also observed
for t > t., what defines a new exponent kxpy = Kk + zv(5 — (). All these
exponents, either the effective o, or (. or k and ¢, are characteristic for each
universality class.

In the figure 4.4, the global width early time evolution of QKPZ equation
is displayed for a range of values of e. There the cross-over generated by
the existence of ( may be clearly observed. We can measure directly from
those data the effective growth exponent 5, = 0.73 £ 0.07 and the growth
exponent in the final regime § ~ 0.3. The error being of approximately
10%. Within this error bar, # matches with the growth exponent expected
for KPZ universality. The shift of those curves in the late time regime allow
us to estimate ki pyz = —0.574+0.06. With those values of the exponents the
width curves may be collapsed in a single curve. The collapse is plotted on
the right side of the same figure.

The effective exponents expected for the QEW universality are o, =~ 0.92,
B = 0.86, p =~ —0.44 and k =~ 0.0, while the values obtained from the DPD
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Figure 4.4: The global width versus time for different values of ¢; from top
to bottom (on the right) e = 0.144,0.648,0.864,1.152,1.656 and 2.16. The
slopes of the straight lines are 5. ~ 0.7 and 3 = 0.3. On the right, the
collapse of those data using the expression 4.5.

model are o, =~ 0.75, B, = 0.74, ¢ = 0.12, K = 0.11 and kgpy ~ —0.65
[Amaral 1995]. The depinning transition obtained by tuning the nonlinear-
ity seems to lie then in the same universality class as the DPD model. As was
already mentioned, in DPD the nonlinearity does not vanish at the transi-
tion, instead it remains constant [Neshkov 2000]. The depinning takes place
changing the pushing force. This means that both ways of freeing interfaces
are equivalent, because the same exponents are found independently of which
control parameter is employed.

4.3.3 Searching for a phase diagram

If two parameters may produce a transition, it is not longer possible to specify
the phase of the system by giving only one of them. Thus, the parameter
space is not a line but a plane, and transition does no longer takes place at
a critical point but at a critical curve. In order to check this idea, we have
carried out a set of simulations of the QKPZ equation. The operation mode
was the following: the parameter A was fixed, and the critical force F.(\)
was looked for. For each of these critical points, the value of the exponent ¢
was also measured. As we said before, this is the fairest indication of which
universality does the transition belong to, because the sign of that exponent
is different for each universality; negative for QEW and positive for QKPZ.
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5.0

4.0C

Figure 4.5: The critical force estimated for several values of . The system
size is L = 1024.

The QEW class only appears in a small neighborhood of F,(A = 0). The size
of that region decreases for larger system sizes. Thus, in the thermodynamic
limit it becomes, very likely, only the critical point for A = 0. All these
results are shown together in figure 4.5.

The figure 4.6 has been completed with the case A F' < 0 studied by
[Jeong 1996, Jeong 1999]. According to that work, for that region of param-
eters a discontinuous phase transition is expected. The QEW universality
is then reduced to a tricritical point, where first-order and DPD transition
curves join. Despite of that, this is the only point of the whole critical region
where some analytic results are available [Nattermann 1992b, Narayan 1993,
Leschhorn 1997]. In the quadrants with A F' > 0, we have searched for a sim-
ple expression that matches the shape of the DPD critical curve. We found

that
\ 2/3 F\2/3
— — =1 4.6
) () 9

gives a nice fit to the critical line, where the constants by = 4.31 £ 0.04
and by = 0.81 & 0.03. This fitting curve, apart from having some practical
interest to estimate the critical force (\.), is a matter that requires theoretical
explanation. It is indeed a result to be reproduced in any theory for the
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Figure 4.6: A representation of how the phase diagram of QKPZ must look
like having into account the most recent results. The dashed curves cor-
respond to discontinuous phase transitions, while the continuous represent
second order phase transitions, DPD or QEW.

QKPZ problem.

4.4 Finite size scaling and phase transitions

One of the most difficult questions when we are treating with a phase transi-
tion is to establish the position of the critical point, A.. This is an important
task because the values of the exponents are very sensitive to small changes
in A.. Not in vain the relation between the exponents and the position of
the critical point is not linear. Let us suppose B to be a magnitude that
we want to estimate close to the transition. If B has a power law behaviour
in the neighborhood of A\.; B ~ (A — \.)?, a slight variation of the position
of A\. produces a relative alteration of do /o ~ d\./[(A — A.) log(A — A\.)] in
the evaluation of the critical exponent . This change becomes catastrophic
when A approaches ..
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Figure 4.7: The probability of being in the smooth phase versus the control
parameter for different system sizes; L = 32,64, 128,256,512. This model,
that was studied in [Alon 1996], has no absorbing phase. The transition takes
place at g. = 0.233.

The main source of uncertainty of the position of the critical point comes
from the finite size of the system. If the size was infinite, the phase transition
would be sharp at a certain value A.(L = 00) of the control parameter. On
the contrary, when the size is finite the transition is softer, and there is a
small region of control parameter values close to A.(L = 0o) where both
phases may be found. This effect disturbed also the simulation presented
before, hence we tried to characterize it. This is the reason why I have
considered important to include this section here.

A way to understand why the critical point transforms into a critical re-
gion is to see how the correlation length behaves. As was already mentioned,
it grows close to the critical point as ( ~ €7 where ¢ = A — .. But ( can
not increase indefinitely in a finite size system. Actually when the relation
C(A) = L is satisfied, the system behaves in the same way as if it is actually
at the critical point. This means that it may be in both phases with a certain
probability. The size of the region of A where that takes place grows as the
system size decreases. A practical example of this behaviour may be seen in
figure 4.7. There, the probability II(\, L) of finding the system in a certain
phase is displayed versus A for systems of different sizes.
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Figure 4.8: On the left plot, the probability of being in the phase of zero
density for contact process model [Dickman 2000] in a range of creation rate.
The time of evolution of the system is different for each curve; from left to
right ¢ = 25,50, 100,200 and 400. In the second figure, it is displayed the

time evolution of II for fixed A = 3.3 and system size. In this case the critical
point is A, = 3.29785.

This discussion is valid both for equilibrium and non equilibrium systems.
However in the out of equilibrium case, it is also necessary to consider the
temporal evolution of the system. Essentially, there are two types of be-
haviour. The system may be switching from one phase to another without
any restriction, or there may be some absorbing states. When this happens,
the system may be trapped by one of those states and remains forever in the
corresponding phase. One example of that behaviour is the depinning tran-

sition. The pinned phase is constituted by a set of absorbing states. Once
an interface is pinned, no further evolution takes place. This fact affects the
probability distribution function II. In order to understand how, let us con-
sider ' copies of the same system with different disorder realizations. The
evolution starts, if the system reaches an internal stationary regime (as hap-
pens for instance to interfaces when they saturate), the probability of falling
in one of the absorbing states is time-independent. The variation in time of
the number of copies in the non-absorbing phase goes then as dN ~ —Ndt/ T,

where 7 is the mean time at which a copy gets trapped. This implies that
the function II behaves as

T\, Lt) = e V7. (4.7)
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In figure 4.8, the function II is shown for the DPD model with L = 400 at
different times. The shift with time of those curves may be clearly observed
there. The temporal evolution of II may also be seen in that figure, where
7 is measured. The magnitude 7 is not a constant, actually it depends on
how far we are from the critical point. We could make the assumption that
it is related to the correlation length as 7(A) ~ ¢*. This idea is based on the
similar behaviour of both quantities close to the transition; the mean survival
time must grows when the critical point is approached till it diverges at A,
as ¢ does. On the other hand, it is also justified by the collapse of figure
4.9. To get this collapse, the expression 4.7 has been slightly altered. We
have assumed that 7 = —c(* = cL*/In(f((A — A.) L"), where f() is
a scaling function that is constant for large argument values and goes as
f(u) ~ exp(u=/?) otherwise. If this behaviour is included in 4.7, the result
is TI(A, L, t) = f((A = Ae) LY¥)Y0E = [1 = g((A = Ae) LV¥)]/eE™,

The relation between 7 and ( give us also, apart from a new exponent 2z,
a new way to look for the critical point. In the general case, we can use the
order parameter M. As was explained, it goes as M ~ €’ ~ (7% when the
critical point is approached. Only at the critical point, the relation ¢ = L is
always valid. Hence, it is possible to look for \. by plotting M versus L for
different values of A in a log-log figure. The only straight line corresponds to
M at the critical point. This is, however, an almost impossible task in the
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Figure 4.9: Probability of being in the pinned phase for the DPD model
versus the pushing force. Those curves correspond to diverse sizes and times.
All of them are collapsed in the figure on the right. The constant c¢ is equal
to 2, and the exponents are z; =1 and v = 1.777.
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Figure 4.10: Characteristic time 7 for different system sizes of the DPD
model with three values of the driving force: () F. = 0.4615, (O) F = 0.45
and (A) F = 0.48.

case of the depinning transition. The velocity, which is the order parameter
now, results in practice unmeasurable close to A. (or F..). The mean height
increases in time as a power law for a long time before taking a definite
velocity. To avoid this problem, we can use 7 instead of the order parameter.
This quantity also goes as 7 ~ (* ~ L77* at the critical point. Hence,
it works as well as M to estimate \., and in our case it is much easier to
measure. This may be seen in the figure 4.10.

4.5 Conclusions

The depinning transition may be thus obtained by tuning the nonlinearity of
the equation. This opens a great number of possibilities for future work. On
the theoretical side, the phase diagram for QKPZ equation must be explained.
That is not an easy task, because perturbation methods (as that employed
with QEW) can not be used. On the other hand, as far as QKPZ equation is
an approximation to real interfaces, our results imply that an interface may
be depinned just by changing the nonlinear contribution, or the properties
of the disorder in which it is embedded. The discovery (or the measurement)
of this effect is also a great experimental challenge.
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Chapter 5

Fracture fronts

Along the time of realization of this PhD thesis, I have been involved in
two experimental works. The first work took place in Oslo, during a several
months stay at the Physics Department of Oslo University. These experi-
ments were carried out in collaboration with K.J. Malgy and J. Schmittbuhl,
and deal with fracture fronts. This chapter is roughly composed by the report
that I wrote about them.

5.1 Introduction

The fracture of solids may present essentially two dynamic behaviours. If
the crack front advances faster than a certain velocity, very likely, new sec-
ondary fracture fronts will be generated. The final structure that this process
produces is like a percolation cluster; there is a percolating backbone, the
main crack, and a group of secondary paths that spread in all directions
[Bouchaud J.P. 1993, Bouchaud E. 1993]. On the other hand, when the ve-
locity is low, there is only one fracture front displacing inside the solid. This
experiment was designed essentially to study crack fronts in the latter ad-
vance mode.

The front of a fracture crack may be considered as a curve inside a three
dimensional space. Following [Ertas 1992], there exist two different roughen-
ing directions. The roughness exponent may be estimated in the axis parallel
to the mean velocity of the front to obtain . Or similarly, the exponent may
be measured along the axis z that is perpendicular to v to find «;. These
two exponents are not expected to be equal, though they are related each

33



84 Chapter 5. Fracture fronts

Figure 5.1: Crack front moving inside a three dimensional solid, ref.
[Bouchaud E. 1997].

other. In addition to roughness exponents, growth and dynamic exponents
are also peculiar in each direction; z), z1, B and ;.

Apart from the effect that the embedding of the front in a three dimen-
sional space have in how many roughness exponents may be defined, there
is another question that may increase that number. The solid, inside which
the crack front is moving, is an heterogeneous medium. This fact, as well as
the slow advance that characterizes this fracture mode, may produce the ap-
pearance of a pinning-depinning transition. As was explained in the previous
chapter, in such a conditions the roughness, growth or dynamic exponents
at the transition (e, i, 2je, Z1e, Bje Or B1c) have not necessarily to
coincide with those found far above the critical point.

Early experiments were designed to study the crack fronts in the ver-
tical direction z. The method used was based on the observation that
the surface left behind the crack is roughly, at any point of the y axis,
a footprint of how the front was there, some time before, in the z direc-
tion. Hence, scanning the surface along a plane with constant value of the
y coordinate is possible to obtain the value of the perpendicular rough-
ness exponent. That procedure was employed with a variety of materials
from steel to porcelain [Mandelbrot 1984, Malgy 1992, Schmittbuhl 1994,
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Guilloteau 1996], for some reviews see [Bouchaud E. 1997], [Fineberg 1999],
[Fisher 1998] or [Sahimi 1998]. The result of those experiments was an al-
most ubiquitous value for o, of approximately 0.8 on the range of scales
going from pum to mm. Below them, the critical value o . =~ 0.5 was found
[Daguier 1996, Daguier 1997]. This fact has led to the conjecture of a unique
universality class for fracture [Bouchaud E. 1990]. A very counter-intuitive
idea, if one considers fracture in materials as different as glass or wood. Those
results were recently re-interpreted using anomalous scaling (see chapter 3)
to analyze the crack fronts [Lépez 1998b, Morel 1998]. The universal value of
a actually corresponds to the local roughness exponent. The perpendicular
global roughness exponent is material dependent, and usually higher than
one.

The measurement of parallel exponents is much more difficult. The first
experimental studies were carried out in the pinned phase of crack fronts.
To mark the position of those fronts, ink was injected in the fracture. After
a while the ink got dry, then the fracture of the block was completed. The
position of the front at the moment of the injection was thus clearly identified.
From those data a critical exponent o, = 0.54 was estimated [Daguier 1996].
In order to observe the parallel projection of crack fronts at the moving phase,
it is necessary that the fracture is produced inside a transparent material. A
camera placed over the solid block is then able to record the development of
the front. This kind of experiments was performed in Oslo by A. Delaplace,
J. Schmittbuhl and K.J. Malgy [Schmittbuhl 1997, Delaplace 1999]. The
value of the exponent that they reported was o ~ 0.63. The experiments
described hereafter were carried out in collaboration with this same group.
The experimental setup is therefore almost the same. A detailed description
may be found in the following section.

Recently, it has been shown [Morel 2000] that the presence of anomalous
scaling in fracture has important macroscopic consequences. The rate of
energy dissipation, GG, at the crack front is thought to follow the Griffith
criterion. G starts from a very low value, and then increases in time until a
stationary state is reached. This kind of behaviour has been directly observed
in our experiments, as may be seen in the section devoted to the strain
gage. In the steady state, the value of G was not expected to be system
size dependent. However, in some recent experiments such a dependence has
been detected [Morel 2000]. This phenomenology is satisfactorily explained
only if fracture front dynamics show intrinsic anomalous scaling.
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5.2 Experimental setup

A simplified scheme of the setup may be seen in figure 5.2. It consists of
a sample, a press to produce the fracture, a strain gage and a microphone
to measure the force and its fluctuations, and a CCD camera to record the
front. Each sample is composed by two plates of polymethyl-methacrylate
GS that is a transparent material. The upper plate is 32 ¢m long, 14 cm
wide and 1 cm thick. While the bottom one is 34 cm long, 0.4 cm thick
and of variable width. To prepare the sample, the contact faces of the plates
are sandblasted; introducing thus a certain quenched disorder in the spatial
distribution of toughness. After that, they are glued together by inserting
them in a press that produces an uniform pressure. The whole structure
is placed in a ceramic oven. There, the melting temperature is reached by
means of a carefully controlled linear heating. That temperature (205 °C) is
maintained for half an hour, and later a very slow cooling process starts until
room temperature is reached. The transparency of the sample is affected by
all these changes. Initially, the plates are transparent. They become almost
white after the sandblasting; the light is diffused by the affected face, and

Fast camera
+ microscope
|:| Microphone Press
AN R
DI gage
z[ ﬂ" ' '
il

L |

Figure 5.2: Scheme of the experimental setup.
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finally they are transparent again when the heating treatment has finished.

The fracture was generated when the press pushed down the bottom plate
of the sample. The crack advance was constrained in the plane between the
two plates. The press was moved by a continuous motor that produced a
velocity of approximately 2 pum/s. Instead of a direct contact between the
press and the sample, a metallic plate was included in the middle to allow
the measurement of the force applied over the bottom plate of the sample
(and perhaps also of its fluctuations). Actually, what was measured is the
way in which that metallic plate bent when some force acted upon its tip.
The way to do so is to place a strain gage onto the plate. A strain gage
is a resistance whose electric properties vary when its length changes. The
gage was included in a Whitestone bridge that determines at each moment
the electric resistance. After calibration the whole system was able to clearly
detect forces as low as 4 gr. Finally, the metallic plate was attached to the
lowest plate of the sample by means of a rope.

Also with the idea of estimating the fluctuation of the energy dissipation
at the crack front, we included a microphone onto the thickest plate of the
sample. This was a semiconductor microphone that was supposed to be able
to measure in a wide range of sound frequencies. The setup was completed
with a fast CCD camera with a maximum resolution of 1536 x 1024 pixels.
It was connected to a microscope, and the whole set was mounted onto a
moving platform that allows displacements in the x and y directions. To get
a better light contrast, lamps were situated close to the sample as well as a
black background below.

5.3 Results

The aim of this experimental work is twofold. On one side, we want to take
a first step towards the measurement of the energy dissipation in the crack
front. In order to get it, the strain gage and the microphone were installed.
The gage is able to estimate the force that the press is applying to the lower
plate of the sample. The microphone should be able to detect the sound
produced by the energy dissipation while the front moves.

On the other hand, we also want to check the scaling properties of the
fracture cracks produced. It is important to know if anomalous scaling is
present in the in-plane projection, as it seems to be the case for the out
of plane one [Lépez 1998b, Morel 1998]. The fronts of fracture reach very
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rapidly a stationary state, i.e. saturation of spatial height-height correlations.
Fracture cracks do not start from a flat initial configuration, and thus a power
law growth of the type ~ ¢ may no longer be expected for the width. The
only way to detect anomalous roughening in this case is to change the system
size and to measure stationary properties. This is the reason why the width
of the bottom plate of the sample is variable. In the next tables, the width of
these plates for each experiment, as well as other experimental parameters,

are displayed.

Ezxperiment number

1 2 3 4
Date (dd/mm/2000) 3/11 4/11 5/11 6/11
Image size (pizels) 480%512 | 480x512 | 480512 | 512x240
Width of image (mm) 8.95 8.95 8.95 9.55
Speed of press (upm/s) by hands 1.86 1.9 1.22
Distance press-front (cm) 23 16 12 12
Frames/second 250 250 125 125
Shutter time (s) 1/500 1/500 1/500 1/500
Width of bottom plate (cm) 12 6 5 4
Mean speed of front (mm/s) 0.2 0.047 0.085 0.038
Resolution microscope 1.0 1.0 1.0 1.0
Ezperiment number
D 6 7 8
Date (dd/mm/2000) 8/11 8/11 9/11 10/11
Image size (pizels) 512x240 | 512x240 | 512x240 | 512x240
Width of image (mm) 9.55 4.77 9.55 9.55
Speed of press (um/s) 1.9 1.9 1.98 1.94
Distance press-front (c¢m) 12 17 10 9.5
Frames/second 125 250 125 125
Shutter time (s) 1/500 | 1/500 | 1/500 | 1/500
Width of bottom plate (cm) 3 3 2 1.5
Mean speed of front (mm/s) | 0.031 0.015 0.036 0.063
Resolution microscope 1.0 2.0 1.0 1.0

There were other group of experiments running from number 9 till 14.
The aim of this second series was different. The front was not recorded with
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the fast CCD camera but with a video tape recorder. In this way, a longer
record was possible, which allows a more detailed study of the front mean
position. These data were compared with the force measurements from the
strain gage. The widths of the lower plate of the sample were 2 ,1, 1, 2, 3 and
4 cm respectively. In the following subsections, results for each measuring
device are separately described.

5.3.1 The microphone

The measurement on the noise produced in the crack advance is a matter
of great interest because, in this way, statistics of both avalanches sizes and
energy dissipation may be obtained. However, this was a novel part of the
experiment, and thus our initial aim was to know how the signal noise relation
is. In a complete experiment, while the crack front is advancing, there are
many other instruments working; lamps, camera, computers, press, etc. All
of them produce a great deal of background noise.

In the early trials with the microphone, it was found that the sound
coming from those devices had a very characteristic Fourier spectrum. As
the electricity network, it showed a fair peak at 50 Hz, and even at some other
harmonics; 100 Hz or 150 Hz. On the other hand, the noise coming from the
crack had a very high frequency. In order to reduce as much as possible
the background, we used a high-pass filter with a threshold frequency fixed
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Figure 5.3: On the left, the background noise as was measured from the ADC
card after filtering it, and on the right the noise from the crack measured
with the same setup.
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Figure 5.4: The first figure corresponds to the measurement of the noise
coming from the crack advance. The second and the third plots correspond to
the noise produced by the motor of the press and by the lamps, respectively.

just above 100 Hz. The output of this system was connected to a fast data
acquisition card (ADC). In the following attempts, the noise from the crack
was recorded while either the press or the lamps were turned off. The lower
plate of the sample was pushed manually. The result may be seen in the figure
5.3. In the same figure, a background measurement is also represented.

From that figure, it becomes clear that the sound coming from the crack
may be detected with this setup. However, it would be necessary a faster
ADC card to be able to distinguish a certain structure inside those pulses.
As was already mentioned, the main problem with the noise produced by
fracture advance is its very high frequency; probably closer to MHz than
to kHz (the upper cutoff of the frequencies that could be detected with our
microphone was of the order of hundreds of kHz).

The next step was to turn on the remaining devices, in order to check if
all could work together. This was an interesting point because, in that way,
it would be possible to correlate the avalanches observed with the camera
and the peaks of activity measured with the microphone. The result is in
the figure 5.4. As may be seen there, a better isolation of the microphone
is needed in order to separate signal from noise. At the same time, it would
be also convenient the use of other kind of microphone to detect ultra-sound
noise. Nevertheless, this was a first attempt in a very promising direction.

5.3.2 The strain gage

The output of the strain gage was connected to a multimeter, and from there
to a computer. In that way, we were able to take very long time measurements
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Figure 5.5: Evolution in time of the force applied by the press onto the lower
plate of the sample. On the left, for experiment number 3 with a width of 5
cm, and, on the right, for experiment 13 with a width of 3 cm.

of the force. Each fracture experiment took approximatively one hour. In
this time, and at a rate of 5 data per second, 18000 force measurements were
stored in memory. The figure 5.5 shows some of the curves, force versus time,
obtained for the experiments of the above detailed table.

These curves have a very peculiar form. At the beginning, there is a linear
increment of the applied force; most of the energy is stored in the elasticity
of both the sample and the metallic plate (regime I of figure 5.6). Then, at a
certain time, that energy over-pass a local threshold related to the toughness
of the sample at each point, and the crack front starts to move (regime II).
After that, a big avalanche takes place. This sudden burst could make the
interface to advance several centimeters in a few seconds (regime III). After
that avalanche, there is a slower relaxation, while the crack front decelerates.
Finally, a steady state is reached, and an almost constant force is maintained
between the press and the sample; regime IV of figure 5.6. This last regime
corresponds to a constant velocity of the front.

The height of the first peak depends on the distance between the crack
front and the press. The further fracture surface is, the higher the momentum
with the same force in the press-sample junction. As a consequence, less
energy is elastically stored and the burst results smoother. On the other
hand, the force level at the stationary state is function of the bottom plate
width of the sample. As may be seen in figure 5.7, the wider the plate is, the
larger the force that is needed to get the front moving.
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Figure 5.6: The different time regimes in the force/energy dissipation evo-
lution. Those data correspond to experiment number 10 with a sample of a
low plate width of 1 cm.

We also tried to connect the output of the strain gage to the ADC card.
The aim was to measure the force fluctuations in the steady state regime (IV).
Unfortunately, the gage was not sensible enough to detect those fluctuations.
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Figure 5.7: The force in the stationary state versus the width of the lower
plate of the sample.
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5.3.3 The camera

A typical example of a crack recorded with the CCD camera may be seen in
figure 5.8. With a gray levels analysis, the cracked region (the white one) is
separated from the region ahead the fracture. In this way, the front profile
was obtained. Several tools are then employed to remove the overhangs and
the non percolating paths.

The overhangs appear when the function h(x) is multivaluated in many
points. To eliminate them, we can consider the maximum (minimum) of
h as its value at x. This method is justified theoretically whenever the
result is invariant to which of the two possibilities (either the maximum or
the minimum of h over all x) is chosen. In that case, the overhangs have a
characteristic size, which implies that their influence in the scaling behaviour
of the interface is negligible. This question has been checked in the fracture

Figure 5.8: An picture of one of the fronts of experiment 1 taken with the
CCD camera. Below it, the interface profile extracted from that image.
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fronts of the present work, the method works well and we have concluded
that overhangs are irrelevant.

The mean height

The velocities of the fronts given in the above summary table were obtained
by a linear fit of the mean height temporal evolution. An example is shown
in the figure 5.9. In that figure, apart from the growth of (h), other effect
is also exposed. This effect has its origin in the lamps that are needed by
the camera to work properly. The light emitted by them fluctuates with the
AC electric current obtained from the general network; i.e. with a 50 Hz
frequency. Those fluctuations affect the definition of the crack front, and ,
as a consequence, also to the mean height. In figure 5.9, a zoom of a small
region of the (h) () curve is also represented. There, the oscillations can be
clearly observed.

The width

Due to the characteristics of the experiment, the global width can not be
obtained. The quantities that are studied here correspond thus to the local
width; the width over a small window of the front. Nevertheless, this estima-
tor is a very important quantity in order to check if anomalous scaling occurs.
If intrinsic anomalous scaling is present, the local width after saturation must
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Figure 5.9: The mean height temporal evolution of the experiment number
4. The slope of the dot-dashed line correspond to a velocity of 0.038 mm/s.
On the right, a zoom of a small region of the previous curve.
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go as w(l,t > tgq) ~ [*oe L2~ %ee - All the fronts from these experiments are
in saturation; fracture interfaces had evolved for a while before we started
to record images. Hence, if there exists a dependence of the local width for
a fixed [ on the system size L, that is a clear fingerprint of the presence of
anomalous scaling in this system.

While we were trying to analyze the fronts to get their local width, we
found other curious effect. Fronts can not be treated directly, it is firstly
necessary to subtract the average tilt. This tilt comes from the fact that the
camera has usually an orientation slightly deviated from the mean horizontal
line of the front (axis x in figure 5.1). However, as can be seen in figure
5.10, that method is not enough to describe the interface. In the low width
samples, there are very strong boundary effects on the fronts. This gives the
whole surface a general parabolic form. It must be parabolic, because this is
the geometry that any elastic string acquires when pulled at the extremes.

In figure 5.11, the local width for a length [ = 8.95 mm is displayed
both with and without using the parabolic correction. The local width does
not seem to be system size dependent. At least, it does not grow with the
increasing width of the lower plate of the sample. This means that the scaling
in the parallel direction should be Family-Vicsek with a = ay,..
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Figure 5.10: The height profile for a front of experiment number 8. The
width of the lower plate of the sample is 1.5 cm. The dashed curve is a
parabolic fitting to the interface.
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Figure 5.11: The local width on a fixed local scale [ = 8.95 mm and different
system sizes. The wide of the lower plate of the sample goes from L = 12 cm
to L = 1.5 cm. On the left, the width of the fronts when only the average
tilt is subtracted. On the right, the same but when the full second order
approximation is taken.

The height-height correlations

In order to be able to estimate the growth exponent (3, we have used a
generalized version of the height-height correlations. Instead of the simple
form for G(I,t) introduced in chapter two, the following function is employed

T (1,7) = {< |[Ah(z + 1t +7) — Ah(w, £)]7 >4}V . (5.1)

Where Ah(z,t) = h(z,t)— < h >, (t). For 7 = 0 and ¢ = 2, this function
becomes the square root of the height-height correlation function at equal
time, G(I,t), defined before. The scaling of that quantity after saturation
is thus Ty(l,7 = 0) = G(I,t > teq)'/? ~ [%ec L(@=%0c)  Tf  as in this case,
the scaling is F'V, both roughness exponents coincide, o« = ay,.. This means
that T'o(l,7 = 0) is a function only of I, which has been used to obtain
a (see figure 5.12). On the other hand, when [ = 0, it must behave as
[,(I = 0,7) ~ 78. This last point is not so clear when the system follows
any kind of anomalous scaling (intrinsic, super-rough or faceted). However,
we have checked the validity of that asseveration in models such as KPZ or
EW growth equations with Family-Vicsek scaling. The behaviour of I" for a
range of values of 7 is displayed in figure 5.12. The results for the exponents
( and « from the different experiments are listed in the following table.
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Figure 5.12: The function I' for both [ = 0 (on the left) and 7 = 0 (on the
right). These data come from the experiments number 4 and 5. The slopes

of the dashed lines are 0.53 and 0.3 respectively.

Experiment number | o, |
1 0.26 | 0.46
3 0.27 | 0.55
4 0.32 | 0.53
5 0.30 | 0.63
7 0.25 | 0.48
8 0.29 | 0.61

We could not obtain any values from the data of experiments 2 and 6.
Those results imply a value for the exponents g = 0.54 4 0.06 and o) =
0.28 4 0.02. With this method, we have also checked the presence of spatial
multi-scaling. This kind of scaling appears if different roughness exponents
are found for diverse values of ¢ in the I' function. The result is negative, in

these experiments there is no multi-scaling.

The power spectrum

As another way to verify the previous result, the power spectrum of the
fronts has also been considered, as shown in figure 5.13. The values of the
roughness exponent estimated with this method are in the following table.
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Figure 5.13: The power spectrum for the experiment number 8. The slopes
of the dashed lines are —(2a; + 1) = —1.64 and —(2a5 + 1) &~ —2.33.

Experiment num. | 1 2 3 4 ) 6 7 8
q 0.20 [ 0.25 ] 0.22 | 0.30 | 0.33 | 0.49 | 0.41 | 0.32
Q9 0.51 032|045 ] 0.56 | 0.52 | 0.49 | 0.63 | 0.64

This data give an average exponent of oy = 0.314:0.06. Close to the value
found in the latter section, though in clear disagreement with the exponent
obtained in previous works [Schmittbuhl 1997, Delaplace 1999]. However, as
may be seen in the power spectrum, figure 5.13, there exists a cross-over at a
scale [ = 0.3 mm below which the value of the roughness exponent becomes
a2 = 0.5440.07, in closer concordance with early results. This fact may also
explain the large value of the roughness exponent measured in experiment 6,
in which the resolution of the microscope was double.

The avalanches

The motion of fracture interfaces is not continuous but in bursts of activity
or avalanches. The life time of avalanches, as well as their lateral sizes,
are related to the elastic characteristics of the medium in which the crack
is advancing. Avalanches are usually very fast processes with a lateral size
that can be considerable. However, their vertical size does not seem to be
important, in average. Some recent theoretical works have predicted a power-
law distribution for the lateral size of these bursts [Ramanathan 1998].

In order to check how the avalanches are in our experiments, we have
studied the velocity of the fronts. The instantaneous local velocity is obtained
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Figure 5.14: The velocity distribution in experiment number 4. The black
spots correspond to sites where the local velocity is non-zero.

by comparison of two consecutive images acquired by the camera. At each
time t, we have a height profile h(x,t). The local velocity is defined as
the ratio between the distance from h(z,t) to h(x,t + A), in the direction
of the local normal to h(z,t), and the time step A. A two dimensional
representation of the distribution of this local velocity may be seen in Figure
5.14, where black spots correspond to moving sites.

The statistics about the sizes of spots does not give a lot of information.
The individual activity clusters do not have a very large size, not bigger
than [ ~ 0.2 mm both in vertical and horizontal directions. Despite that,
the localization where those bursts take place might be correlated with other
neighbouring avalanches. In the same way, the presence of one burst in a
particular x-coordinate value might be related with the previous avalanches
that have happened there. To find an answer to these questions, the corre-
lations (and power spectrum) of the local velocity have been analyzed both
in space at the same time, and in time for a fixed x-coordinate.

The temporal evolution of the activity of the whole fracture front for
experiment 2 is displayed in Figure 5.15. This activity is the fraction of
sites of the front that are advancing. In the same figure, it is also shown
the power spectrum of that signal. From this plot, it is obvious that there
exist some characteristic frequencies at which those bursts take place. These
frequencies are at 50 Hz and 100 Hz, i.e. the electric network characteristic
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Figure 5.15: The normalized activity of the whole fracture interface for ex-
periment number 2. On the right, the corresponding power spectrum of the
time signal.

frequency and its first harmonic. This fact indicates that there may be some
influence of the press motor in the rate of creation of new avalanches. A
second consequence is that there exists a characteristic time for the duration
of avalanches.

The result for the lateral size of avalanches is a bit different. The power-
spectrum of the local velocity at a fixed time shows a clear structure. This
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Figure 5.16: Log-normal and log-log plot of the correlation of the local ve-
locity for a fixed time. These data correspond to experiment 8. The slope of
the dashed line is —1.
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may been in Figure 5.16, where this function is represented for experiment
8. This figure may be fitted by an exponential decay on the range of scales
above 0.1 mm. Though, below that scale, a power-law of the type ~ 1/k fits
satisfactorily.

5.4 Conclusions

This work has been an attempt to obtain a greater insight in the study
of fracture fronts. We have carried out a set of fracture experiments with
samples of different widths. In this way, the scaling of crack fronts has been
determined. The in-plane projection of fracture interfaces show a Family-
Vicsek scaling. This fact might seem surprising, since the scaling of the
out of plane projection is intrinsic anomalous. It agrees, however, with the
results reported in [Morel 2000, Morel 2002] for the Griffith criterion applied
to fracture of blocks of different materials and sizes. The Griffith criterion
establishes how the rate of energy dissipation at the crack front, G, behaves.
This quantity may be expressed as G = yJA,/JA,, where 7 is a constant,
A, is the crack surface and A, is its in-plane projection. G initially suffers
a transitory regime in which it grows, until a stationary state is reached.
The value of GG in this final state is related to the scaling of the fracture
fronts by means of A, and A, [Morel 2000]. If anomalous scaling is present
G in saturation must depend on the block size L, Ggor ~ L? with 6 =
(ar — alioe) — (] — o). But 6 has been experimentally found to be
0 ~ a, — aye. This result may be easily explained if the scaling of the
in-plane fracture is F'V, and thus o = ;. as we have directly confirmed.

Apart from the scaling type, we have also measured the exponents. In
the case of the roughness exponent a cross-over has been found. On large
scales, above £, ~ 0.3 mm, we have found that the roughness exponent o/ =
0.31 £ 0.06. This value has been previously measured in [Delaplace 1999],
it seems to arise from a resolution problem. Below this scale, the rough-
ness exponent becomes o) = 0.54 £ 0.07. This exponent value is closer
to the one reported in previous experimental studies of in-plane fracture
[Schmittbuhl 1997, Delaplace 1999]. In addition, the growth exponent has
also been estimated to be 8 = 0.54 £ 0.06 in our experiments.

Finally, other aim of our experiments was to measure directly the bursts
of activity in which the fracture fronts move. Unfortunately, the devices used
(the microphone and the strain gage) were not sensible enough to succeed.
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However, the correlations of these avalanches were estimated studying the
difference between consecutive fronts. The spatial correlations seem to be
long ranged, the power spectrum of these correlations decays as ~ k=%, On
the other hand, no temporal self-correlation has been detected for the bursts,
indeed they seem to have a very short characteristic time scale.



Chapter 6

Fluid flow in porous media

The second experimental work in which I was involved was on the topic of
fluid flow through heterogeneous media. It was carried out in a laboratory be-
longing to the Departament d’Estructura 1 Constituents de la Materia of the
University of Barcelona. The members of the group that have carried out this
work are J. Soriano, A. Henandez-Machado, J. Ortin, M.A. Rodriguez and
myself. The results of the experiment have been published in [Soriano 2002].
In this chapter, a brief description of these experiments and the obtained
results is included.

6.1 Introduction

The kinetic roughening of stable fluid-fluid interfaces has already been briefly
introduced in the section 1.4 of chapter one. This kind of experiments are
performed by driving a very viscous fluid, such as glycerin, against other
fluid with less viscosity (air) in a heterogeneous medium. The heterogeneity
of the medium is obtained by including a random distribution of impurities
(e.g. glass beads) between two parallel plates of a transparent material. In
this way, a rough front is achieved in the surface of separation of the two
fluids.

The exponents of this type of fluid-fluid fronts (either roughness, or
growth or both) have been measured in many previous experimental works
[Rubio 1989], [Horvath 1990], [Horvath 1995], [Zik 1997], [Balakin 2000],
[Herndndez-M 2001], for a review see [Meakin 1998]. However, no final the-
oretical understanding has been achieved yet. There exist partial theories
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Figure 6.1: Sequence of typical oil-air interfaces. The silicone oil moves

upwards in the picture, and the disorder pattern is represented in grey. The
experimental parameters are b = 0.36 mm and v = 0.04 mm/s.

for some important cases, as the directed percolation and the front depin-
ning in paper wetting experiments [Buldyrev 1992, Buldyrev 1992b]. But,
even those cases are still matter of a strong debate [Lam 2000, Dubé 2001,
Lam 2001]. Other promising theoretical framework was proposed indepen-
dently by [Dubé 1999] and [Herndndez-M 2001]. It is based on a phase-field
model where each fluid takes the role of a phase.

Most of the roughness exponents measured so far are local exponents. In-
deed, some of them lay close to one [Horvath 1990, He-S. 1992, Balakin 2000},
which implies that the global exponents might be greater than one. In this
case, the scaling would correspond to super-roughness instead to FV and,
as happens with intrinsic anomalous scaling, other independent exponent
(global roughness) must be estimated in order to characterize properly the
interface scaling.

Several operational modes are possible in fluid flow experiments. The
fronts may be impulsed either by a constant rate of mass injection, or by
a constant pressure. In the first case, the velocity of the front is constant,
while in the second it decreases as a power law in time v ~ t7. This effect
is mainly due to the viscosity of the fluid. The other effect that dominates
the evolution of fluid-fluid fronts is the capillarity. The fluid moves faster
where the conduct to go through is narrower. The classic experiments to
quantify this effect were performed with a capilar (a very narrow pipe) that
was inserted in a fluid by one of its extremes. The fluid rises then along
the capilar until a certain height, which is function of the pipe width, the
viscosity of the fluid and its density. We study a set of associated capilars.
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The experimental setup consists of continuous copper tracks on a fiber—glass
substrate in the front advancing direction and randomly distributed in the
perpendicular direction, as can be seen in Figure 6.1. In this situation, the
correlation of the disorder in the advancing direction is infinite and the local
motion relative to the average interface position is driven by capillarity. This
effect is caused by the different curvatures of the advancing front in the
third dimension, depending on whether the oil is on a copper track or in the
fiber-glass substrate, and is responsible for the resulting rough interface.

6.2 Experimental setup

The experiments have been performed in a horizontal Hele-Shaw cell, 190
x 550 (L x H) mm?, made of two glass plates 20 mm thick. The copper
tracks on the substrate are randomly distributed along z, with a filling fac-
tor f = 35%. The tracks are d = 0.06 = 0.01 mm high and have a lateral size
of 1.50 + 0.04 mm. The distance between the top plate and the substrate
defines the gap spacing b, which has been varied in the range 0.16 < b < 0.75
mm. We have used 4 different disorder configurations and carried out 2

Figure 6.2: A rough representation of our experimental setup, the grey area
corresponds to the volume already invaded by oil.
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identical runs per configuration. A silicone oil (kinematic viscosity v = 50
mm? /s, density p = 998 kg/m?, and surface tension oil-air ¢ = 20.7 mN/m
at room temperature) was injected at one side of the cell at constant volu-
metric injection rate. The oil completely wets the glass plates, the substrate,
and the copper tracks. The evolution of the interface at average velocity v
was monitored using two CCD cameras with a resolution of 0.38 mm/pixel.
Further details may be found in [Herndndez-M 2001]. In Figure 6.2, a rough
sketch of an experiment realization is represented.

6.3 Analysis of the results

The first task to be completed with the results of our experiments is to check
the kind of interface scaling. In order to do so, several quantities, both in the
direct and Fourier space, have been considered. The first section is devoted to
the velocity of the front. Because of the different operational modes in which
the experiments with fluid fronts may be performed, this is not an irrelevant
matter. Later, the roughness (global and local) and growth exponents are
estimated by means of local width and correlations. Finally, the scaling type
and the exponents found are checked by performing a data collapse of the
power spectra at different times.

6.3.1 The velocity of the fronts

In our experiments, the fluid mass is injected at a constant rate. Hence, the
mean velocity of the fronts is constant too. However, the local behaviour of
the velocity is very rich. As was explained above, the fluid moves faster in
the narrower parts of the disorder. Initially, a group of fingers are observed
upon the copper tracks. These fingers grow independently for a while, what
produces a fair height difference with the front in the sites without tracks,
valleys. The independence of the fingers does not last for very long, because
the tension of the oil surface decelerate them. In this way, lateral correlations
spread through out the system. When the characteristic length of those
correlations, &, has become equal to the system size, £ = L, evolution is no
longer observed in the system. In physical terms, this final state (saturation)
implies that the velocities of the fingers and valleys are equated by the surface
tension. As a consequence, the width of the interface cannot grow anymore.

In Figure 6.3, the velocity of fingers, v, , and valleys, v_, is represented
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Figure 6.3: Local interface velocity on copper tracks (vy) and on fiber-glass
tracks (v_), for b = 0.36 mm and vy, = 0.08 mm/s.

for one experimental realization. We find that the local velocity decreases
(increases) in the fingers (valleys) as a power law in time, vy ~ vy — at™/?
(V- ~ Vgqr + at™V 2) where a is a constant. This velocity difference plays a
very important role in the scaling behaviour of the fronts, as will be explained
in detail later.

6.3.2 Width and correlations

In contrast to what happened with fracture fronts, the evolution of fluid-
fluid interfaces is slow enough to allow an exhaustive dynamical study. In
addition, the initial shape of the fronts is almost flat because a horizontal
track has been included at the bottom of the Hele-Shaw cell. In this way,
the early dynamic of the system may be examined. It also makes possible, by
scanning the temporal evolution of the width, to measure directly the growth
exponent.

As it is explained in chapter two, the most general scaling form for the

scaling of the local width, w(t,1) = {{[h(x,t) — (h)]?);}"/?, is

te/= if t <ty (1)
w(t,l,L) ~ { tlemmee)/z[oee if t (1) <t <ty (6.1)
[0 [(a@=oe)  otherwise |

where L is the system size, and t, () ~ [* and t4 ~ L* are the saturation
times for the scale [ and for the whole system, respectively. Unfortunately,
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Figure 6.4: Experimental determination of # (main plot) and & (inset). The
scale of the main plot is [y = 18 c¢m, while that of the inset is I; = l5/128.
We plot w(t, 1) = [w?(l,t) — w?(l,t = 0)]"* to minimize the influence of the
intrinsic width. The experimental parameters are b = 0.36 mm, v = 0.08
mm/s.

the size of the system cannot be varied in this experiment, it would imply
the change of the Hele-Shaw cell. Hence, the presence of the anomalous
scaling cannot be checked comparing the width in saturation for different
system sizes, as we did in the preceding chapter with fracture fronts. As
an alternative, the early dynamics of the local width may be measured for
one of the smallest scales [; that we can reach. If the local width at scale {;
goes on increasing with time until the global saturation, we can be certain
that the scaling is anomalous. Indeed, the exponent kK = (@ — . )/z might
be estimated. This procedure has been followed in Figure 6.4. There, it is
clearly established the existence of anomalous scaling, and the values of the
exponents § = 0.52 +0.02 and x = 0.26 £ 0.03 are found.

Apart form the local width, we have also employed the correlation func-
tion Ty(I,7) = {< |Ah(x + 1t +7) — Ah(2,1)|9 >, /9, with Ah(z,t) =
h(z,t)— < h >, (t). In Figure 6.5, T',(l,7 = 0) and T'y,(Il = 0,7) are rep-
resented for several values of ¢. From these plots, we can conclude that
this system shows multi-scaling (the local roughness exponent depends on g,
0¢(q)). The value of local roughness oo = ayoe(q = 2) = 0.61 £ 0.04 has
been determined.
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Figure 6.5: The correlation function I'(l,7). On the left side, I'(l = 0,7)
versus time for different value of g, the slope of the straight line is 5 =~ 0.6.
On the right hand, I'(l, 7 = 0) is represented. The linear fit corresponds to
a slope ;.. = 0.61 + 0.04. The experimental parameters are b = 0.36 and
v =0.08 mm/s

6.3.3 Power spectrum

In addition to the direct space magnitudes, correlations and local width, we
have also calculated the power spectrum of the fluid fronts. This a useful
method to check the scaling and exponents already measured. The presence
of anomalous scaling can be directly observed in the power spectra displayed
in Figure 6.6. The region of long wave-lengths shows a shift with time that
must correspond to a power law of the type ~ t?. Also, the slope of this
region in the log-log plot must be —(2a;,.+1). This fact allows us to estimate
Qe =~ 0.6, in good agreement with the value found before by means of
the correlation function. The best way to check both, the scaling and the
exponents, is to try to collapse the power spectra obtained for different times.
This is what is plotted on the right side of Figure 6.6. A nice collapse is
obtained for the exponents a = 1.0 £ 0.1, z = 2.0 £ 0.2, which implies that
G =0.50+0.04 and k = 0.25+0.03, in excellent agreement with our previous
estimation (see sec. 6.3.2)

6.3.4 A phase diagram

In the Section 6.3.1, the local characteristic of the velocity of the fronts has
already been mentioned. In the sites where a copper track is placed, the fluid
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Figure 6.6: Temporal evolution of the power spectrum. The vertical line
gives the value of k associated with the spatial scale of the disorder. On the
right side, the collapse of the experimental power spectra for ¢ > 10 s.

moves faster because there the space between the plates of the Hele-Shaw
cell, b, is narrower. This velocity is reduced later due to the surface tension.
Let us then define vy, as the initial (and maximum) velocity of the front in
the sites with a copper track. Apart from wv);, there exists other velocity
that must be taken into account, the velocity at saturation v, = v. This
latter magnitude depends on the injection rate, which is an external control
parameter.

These two velocities v and vy, actually control the scaling of the fluid-
fluid interfaces. The anomalous scaling appears whenever vy, > wv. This
fact implies that the average slopes of the interface grow in time, while the
velocity difference between valleys and finger persists. This difference, though
decreases in time, lasts till global saturation occurs. As it was explained
in chapter 3, one important feature of intrinsic anomalous scaling is the
increment in time of the mean slope of the system (o(t) = {{| VA [).}).
o grows in time as a power law [Lépez 1999], o(t) ~ ", until the whole
system saturates. The origin of the anomalous scaling thus lies in the higher
velocity of the fluid over the copper tracks. On the other hand, when the
fluid is injected at a very high rate, the velocity at saturation increases till
finally v > vy;. In that case, anomalous scaling is not expected anymore. In
Figure 6.7, a phase diagram summarizing our experimental results is shown.
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mentally, and the arrow indicates the parameters used in the paper.

6.4 A first step towards a theoretical frame-
work

The simple geometry of our experiment has lead us to formulate a theoretical
model to try to reproduce the experimental results. In this first stage, a local
model approach has been employed. Although, we know that this is essen-
tially a non-local problem due to the global mass conservation requirement
[Herndndez-M 2001, Dubé 1999, Lam 1998, Dubé 2001, Lam 2000]. Non—
local models are in the scope of future works.

The phenomenological model that we have developed is based on a set
of independent columns, representing the tracks, within which the driving
force takes a value v + A(t)n(x). The disorder term n(zx) is taken to be a
dichotomous noise with only possible values +1 and —1, i.e. not correlated
between neighbouring columns. The width of these columns is randomly
chosen from an exponential distribution with mean size \. In this way, we try
to reproduce the conditions in the Hele-Shaw cell of the experiment. We have
also included an amplitude A(t), which diminishes in time as (vy — v) t~4/2,
to mimic the behaviour of the local velocity of the front described in the
Figure 6.3. This is a purely phenomenological term. Finally, the interaction
between neighbouring columns is introduced by means of a diffusive term.



112 Chapter 6. Fluid flow in porous media

The model is then given by

O~ ID@)Th(r 1) + 0t (i — ) () (6.2)

The diffusive coupling ensures the value z = 2 for the dynamic exponent,
a close value to the one observed experimentally. The rest of exponents may
be obtained by either numerical simulation, or by scaling arguments as those
presented in the section 3.4 of Chapter 3 and in [Lépez 1999]. If the diffusion
is uniform (D is a constant), the global exponents found for this model are
a =1, 8 =1/2 and, thus, z = 2. These values are in good agreement with
the exponents obtained from experimental data. However, the scaling of this
model is not intrinsic anomalous but Family-Vicsek. This implies that the
local roughness exponent is ag,. = 1 unlike the one found in the experiments.

In order to recover the different local scaling, the fact that the interface
is almost flat inside each track, and fluctuations occur only between tracks
(see Fig. 6.1), must be taken into account. Analytically, this behaviour is
included in Equation 6.2 by means of an inhomogeneous diffusion coefficient
D(z). In a practical way, this effect has been introduced by spatially averag-
ing the interface along each column once at every time step. We thus recover
interfaces that are morphologically analogous to the experimental surfaces.
The exponents derived from the scaling of the power spectra shown in Fig.
6.8, and the multi-scaling exponents, reproduce the values determined exper-
imentally. It is remarkable that the spectra obtained in our model, averaged
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Figure 6.8: The power spectrum for different times of our model. On the
right side, it is shown a collapse of these spectra obtained with the set of
exponents = 1, z = 2 and .. = 1/2.



Section 6.5. Conclusions 113

over 50 runs, and the experimentally measured spectra, averaged over only
4 experimental runs, have comparable dispersions. This is due to the lack
of self-averaging in this problem with persistent disorder. In summary, our
phenomenological model enables the relevant effects in the experiment to be
both identified and calibrated.

6.5 Conclusions

We have carried out a series of experiments of fluid-fluid fronts in a very sim-
ple geometry. This geometrical distribution with columnar disorder should
allow the construction of easier-to—handle theoretical models. The non-local
models proposed so far for experiments with a more elaborated disorder dis-
tribution have not yet obtained a satisfactory description of this phenomenon.

The type of scaling of our experimental fronts has been found to be mass
rate injection dependent. Anomalous scaling is present whenever the capil-
larity effects are stronger than the injection. This happens for a large region
of experimental parameters. Capillarity makes that in the sites with cop-
per track, the velocity of the interface is higher, vy, at t = 0. The velocity
difference of the fluid on regions with and without copper is the origin of
the observed anomalous scaling. We have also measured the scaling expo-
nents, « = 1 £0.1, 2 = 2.0£ 0.2 and x = 0.25 & 0.03. This means that
Qe = @ — K z = 0.50 & 0.08. These experimental values have been found to
be consistent with direct space measures (correlation function, local width)
and spectra.

We have also proposed a phenomenological theoretical model that repro-
duces the exponent values mentioned above. It is based on the assumption
that diffusion between neighbouring tracks is the main interaction. Though,
to recover anomalous scaling as seen in our experiment a very strong diffu-
sion inside each track has to be introduced. We think that this fact may be
avoided if a more complex model (a non-local one) is considered.
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Appendix A

Detailed calculation of direct
space functions

This appendix includes the step by step deduction of the global width and of
height-height correlation functions asymptotic behaviour taking as starting
point the anomalous scaling ansatz proposed for the power spectrum. The
reason to separate this part of chapter 3, which is devoted to scaling of
interfaces, is that in this way the more technical questions settle apart from
the physical conclusions.

A.1 Global magnitudes

The global width may be obtained from the power spectrum as

w/a w/a S(k‘g)
2 ~ _
W2(t, L) ~ /WL dk S(k,t) = /QF/L dk 2 (A1)

We may perform the variable change u = £ k to obtain

W2(t, L) ~ £2° / I (A.2)

u——-7.
o€ /L y2at+d

For global quantities, we must consider two different time regimes. The
early time behavior ¢ < t., when correlations are still expanding through the
system; L > & ~ t'/#, and the saturated regime t > t,, when correlations
grow no more; & = L. We can find the asymptotic behavior of the latter
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integral for the first regime by taking the thermodynamic limit (L — oo and
a — 0) in the cutoffs,

s(u)
u2otd :

o0
WAt <t L)~ €% [ du (A.3)
0
This integral is convergent for all scaling cases. Its argument is constant for
the lower cutoff, and it tends to zero as a power law, s(u)/u?*t4 ~ y=2=4
for u > 1, in the upper limit. In addition, in this regime we may substitute
€ by t'/#. Hence, the latter expression increases in time as

W2(t < ty, L) ~ 2% ~ 28 (A.4)

In the opposite regime, we must remember that £ = L. As a consequence,
when we substitute £ by L, the lower cutoff of the integral becomes 2x. If, af-
ter that, we take the thermodynamic limit and replace s(u) by its asymptotic
value for arguments u > 27 > 1, we obtain

~ d
W2(t>tX,L)zL2°‘/ 4

2 U2a5+d

~ L. (A.5)

The global magnitudes in the asymptotic limit thus behave in the same way
as for the Family-Vicsek scaling. FV scaling for the global width is recovered
no matter whether « is equal to o or not, or even if some of them is greater
than one. However, as will be shown below, this is not the case for local
estimators.

A.2 Local estimators

As a paradigm of the local functions, we may study the height-height cor-
relation function at equal time. It was established in section 3.3 of chapter
three that this function may be obtained from the power spectrum by the
integral

w/a m/a [1 — COS (k’ l)]
G(t1) ~ /WL dk[1 — cos (k)] S(k, 1) = /QW/L Ak o s(k€)
If the variable change u = [k is applied, this expression becomes
mlfa 1 — cos (u)]
~ ]2
Gt 1) ~ | /2 T sl (A.6)
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This integral may be split into two terms; one with the small arguments of
the function s(), and other for the big values of u&/I,

Gt 1) =~ > {(5/1)2“” /1/5 du [l — cos (u)] (A7)

27l/L

_ mlfa 1 — cos (u)]
2(a—as)
+ (/1) e du 2astd :

For local magnitudes, we must deal with three important characteristic
length scales. The system size and the correlation length &, as happened for
the global width, but also the observation scale [. As a consequence, three
different time regimes must be considered: early time regime t < ty (1) ~ [,
intermediate regime t4(l) < t < tyx ~ L? and saturation t > t.. In these
regimes, we may obtain the behaviour of G(I,t) from the equations (A.6) or

(A7)

A.2.1 Early time regime, t < [*

In the early time regime, the correlation length satisfies the condition £ < [.
We thus can take the limit of big values of [/§. What means that we can
neglect the second integral in (A.7); the contribution of that term is of the
order of (1/£)72“. Taking only the first integral, in the thermodynamic limit,
we find that

l/¢
QU<MMzW@M/ du [l — cos (u)] ~ €2 ~ 129/% ~ 28 (A.8)
0

This conclusion is valid whatever the values of o and «, are.

A.2.2 Intermediate regime, I <t < L?

The following time regime, the intermediate one, is characterized by a value
of the correlation length between the observation scale and the system size,
| < £ < L. In such conditions, the contribution of the first term of (A.7)
is of the order of (£/1)72!=®). Hence, it may be neglected whenever a < 1.
The outcome of the remaining integral, as well as the asymptotic behaviour
when a > 1 depends on the particular value of the exponents. So, it is better
to analyze each case separately.
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a) Family-Vicsek

This scaling is characterized by the relation a; = o < 1 between the rough-
ness exponents. In this situation, the expression (A.7) reduces to

Gt (1) <t < ty) ~ 2 /”l/a g L= o8] (A.9)

2nl/L y2o+d
If we take the thermodynamic limit, it becomes:

1 — cos(u)]

G(l,tx(l)<t<tx)zl2a/0 du[ ard ~ 1P (A.10)

The latter integral is convergent whether o < 1.

b) Intrinsic anomalous scaling

Now, « is different form ag, but the latter is still lower than one. Hence,
in the thermodynamic limit we obtain a similar integral as before but the
asymptotic behaviour of G(¢,[) is different

— cos(u)]

o a—a > [1 o a—os)/z
G(l,tx(l) <t< t><) ~ l2 352( s)/o du artd ~ l2 st?( s)/ )

(A.11)

¢) Super-roughness

This scaling case takes place when a = oz > 1. With that a exponent, none
of the terms of the equation (A.7) is convergent in the limit [/ — 0. To
avoid this problem, we can consider the diverging contribution of each term,
and select the most important as a part of the scaling of G(¢,1). The first
integral may be carried out exactly, the main contribution of that term is
proportional to (1/£)20=%). The second integral is divergent in the limit in
which its lower cutoff tends to zero. To estimate the integral in that cutoff,
we can substitute the function (1 — cos(u)) by its approximation for low
arguments u? /2,

ey [~ an LSO eypion 1y g2

7
(A.12)
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Hence, the two terms in equation (A.7) behave in the same way. This means
that the scaling of G(t,[) becomes

Gl it (1) <t <ty)~D(1/€)2 1) ~ 2 g2leD/z (A.13)
In the marginal situation o = 1, the height-height correlations go as

Gl te(l) <t <ty)~1*log(t) . (A.14)

d) Faceted roughening

This is the last possible case of scaling. Here, ay is bigger than one, and
different from «. This implies that the second integral of the expression
(A.7) is divergent. As in the previous case, the main diverging contribution
of that term is (1/€)?!=%). Hence, the asymptotic behaviour of the function
G(t,1) is given by

Gl it (1) <t <ty)~ 22Dz (A.15)

A.2.3 Saturation regime, t > L~

The last time regime is saturation. For ¢ > t, ~ L* the correlation length
has already grown up to system size ({ = L), and the whole system has
reached a stationary state. The local scaling in this regime can be easily
obtained if we substitute £ by its value in the equation (A.6). The integral

becomes y .
G(l,t > ty) ~ > / dums(uLﬂ) . (A.16)

2rl/L y2otd

Here, the argument of the function s() is always bigger than 27. Hence,
we can substitute the asymptotic behaviour of s(u) for v > 1. But, as that
behaviour depends on the value of the exponents o and «, the result is much
more involved and therefore, each possible combination of those exponents
will be treated separately.

a) Family-Vicsek scaling

In this case, the function s(u) is constant for this range of values of its
argument. We can take the thermodynamic limit to find
00 1 —
G(l,t>>tx)%l2a/ dumwl%‘, (A.17)
0

y2a+d
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where it has been taken into account that the latter integral is convergent if
a < 1.

b) Intrinsic anomalous roughening

If anomalous scaling is present, the function s() goes as s(u) ~ u?(@=) for
large values of u. If we use this asymptotic behaviour in the equation (A.16),
we obtain

— cos(u)]

o0 1
G(l.t > ty) ~ 122 [He0s) / du S~ P [AeTe) (A1)
0 u=%s

c) Super-roughness

In this case, the function s() is again constant for high arguments. But, now
the integral of equation (A.16) is divergent, due to its lower cutoff, when the
thermodynamic limit is taken. As we made for the intermediate regime, we
can estimate which is the main diverging contribution of the integral, and
include it in the scaling. By doing so, we find

~ l2a (Z/L)Q(l—a) ~ l2 L2(a—1) )
(A.19)

< [ [1 — cos(u)]
Gl,it>t.) =1 /27rl/L cluW

d) Faceted interfaces

Now, the function s() behaves asymptotically in the same way as in the
anomalous scaling case, s(u) ~ u?@~)  But in addition, the remaining
integral is divergent in the thermodynamic limit. Applying the same method

as in the previous case, we obtain

o 1 _
G(l,t > ty) ~ 122 [0 gy L1 cos(w)]

/ o~ PLPOTY L (A20)
2rnl/L U=*s



Appendix B

Resumen en castellano

Este apéndice es un resumen en castellano del resto de la tesis doctoral.
En él, se pretende que queden suficientemente claros tanto los objetivos que
guiaron los trabajos de investigacién aqui presentados, como los principales
resultados obtenidos en cada uno de ellos. La estructura de este resumen se
corresponde, por tanto, con el de los capitulos de la tesis, aunque, con el fin
de facilitar su lectura, no siempre de forma literal.

B.1 Introducciéon

El objeto de estudio en esta tesis son las interfases. Una interfase es la sepa-
racion entre dos substancias diferentes, o entre distintas fases de una misma
substancia. La experiencia diaria nos muestra que dichas superficies pueden
presentar una gran diversidad de morfologias, pueden ser planas como sucede,
por ejemplo, con los vidrios de las ventanas, o rugosas como la superficie de
los fragmentos de dichos vidrios cuando se rompen. Ademas, las escalas en
las que este fenomeno sucede son, también, muy diversas. Van desde los
Amstrongs (107'° m) en el caso del crecimiento de estructuras cristalinas,
hasta las centenas de kilémetros de las grandes cadenas montanosas. En la
seccion que sigue se detalla con mayor detenimiento la manera de realizar
experimentos para intentar caracterizar las interfases.

121



122 Appendix B. Resumen en castellano

B.1.1 Experimentos con interfases

En un experimento de cualquier disciplina cientifica, lo mas importante es
la reproductibilidad de los resultados. Para lograr ese objetivo, las condi-
ciones en las que los experimentos transcurren han de ser cuidadosamente
controladas. En los experimentos con interfases, los resultados (los frentes
especificos) no son exactamente reproducibles. Al igual que sucede con los
sistemas cadticos, no se pueden preparar dos sistemas exactamente en las
mismas condiciones (el mismo desorden). Sin embargo, como en la teoria del
caos, siempre existen una serie de observables, que suelen ser promedios sobre
realizaciones del desorden, y que permiten establecer unos criterios univer-
sales para caracterizar cuantitativamente el crecimiento de interfases. Uno
de dichas caracteristicas es la anchura de la interfase w, que es la dispersion
del frente con respecto a su altura promedio.

Como ya se ha mencionado, los experimentos con interfases pueden tratar
fenémenos fisicos en una gran variedad de escalas. A continuacion se descri-
ben brevemente algunos de esos trabajos experimentales. Estos experimen-
tos en particular son especialmente importantes para esta tesis. Los estudios
sobre el crecimiento cristalino, en la forma de crecimiento epitaxial, fueron
los que dieron lugar a la aparicién de la teoria del escalado anémalo, que es
sobre lo que trata el capitulo tres. En los capitulos quinto y sexto, por otro
lado, se describen sendos trabajos experimentales, unos sobre la fractura de
solidos y otro sobre frentes de fluidos.

Crecimiento epitaxial

Recibe este nombre el crecimiento de estructuras cristalinas llevada a cabo
en el interior de una camara de muy baja presién y con un flujo de particulas
pequeno. De esta forma se consiguen crear cristales mediante un crecimiento
capa a capa de atomos.

El resultado de este tipo de experimentos depende de la temperatura 7.
Si la temperatura es muy baja, los dtomos al llegar a la superficie se quedan
en el primer lugar de contacto. La interfase se convierte rapidamente en
una estructura rugosa pero sin interconexién entre lugares vecinos. Si por el
contrario T" es muy alta, los atomos tienen la energia suficiente para liberarse
de los enlaces que los ligan al primer lugar de contacto. Lo que hacen entonces
es buscar los lugares con un mayor nimero de vecinos (donde el nimero de
enlaces es mayor) porque son energéticamente méas favorables. En el limite
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de muy alta temperatura los cristales crecen con interfases planas. En medio
de estos dos extremos, existe un amplio rango de temperaturas donde los
atomos, al llegar, buscan una situacién favorable energéticamente, pero en
un entorno local a su punto de llegada. La interfase en ese régimen es rugosa,
pero no con anchura infinita como en 7" = 0.

Frentes de fluidos

Este tipo de experimentos estd mas cerca de nuestra experiencia diaria que
el crecimiento cristalino, ya que tienen lugar a la escala humana. La camara
donde se realizan este tipo de experimentos esta formada por dos placas
transparentes, para permitir el seguimiento de la evolucién de los frentes.
Entre las placas se colocan una serie de impurezas. Dichas impurezas (el
desorden) pueden estar formadas por pequenas bolas de cristal de distintos
tamanos, como en el caso de los experimentos mas antiguos, o incluso por
pistas de cobre de circuitos electrénicos, como es el caso del experimento
descrito en el capitulo 6. En el espacio entre las dos placas se inyecta un
fluido de una alta viscosidad, como glicerina o aceite. La evolucién de la
geometria del frente puede entonces ser estudiada en detalle.

Fractura

Cuando se aplica una fuerza externa F' sobre un sélido, se produce una
deformacion. Para un cierto rango de valores de F', dicha deformacién es
proporcional a la fuerza aplicada. Ademas, si F' disminuye, el solido tiende
a recuperar su forma original. Este tipo de comportamiento es conocido
como elasticidad. Sin embargo, cuando la fuerza externa supera un cierto
limite, se produce una deformacion permanente o, incluso, una fractura. Las
caracteristicas morfoldgicas de la fractura depende de la velocidad con la que
avance. Para velocidades altas, no existe un tnico frente de fractura, sino
que hay uno principal y una serie de ramificaciones secundarias, algo similar
a lo que sucede con las lunas de los coches tras un choque. Por el contrario si
el frente avanza de forma cuasiestatica, existe en cada momento una interfase
de fractura bien definida.

Los frentes de fractura, en el régimen cuasiestatico, toman la forma de
una curva rugosa en tres dimensiones. La rugosidad les viene del hecho de
que los materiales no son perfectamente homogéneos, y por tanto la fractura
en algunos lugares requiere un mayor gasto energético que en otros. La forma
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de la superficie del material fracturado en cada lugar estd relacionada con
la geometria del frente de fractura cuando se encontraba sobre dicho lugar.
En esta idea es en la que se basan la mayoria de los experimentos clasicos
en este campo. Se toma uno de los dos fragmentos del material fracturado
y se estudia para cada corte perpendicular a esa superficie la forma que ésta
tiene.

B.1.2 Modelos tedricos

Los modelos tedricos para las interfases explotan su principal propiedad, la
ausencia de una escala caracteristica. Estos modelos, por tanto, no llevan
asociadas ninguna unidad, no hay en ellos constantes expresadas en metros,
milimetros o micrémetros, puesto que el mismo modelo es vélido para todas
esas escalas. Este tipo de fenémenos, independientes de la escala, son cono-
cidos como fenémenos criticos, porque fueron inicialmente observados en los
puntos criticos de las transiciones de fase continuas. La fisica de los procesos
criticos estd unicamente dominada por las simetrias del sistema. Asi que,
distintos sistemas criticos, compuestos por distintas sustancias y a distintas
escalas pueden ser descritos por un tnico modelo. Esta idea fue la que dio
origen a las clases de universalidad, que es como son clasificados los distintos
sistemas criticos. Cada una de dichas clases aparece como resultado de unas
simetrias diferentes propias de un grupo de fenémenos criticos.

Las matematicas desarrolladas para estudiar los fenémenos invariantes de
escala se incluyen dentro de las denominadas teorias fractales.

Fractales e invariancia de escala

Los fractales son conjuntos que permanecen invariantes a los cambios de es-
cala. La invariancia puede ser literal, al hacer un zoom de una parte se
observa exactamente la misma estructura, o puede ser estadistica: no se
ve exactamente lo mismo, pero el resultado del zoom es indistinguible del
conjunto original. Cualquier estimador estadistico que se aplique a dicho
conjunto da lugar a los mismo resultados que si se aplica al conjunto com-
pleto. Los conjuntos con esta propiedad de invariancia son conocidos como
fractales auto-similares.

Existen otro tipo de fractales, conocidos como auto-afines que son los
conjuntos que permanecen invariantes (estadistica o literalmente) a trans-
formaciones de escala no isétropas. Si uno de los ejes de coordenadas se
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transforma al hacer el zoom como x — bz, el resto de ejes coordenados han
de variar como y — 0%y, 2 — b** z, etc. Los exponentes sobre la constante b,
y que nos indican cual es el grado de anisotropia del conjunto, se denominan
exponentes de Hurst. Las interfases son consideradas como fractales auto-
afines aleatorios al efecto de construir un marco teérico donde estudiarlas
de forma cuantitativa. En este caso, todas las direcciones del substrato son
equivalentes, luego sus exponentes de Hurst son iguales a uno. Sin embargo,
hay dos direcciones que no se pueden incluir en esa afirmacion: la direccion
de crecimiento y el tiempo. La direccién de crecimiento suele ser perpendic-
ular al substrato, y su exponente de Hurst recibe el nombre de exponente
de rugosidad «. En referencia al tiempo, las interfases no son estructuras
estaticas, los modelos de crecimiento, asi como los experimentos, comienzan
por una condicién inicial particular, habitualmente h(x,t = 0) = 0 para to-
dos los puntos sobre el substrato x, y luego se van desarrollando hasta llegar a
un estado estacionario (aunque normalmente no de equilibrio). El exponente
de Hurst para el tiempo es conocido como exponente dinamico z.

Escalado dinamico

La invariancia de escala se hace patente en la forma funcional que tiene
los estimadores aplicados a cualquier fractal (auto-afin o auto-similar), su
dependencia con la distancia o el tiempo se suele expresar mediante leyes
de potencias. Este es el caso, por ejemplo, de la anchura w(t¢,l). Como
acaba de ser explicado, las interfases suelen comenzar desde una condicién
inicial plana, w(t = 0,1) = 0. Més tarde, el frente comienza a desarrollarse
y la interfase se hace rugosa, su anchura crece en el tiempo de la siguiente
manera w(t,l) ~ t°. Mientras la anchura crece, la posicién de los sitios se
va correlacionando con la de sus vecinos. Esas correlaciones terminan para
una cierta distancia de correlacion &, que es la tnica escala caracteristica
del sistema, y que crece en el tiempo como ¢ ~ t'/%. Finalmente, debido a
que la escala [ a la que estamos observando el sistema no es infinita, cuando
la distancia de correlacién llega a igualarla, £(tx (1)) = [, la evolucién del
sistema llega a un estado estacionario (saturacién), en el que la anchura no
crece mas. El tiempo de saturacion depende de la escala y se comporta
como t, () ~ I*. En la saturacion, el sistema es un fractal auto-afin hasta
la escala [, la anchura va con la escala como w(l,t > ts) ~ [*. Estos dos
regimenes para la anchura pueden ser unidos en una séla expresién conocida
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como escalado dindmico,

w(t, 1) =17 f(1/€) =17 f(1/t7) . (B.1)

La funcién f(u) es una funcién de escalado, que es constante para los valores
pequenos de su argumento, u < 1, y que va como f(u) ~ u® cuando u
es grande. De la expresion anterior también se puede deducir la relacién
de escalado (entre exponentes) z = «/, que ha de cumplirse por auto-
consistencia.

Igual que sucede con la anchura, se pueden definir un escalado dindmico
para otra serie de funciones. Si la interfase se puede escribir como una funcion
h(z,t), que representa la altura del frente sobre cada posicién en el substrato
x en un tiempo t, la correlacion altura-altura se define como: G(t,1) =
(1/L) ¥ [h(x +1,t) — h(x,t)]*>. El escalado de esta funcién es similar al del
cuadrado de la anchura G(t,1) ~ w?(t,1) ~ 2 f2(t/I*). Por tltimo, otra de
las funciones importantes de la interfase es el espectro de potencias, S(k,t).
Dicha funcién se define como la transformada de Fourier de la funcion de co-
rrelacion O(t, 1) = w?(t,1)—(1/2) G(t,1), S(k,t) = (2m)~42 [dl C(l,t) exp(ikl).
Realizando esa transformacion de Fourier, se encuentra que el escalado de
S(k,t) es X

S(k,t) = Tmara 5

ktt/?) (B.2)

donde d es la dimensién del substrato, y la funcién s(u) se comporta como
una constante para u > 1, y va como s(u) ~ u?**? en el limite u < 1.

El escalado dinamico mencionado en este apartado se corresponde al tipo
de escalado mas sencillo, al que se le conoce con el nombre de sus des-
cubridores Family-Vicsek (o FV). Existen otros tipos de escalado dindmico,
aunque su descripcion quedara para la seccién siguiente, ya que una parte
importante del trabajo de esta tesis se realizo sobre este tema. El capitulo
tercero, por ejemplo, esta al completo dedicado a esta cuestion.

Modelos discretos de crecimiento

Los modelos discretos de crecimiento son algoritmos para ordenador basa-
dos en el método de Montecarlo. Su reglas de crecimiento son adaptaciones
al computador de los fenémenos fisicos mas importantes que se sabe tienen
lugar en el crecimiento experimental. Por ejemplo, la descripcion del crec-
imiento expitaxial permite implementar facilmente el comportamiento de las
particulas en el caso T' = 0. Bastaria con depositar al azar cada particula,
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y considerar que se establecen en el primer punto de llegada. Este modelo
se denomina crecimiento aleatorio, y no ofrece mucho informaciéon porque la
anchura de la interfase crece sin cesar con un ritmo w(t,1) ~ t'/2. Ademas,
no hay saturacion porque las correlaciones no se extienden lateralmente.

Otro sencillo modelo, que puede ser considerado como un complicacién
del anterior, se consigue si la particula escoge para establecerse la posicién
mas baja entre el sitio ¢ donde cayo y sus dos vecinos mas proximos, ¢ + 1
e t — 1. Este modelo es conocido como crecimiento aleatorio con relajacion
superficial, los exponentes que se encuentran para él en dimensién (1+41)
(una para el substrato y otra para la direccién de crecimiento) son: o = 1/2,
B=1/4y z=2.

Existen otros muchos modelos similares. Sin embargo, los resultados
que se obtienen de ellos no siempre difieren entre si. Como ya se menciond
previamente, el crecimiento de interfases es un fenémeno critico, y por ello
no es extrano que modelos diferentes tengan los mismos exponentes. El
grupo de modelos con los mismos exponentes recibe el nombre de clase de
universalidad. Para representar a cada una de esas clases se elige un modelo
como paradigma. Siempre que es posible, se escoge para ese puesto a un
modelo continuo, una ecuacién de crecimiento.

Modelos continuos

Las ecuaciones de crecimiento son ecuaciones de tipo Langevin (estocasticas)
con las que se intenta representar una clase de universalidad. Su deduccion
se basa en las simetrias que se sabe tiene el modelo al que representan. El
ejemplo mas sencillo es la ecuacién EW (Edwards- Wilkinson):

Z}Z =vV?h+ F +n(z,t) . (B.3)
v y F son constantes, la difusividad y la fuerza impulsora (o el flujo de
particulas) respectivamente, mientras que 7(x,t) es un ruido blanco de media
cero y dispersion A, que habitualmente es Gaussiano. La ecuacién de EW
se basa solo en la difusién entre sitos vecinos, éste es el modelo continuo
correspondiente al crecimiento aleatorio con relajacion superficial. Por lo
tanto, sus exponentes son los mismo en dimensién (1+1), a =1/2, 3 =1/4
vz =2.

El siguiente modelo en complicacién es la ecuacion KPZ (Kardar-Parisi-
Zhang). Esta ecuacién tiene en cuenta el efecto que produce el que las
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interfases crezcan en la direccién localmente normal al frente. Este efecto, en
el orden mas bajo de un desarrollo en |Vh|, introduce un término no lineal
en la ecuaciéon EW|

oh 9 9
E:VV h+ A(Vh)* + F +n(z,t) . (B.4)
Los exponentes de esta nueva universalidad son « = 1/2, 3 =1/3 y z = 3/2
en dimensién (1+1).

Para los fenémenos de crecimiento epitaxial se propusieron otras dos ecua-
ciones, la MH (Mullins-Herring) y la LDV (Lai-Das Sarma-Villain). Estas
ecuaciones tratan de incorporar el comportamiento de los atomos mencionado
en el apartado anterior para este tipo de crecimiento, es decir el hecho de que
tiendan a establecerse en los lugares con un mayor nimero de vecinos (con
una mayor curvatura). La ecuacién LDV es

glz KV 4 V(YR 4+ F 4 (e t) (B.5)
Los exponentes para ella en una séla dimensién (en (1+1)) sona =1, 5 =1/3
y z = 3. La ecuacion de Mullins-Herring se recupera de la LDV para el caso
en que Ay = 0, sus exponentes en una dimensién son a = 3/2, § = 3/8 y
z = 4. El exponente de rugosidad para este ultimo modelo es mayor que
la unidad, esta situacién dara lugar a que el escalado de este modelo no se
ajuste al caso clasico de F'V.

Desorden congelado

Las ecuaciones mencionadas hasta ahora tiene un desorden de tipo térmico,
que varia en el tiempo para cada posiciéon. Sin embargo, al describir los ex-
perimentos con frentes de fluidos, se explico como el desorden estaba formado
por un conjunto de impurezas colocadas entre las dos placas transparentes.
Dichas impurezas, que podian ser por ejemplo pequenas bolas de diversos
tamanos, no cambian de posicién durante la inyeccién del fluido en el es-
pacio entre placas. La diferencia entre los exponentes encontrados en los
experimentos y los obtenidos por los modelos con desorden térmico, llevé a
proponer que el desorden congelado (en el tiempo) podia tener una impor-
tante influencia en la clase de universalidad del modelo.

Cuando el término 7(x,t) de las ecuaciones con ruido térmico se susti-
tuye por otro del tipo n,(z, h), donde 7, tiene las mismas propiedades que
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n (blanco de media cero y dispersién A,) pero depende sélo de la posicién
espacial de la interfase, se encuentra que la universalidad no es lo tinico que
cambia. La fuerza impulsora F', que no ha tenido hasta el momento la menor
importancia (ya que una simple transformaciéon de Galileo la hace desapare-
cer de las ecuaciones), se convierte en un elemento esencial para determinar
el comportamiento de las interfases. Por debajo de un cierto valor de F', F,,
los frentes se acaban parando, por encima de ese valor, F' > F,., se mueven
a una velocidad constante. En F' = F, hay una transicién de fase de no
equilibrio, que en la mayoria de los casos es continua. El parametro de orden
de la transicion es la velocidad promedio de los frentes, v es cero a un lado
de la transicién y toma valores mayores que cero al otro. Si la transicién
es continua, la velocidad tiende a cero en las proximidades del punto critico
(por arriba) como v ~ |F — F,|’.

La transicion de fase introduce también una nueva escala caracteristica,
¢, que es funcién de la distancia a la que se esté de F,, ( ~ |F'— F.|7". La es-
cala ( representa el tamafnio medio de los grupos de sitios que se encuentran
en la fase contraria a la general, parados si la interfase se estd moviendo.
Por debajo de dicha escala los exponentes de los modelos son diferentes
al de las universalidades con ruido térmico (EW, KPZ, MH o LDV). Se
ha encontrado, ademas, que existen sélo dos clases de universalidad en el
punto critico, la QEW (EW con ruido congelado) con exponentes o =~ 1.25,
B~ 0.88,0~0.25y v~ 1.33endimensién (1+1) , y la DPD con exponentes
a~0.633, 5~ 0.633, vy~ 1.733 y # ~ 0.636 . El DPD es un modelo discreto
de crecimiento propuesto inicialmente para dar cuenta de los resultados ex-
perimentales encontrados en algunos experimentos con fluidos (experimentos
de mojado de papel). Sus reglas tiene dos versiones, la mas sencilla con-
siste en colocar un ruido congelado, un nimero elegido al azar en el intervalo
(0,1), en cada una de las posiciones de una red cuadrada. La interfase es
inicialmente plana. Se escoge al azar entre todos los sitios de la superficie un
candidato para crecer, ¢. Si alguno de sus vecinos, h;y1, tiene una diferencia
de altura de dos o mas sitios con él, |h; —h;+1| > 2, se hace avanzar a la inter-
fase en ese sitio vecino, y se va de nuevo al principio del algoritmo (se busca
otro sitio para crecer). En caso contrario, se compara el desorden sobre el
sitio elegido, 1,(7, hi), con una fuerza impulsora F' que se introduce como un
parametro externo de control. Si F' > n,(i, hi), entonces la interfase crece en
1. Este modelo establece una clase de universalidad que esta relacionada con
la percolacién dirigida. Dicha clase tiene también relaciéon con la ecuacion
QKPZ (KPZ con ruido congelado), este tema es tratado més profundamente
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en el capitulo 4 de la tesis.

B.2 Escalado anomalo

Esta seccién es un resumen del capitulo tres, dicho capitulo esa dedicado al
estudio de los distintos tipos de escalado que pueden presentar las interfases.
Mi contribucién a este tema fue la exploracién de la que es la cuarta y
ultima forma posible de escalado dindmico. El nombre que le dimos a esta
ultima forma es escalado en facetas (facetado), ya que se da en interfases
con una forma geométrica muy peculiar, similar a las facetas de los cristales.
Comencemos, sin embargo, contando como se originé el escalado anémalo,
donde encaja esta nueva forma, y por qué pensamos que es la tltima posible.

Introduccién

Previamente (en la seccion dedicada al escalado dindmico, en B.1.2) se ha
mencionado como en el proceso de crecimiento de una interfase, la distancia
de correlacién crece en el tiempo como una ley de potencias, & ~ t'/%. Esta
caracteristica es el inico requisito indispensable en la teoria que presentamos.
Es decir, podrian existir otras formas de escalado aparte de las cuatro que
mencionaremos a continuacién pero incumplen esa condicién: tener una sola
distancia de correlacion, que crece en el tiempo como una ley de potencias.

Aclarado este punto, también se comenté en el mismo apartado como
se puede proponer una forma sencilla para el escalado de la anchura de las
interfases w(t,l) = t° f(t/I#), donde [ es la escala de observacién y f(u)
es una funcién de escalado que es constante para valores pequenos de su
argumento, y que va como f(u) ~ u® para u > 1. Al proponer este escalado
dinamico para la anchura, se dijo que las interfases no presentan ninguna
escala caracteristica. Esta afirmacién es valida dentro de un cierto rango de
escalas, porque, por supuesto, la invariancia de escala no se mantiene por
encima del tamano del sistema L. Sin embargo, en el caso del escalado FV,
el tamano del sistema se comporta como una escala mas. El comportamiento
de la anchura global (la de toda la interfase) es el mismo que el de la local
cambiando [ por L, W(t,L) = t° f(t/L?), la saturacién de todo el sistema
tiene lugar para t. (L) ~ L* (cuando £ = L), y si se comparan sistemas con
distintos tamanos en saturacion, su anchura global va como W (t > ts, L) ~
L.
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Durante la década de los noventa, se descubrié que hay algunos sistemas
que no se comportan de esa forma tan sencilla. Dos de ellos son, por ejem-
plo, las universalidades representadas por las ecuaciones MH y LDV. En
estos sistemas, las anchuras global y local, tras la saturacién de todo el sis-
tema, continian dependiendo de la escala con una forma funcional en ley
de potencias, pero lo hacen con exponentes distintos, w(t > tgq) ~ [“ec y
W(t > tsa, L) ~ L®. Este hecho origina una diferenciacién entre escalas
globales y locales que hasta entonces no existia.

Otra de las caracteristicas que presenta el nuevo escalado, esté relacionada
con el tiempo de saturacion. El sistema completo sigue saturando para un
tiempo ty (L) ~ L?, sin embargo las escalas pequenas ya no saturan para
tx(1). En su lugar, lo que sucede es que la anchura local (o las correlaciones
altura-altura, o las pendientes (|[Vh|)) contintian creciendo en el tiempo tras
ese momento, pero con un exponente, x, diferente de 8 y que esta relacionado
CON 'Y Qoe, K = (0 — Qoe) /2.

Escalado dinamico

La forma mas general para el escalado dindmico habitualmente se propone
en el espacio de Fourier, para el espectro de potencias. Esto es asi, porque
con dicha funcién se puede incluir todos los casos en una tunica forma de
escalado dinamico

1
S(ht) = 1507a sa(kt/?) . (B.6)

Esta expersion es la misma que para el escalado FV, la diferencia estd en el
comportamiento de la funcién de escalado s4(u):

uetd sy <1
s~ f i Ses B.7)

El nuevo exponente # (no confundir con el exponente del mismo nombre usado
en el caso del desorden congelado) puede ser escrito como 6 = o — g, donde
a es el exponente de rugosidad habitual y a a, se le conoce como exponente
de rugosidad del espectro. La introduccién de ag nos permite expresar el
espectro de potencias como S(k,t) ~ t29/7 /k(2as+d) 1o que significa que en
la zona con argumentos de sa(u) grandes el espectro todavia decae como
una ley de potencias, aunque ahora con un exponente distinto, —(2a; + d).
Después de la saturacién, esa tultima expresién se transforma en S(k,t >
tsat) ~ L2(a—as)/k2as+d_
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El escalado de las funciones del espacio directo se puede recuperar desde
las expresiones anteriores para S(k,t). La anchura global, por ejemplo, se
obtiene mediante la integral

1 w/a
W2t L) = — zkj ~ [ dkS(k,1) (B.8)

2w /L

que es simplemente una relacién de Persival. Asi mismo, la correlacién altura-
altura G(t,1), que escala de la misma manera que el cuadrado de la anchura
local, se obtiene mediante la expresion siguiente:

(fL 1 — cos (k)] S(k, ) ~ /2 W; L dk [1 — cos (k)] S(k,¢) . (B.9)

G(t, 1) =
El calcular estas integrales no siempre es una tarea facil, los detalles del
calculo estd en el apéndice A. El problema principal es que cuando se toma
el limite termodinamico, L — oo y t — 00, algunas de ellas, dependiendo
de cual sea el valor de «yg, divergen. Los dos limites, el de tamanos y el
de tiempos infinitos, no conmutan. Si se toma primero L — oo se llega al
comportamiento del sistema en el tiempo previo a la saturacion, mientras
que si, al contrario, se considera primero t — oo lo que se obtiene es el esca-
lado en saturacién. Dependiendo de los valores de a y o hemos encontrado
cuatro casos diferentes de escalado dinamico en el espacio directo:

as = a = Family-Vicsek

as # a = Andémalo intrinseco
as = a = Super-rugosidad

as # a = Facetado

Siag < 1= e = O

siag > 1= qpe=1

El exponente qy,. se extrae del comportamiento de G(t,1) con la escala de
observacion [ en saturacién. El escalado de las funciones globales y locales
en el espacio directo para cada uno de los casos mencionados en esta tabla se
encuentran en las secciones 3.3.1, 3.3.2, 3.3.3 y 3.3.4 del capitulo 3. Dado que
ésto pretende ser un resumen, no voy a comentar todos los casos uno a uno,
aunque debido a que se debe explicitar las principales novedades que esta
tesis introduce en sus capitulos, si que se incluyen a continuacion algunos
comentarios sobre el escalado facetado.



Section B.2. Escalado anémalo 133

Facetas

Este tipo de escalado lo encontramos en un modelo discreto que se supone
representa el punto critico de la ecuacion QKPZ en la region de parametros
AF < 0. Dicho modelo fue inicialmente propuesto por Kim Sneppen en
1992. Consta de una red cuadrada donde, en cada sitio, se define un ruido
en el intervalo (0,1). El algoritmo escoge para crecer el sitio i, con el menor
valor del ruido posible que cumpla la siguiente condicién |h; +1 — h;1q| < 2.
Es decir, que una vez que la interfase haya crecido, se sigan manteniendo las
pendientes en el rango de valores (0, £1). La interfase originalmente es plana,
y como es usual las condiciones de contorno son periédicas. El aspecto de las
interfases generadas por este modelos se puede ver en la Figura 3.10. Cada
interfase esta formada por un conjunto de tridngulos (facetas) de distintos
tamanos distribuidas al azar.

Si dichas facetas se correspondiesen con un solo tridngulo (o con una serie
de tridngulos con el mismo tamano) de base L, se puede obtener analiticamente
como se comportan las distintas funciones de la interfase. Por ejemplo, el es-
pectro de potencia debe ir como S(k) ~ L™!/k*, que cuando se compara con
el espectro de potencias propuesto para el escalado anémalo en saturacién,
S(k,t > te) ~ LHo7s) /E2(@s+) implica que, para este caso, a, = 3/2 y
a = 1, mientras que de la forma de la correlacion altura—altura se llega a
que o, = 1. Por tanto, incluso este sencillo esquema tedérico muestra es-
calado de tipo facetado. En el caso del modelo de Sneppen el escalado es
dindamico, a parte de ay > a = 1, existe también un exponente dinamico z.
Ademas, los tamanos de esas facetas no son regulares, lo que hace que sus
exponentes de rugosidad sean ligeramente diferentes de los encontrados con
un solo tridngulo: oy~ 1.35, a=1y z = 1.

Las funciones en el espacio real para las interfases con escalado de tipo
facetado se comportan en general como

t% it <<ty
W(t,L)w{ Lo it (B.10)

para la anchura global, y

12/ sit < ty(l)
G(t, 1, L) ~{ t2e=D/212 st (1) <t <ty (L) (B.11)
LD st >t (L)

para la correlacion altura—altura. De esta tltima expresién se deduce que
Ape = 1.
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Conclusiones

En este trabajo se ha estudiado intensivamente los posibles escalado que
las interfases pueden presentar. El 1nico requisito para entrar dentro de
estas consideraciones, es que las correlaciones se expandan por el sistema al
ritmo dado por una tnica distancia de correlacién, que crece como & = /2.
Hemos encontrado que, bajo ese supuesto, el escalado debe ir regido por una
forma determinada del espectro (la del escalado anémalo). De dicha forma
funcional general se pueden deducir, ademés del caso clasico del escalado
FV, otros tres casos: super-rugosidad, anémalo intrinseco y facetado. En
todos ellos, para determinar de forma clara la universalidad de una interfase
es necesario conocer tres exponentes independientes ( al contrario que en el
FV que sélo eran dos): la rugosidad global «, la rugosidad del espectro a; y
el exponente dinamico z.

B.3 Crecimiento debido a no-linealidades

El capitulo tres de la tesis, que es sobre lo que versa esta seccion, esta dedica-
do a la transicion de fase que aparece en los modelos con desorden congelado.
La idea es intentar entender que es lo que esta sucediendo con la ecuacién
QKPZ, que como ya ha sido explicado (seccién B.1.2, desorden congelado)
no proporciona un modelo claro para una clase de universalidad en el punto
critico, al contrario que la QEW.

Introduccién

La ecuacién QKPZ fue propuesta como un modelo para el crecimiento de
interfases en medios desordenados. Es similar a la ecuacién KPZ, pero el
desorden térmico es sustituido por un término de desorden congelado.

Z’Z — UV 4 N(VRY 4 F + (. h) . (B.12)
v, Ay F son pardmetro externos, y n(x, h) es un ruido blanco, de media cero,
habitualmente Gaussiano y con una dispersion A,.

En el caso térmico, la no-linealidad de la ecuacién KPZ se incluyé para
tener en cuenta el crecimiento lateral de las interfases. Este término surge
de la proyeccion de un crecimiento normal a la interfase en cada punto sobre
el eje paralelo a la velocidad promedio. La constante A debe ser, en tal caso,
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proporcional a la velocidad. Se ha especulado bastante sobre cual puede
ser el origen de ese término en el caso de que la velocidad de la interfase
sea muy pequena debido al desorden congelado, o incluso nula en el caso de
la transicion en F,.. Se sabe que existe ese término porque a los modelos
discretos con ruido congelado, como en DPD, se les ha aplicado la prueba de
la pendiente. Dicha prueba consiste en introducir una pendiente promedio en
el modelo, h — h+mux, si la ecuacion efectiva que representa a ese modelo es
del tipo QKPZ, la velocidad promedio del frente ha de crecer con la pendiente
COMO ¥ ~ Vp+ At m?. Se ha encontrado que los modelos con ruido congelado
pueden ser clasificados en dos grupos segin sus resultados en esta prueba:
por un lado estan aquellos para los que el A,y tiende a cero segin la transicién
se acerca, a éstos se les considera en la universalidad de la ecuacion QEW.
Por otro lado, hay otros, incluido el DPD, para los cuales Ay diverge en la
transicion. No obstante, mas tarde se demostré que la interpretacion de ese
método estaba equivocada, y que sélo existen dos posibilidades: o Aey — 0
cuando se acerca la transiciéon o permanece con un valor finito y constante.

La liberacion de las interfases atrapadas por el desorden, se suele llevar a
cabo, como ya se comentd, mediante el ajuste de la fuerza impulsora externa
F. La primera cuestién que pretendemos responder en este capitulo es: 7Se
puede realizar la transicién variando algin otro parametro de la ecuaciéon
QKPZ?. Si toma un promedio espacial sobre esa ecuacion, sélo hay tres
términos que sobreviven (9;h) ~ X {((Vh)?) + F + (n), por tanto, cuando
F =0, el nico término que se opone al ruido, que es quien deja a la inter-
fase parada, es la no linealidad. Para estudiar que sucede cuando se varia,
hemos empleado un esquema de Euler para discretizar la ecuacion QKPZ,
los resultados que encontramos se describen en la siguiente seccién.

Resultados de la simulacion

El primer resultado es el que puede verse en la Figura 4.1, la transicion puede
lograrse cambiando la constante del término no lineal aunque F' = 0. Una
vez adquirida esta certeza, el siguiente paso es caracterizar la transicion, in-
vestigar a cual de las dos clases de universalidad que se dan en ese punto
critico pertenece, o incluso si es una nueva. Esto se hace en la Figura 4.2,
donde se representa v frente al pardmetro de control A. Alli, se ve que la
transicién es continua, y se estima el valor del exponente de la velocidad,
v ~ A=A’ que vale § = 0.635 & 0.007. Desafortunadamente, el expo-
nente v, que nos permitiria clasificar con seguridad la transicién, no puede
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ser medido directamente. Aunque existe otro medio; como se comentd en
la seccién dedicada al desorden congelado, cerca de la transicion hay una
nueva distancia de correlacion (. El exponente v se podria haber medido
si hubiésemos podido estimar ( directamente, cosa que no es sencilla. Lo
que si lo es, es estudiar sus efectos sobre otras funciones, por ejemplo sobre
la anchura global y la correlacion. Para escalas menores que (, o tiempos
anteriores a (*, esas cantidades muestran unos ciertos exponentes, y para
escalas mayores, o t > (7, pasan a los clasicos de KPZ o EW. Mediante esos
exponentes en las escalas pequenas, que estan relacionados con v, se puede
saber en que universalidad esta la transicion. El resultado de este analisis,
que se muestra en las Figuras 4.3 y 4.4, se corresponde con que esta tran-
sicién pertenezca a la universalidad del modelo discreto DPD. Esto mismo
se encuentra también para toda la region con A F' > 0 cuando la transicién
se realiza variando F'. Lo que implica que la transiciones obtenidas variando
F y X\ son equivalentes.

Si la fase dentro de una transicion ha de ser especificada por dos parametros,
en lugar de uno, lo que se tiene es un diagrama de fases en dos dimensiones.
Para intentar explorarlo, realizamos una serie de simulaciones estableciendo
para cada una de ellas un determinado valor de A < A., y buscando para
cada caso el valor de F,.. El resultado es el diagrama de la Figura 4.5. De
una forma completamente fenomenoldgica encontramos que un buen ajuste
para esa curva se podia obtener con una expresion del tipo

A, 2/3 F. 2/3
<b1> +(b2) 1, (B.13)

donde b; = 4.31 +0.04 y by = 0.81 & 0.03 son constantes. Por supuesto, ésta
solo es una aproximacion para los cuadrantes donde A F' > 0, aunque la curva
continua mas alla de esas regiones. Con estos resultados, y los ya conocidos

de la literatura, se puede construir el diagrama de fases de la Figura 4.6 para
la ecuacuion QKPZ.

Conclusiones

Hemos estudiado la ecuaciéon QKPZ y su diagrama de fases. Hemos encon-
trado que la transicién para liberar las interfases del ruido congelado puede
obtenerse variando la importancia relativa del término no lineal, ademas de
cambiando la fuerza impulsora F'. Dicha transicién ha sido caracterizada,
y hemos encontrado que pertenece a la universalidad del DPD. También,
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hemos establecido la equivalencia de la variaciéon de F'y A a la hora de re-
alizar la transicion, y, finalmente, hemos propuesto un posible escenario para
un diagrama de fases para esta ecuacion.

Estos resultados son importantes, tanto desde el punto de vista tedrico
como desde el experimental. Desde el lado de la teoria, es necesario encontrar
una explicacion para todo el diagrama de fases, que incluya al tinico resultado
analitico hasta la fecha, para la ecuacion QEW, como un caso particular.
Desde el punto de vista experimental, se puede considerar como un desafio
el encontrar frentes que se muevan variando las propiedades del desorden o
de sus superficies en lugar de mediante fuerzas impulsoras externas.

B.4 Experimentos de fractura

Esta seccion da cuenta de los experimentos descritos en el capitulo quinto
de la tesis sobre frentes de fractura. Estos experimentos tuvieron lugar en el
otono pasado durante una estancia de varios meses en la universidad de Oslo,
y son el resultado de la colaboracién con Jean Schmittbuhl (Ecole Normale
Supérieure de Paris) y con Knut Jergen Malgy (Universidad de Oslo).

Introduccién

Como se describio en la seccién B.1.1, la fractura en los solidos puede mostrar
dos comportamientos distintos dependiendo de la velocidad de los frentes. En
la modalidad rapida, se generan nuevos frentes partiendo de uno principal,
la estructura global tienen una forma intrincada y muy ramificada. Por el
contrario, cuando la velocidad es baja, s6lo aparece un tinico frente de frac-
tura. Es a esta segunda modalidad a la que pertenecen los experimentos
descritos a continuaciéon. En aquella seccion, se comentd también como los
frentes de fractura son curvas que se encuentran en el interior de un espacio
tridimensional, y que, por tanto, se pueden estudiar la distintas proyecciones
de dichos frentes. La proyecciéon mas sencilla de estudiar es la que es per-
pendicular a la velocidad media del frente, este ha sido hasta ahora el caso
mas estudiado. Para él se encontré que el exponente de rugosidad en la di-
reccién perpendicular (a la velocidad media) valia para una gran variedad de
materiales 0.8. Este hecho llevo a postular la existencia de una clase de uni-
versalidad para los frentes de fractura. Sin embargo, un tiempo mas tarde se
demostré que, en realidad, ese exponente es local, y que el exponente global
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depende del material en el que tenga lugar la fractura. Siendo el escalado de
la direcciéon perpendicular, por tanto, de tipo anémalo intrinseco.

Este tipo de escalado en la fractura tiene importantes consecuencias. Por
ejemplo, el ritmo de gasto de energia en el frente de fractura cuando éste
avanza, sigue una ley conocida desde hace tiempo como criterio de Grif-
fith. Dicho criterio establece que cuando el frente comienza a moverse, el
gasto energético representado por la funcién de Griffith G crece, finalmente
el frente adquiere una cierta velocidad y el gasto de energia llega a un estado
estacionario. Si el escalado de la interfase de fractura fuese de tipo FV, la
funcién G en el estado estacionario no deberia depender del tamano total
del solido donde se produce la fractura. Sin embargo, se ha encontrado de
forma experimental que la funcién de Griffith en el estacionario si depende
del tamano del bloque que se esta rompiendo. Esta dependencia sélo puede
ser explicada si el escalado de la interfase es anémalo, como por otro lado ha
sido diréctamente comprobado.

Descripciéon del experimento

Se puede encontrar un esquema del experimento en la Figura 5.2. La muestra
a fracturar se compone de dos placas de metacrilato, inicialmente transpar-
ente. La placa mas gruesa tiene unas dimensiones de 32 x 14 x 1 ¢cm, mientras
que la otra tiene 34 cm de largo, 0.4 de grosor y una anchura variable. A con-
tinuacién, se somete a una cara de cada placa a desgaste mediante un chorro
de arena, con este proceso se consiguen dos cosas que las caras que eran
planas adquieran cierta rugosidad y que adquieran un cierto color blanco.
La transparencia se pierde porque la luz se difunde debido a la rugosidad de
esa cara. Una vez que se les ha aplicado el desgaste, se las introduce juntas
(con las dos caras desgastadas en contacto) en una prensa que mantiene una
presion constante entre las dos placas, que a su vez se coloca en el interior
de un horno de ceramica. En el siguiente paso, se inicia entonces un proceso
de calentamiento cuidadosamente controlado hasta la temperatura de fusién
del metacrilato, 205 °C. Esa temperatura se mantiene durante 30 min., luego
se inicia un lento enfriamiento hasta la temperatura ambiente. La muestra
recupera la transparencia tras el proceso de calentamiento.
Para el experimento, la muestra asi preparada se coloca sobre una plataforma

a la que estd firmemente sujeta. Sobre la muestra se coloca una camara CCD
y un micréfono. La placa més larga (y menos gruesa) estd conectada a una
placa metdalica sobre la que hay una resistencia eléctrica que es capaz de
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medir la curvatura de dicha placa. Esa resistencia se coloca con la idea de
determinar cual es la fuerza que se hace sobre la placa inferior de la mues-
tra. Finalmente, la placa metdlica esta atornillada a una prensa que tiene
un motor continuo que la hace moverse en la direccién vertical. Cuando la
prensa comienza a moverse hacia abajo, la placa mas delgada comienza a
despegarse de la gruesa. La zona por la que ha pasado la fractura vuelve a
perder la transparencia, facilitando asi el contraste entre ambas. Los frentes
de fractura son grabados por la cdmara, mientras que el ruido que hacen al
avanzar queda registrado por un micréfono y la fuerza que se hace sobre la
muestra (y sus fluctuaciones) es detectada por la resistencia.

Resultados

El micréofono era la primera vez que se empleaba, luego lo que pretendiamos
con él era determinar la relacién senal-ruido que se puede lograr con ese tipo
de instrumentos. Como vemos en la Figura 5.3, es posible detectar el ruido
de la fractura, aunque el micréfono no tiene resolucion suficiente para dis-
tinguir estructura en la senal. Desafortunadamente, cuando se pretende que
el resto de instrumentos funcionen al mismo tiempo, el ruido que originan
acaba produciendo una muy mala relacién senal-ruido. En futuros traba-
jos, serd necesario utilizar otro tipo de micréfonos para frecuencias mayores
(ultrasonidos) y mejor aislados.

Con la resistencia variable, por otra parte, obtuvimos unas series de
evolucion temporal muy buenas. Puede verse alguna de ellas en la Figura
5.5. Con este instrumento se pudo incluso distinguir entre distintos regimenes
dentro de esa evolucién temporal, Figura 5.6, aunque no pudimos medir las
fluctuaciones en la fuerza debido a una falta de sensibilidad en la resistencia.

Por otro lado, con la camara pudimos grabar una buena cantidad de
frentes sobre los que aplicamos diversos métodos de analisis. Se determind la
altura media y velocidad de los frentes, su anchura local, la dependencia de
sus correlaciones altura-altura con la escala espacial y temporal, y también su
espectro de potencias. Los principales resultados de este analisis fueron dos:
el primero se obtuvo comparando la anchura local para placas de distinta
anchura global (como ya se comentd, la anchura de las placas menos gruesas
es variable). Con ello se encontré que la anchura local para una escala fija no
depende del tamano del sistema, o lo que es lo mismo que el escalado para
la direccién paralela (a la velocidad media) es de tipo FV para los frentes de
fractura. Por otro lado, ademas del tipo de escalado, medimos también los
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valores de los exponentes: o) = 0.54 £ 0.07 y 3 = 0.54 £ 0.06.

Finalmente, también estudiamos las avalanchas con las que se mueve la
fractura. Los frentes de fractura no se mueven de forma continua, sino que
cuando la fuerza sobre la placa menos gruesa supera cierto umbral, que de-
pende del lugar, el frente avanza en esa zona. Para definir las avalanchas
lo que hicimos fue comparar imagenes consecutivas obtenidas con la caAmara
CCD. El tiempo entre dos de esas imégenes es de unos 8 ms. Tomamos como
velocidad instanténea y local v(z,t) a la diferencia entre los dos frentes en la
normal al mas antiguo de los dos. Luego, estudiamos tanto las correlaciones
temporales como las espaciales de dicha velocidad instantdnea. El resultado
fue que las avalanchas no parecen tener una estructura en la direccién tem-
poral, tienen un tiempo de duracién caracteristico muy pequeno. Sobre la
correlacion espacial podemos decir algo més, como se puede ver en la Figura
5.15, el espectro de potencias (espacial) para la velocidad presenta una cola
larga. Incluso se encuentra un decaimiento en ley de potencias S ~ 1/k para
las escalas pequenas.

Conclusiones

Hemos realizado un experimento de fractura en el cual hemos estudiado los
frentes en la direccion paralela a su velocidad media. Hemos determinado los
exponentes de dichos frentes, oy = 0.54%0.07 y 3 = 0.54=£0.06, lo cual no es
una gran novedad porque ya se han observado en un par de trabajos previos.
Sin embargo, el tipo de escalado no habia sido considerado previamente. Se
pensaba que podia se anomalo, ya que el de la direccién perpendicular lo
es. Contradiciendo esta ultima idea, hemos encontrado un escalado de tipo
Family-Vicsek. Este hallazgo confirma también los resultados obtenidos para
la medida de la funcién de Griffith en el estacionario, ya que la dependencia
de G con el tamaiio del bloque a romper deberia ser G ~ L@~ Lioc) = (@] =] 10¢)
en caso de que el escalado en la direccion paralela fuese también andémalo,
sin embargo los resultados obtenidos experimentalmente para esa funcién se
ajustan mds bien a G ~ L*+ =% tec o que implica que o = oo

B.5 Frentes de fluidos

Este tltimo apartado se corresponde al capitulo seis. En ese capitulo se
describen unos experimentos con frentes de fluidos que se llevaron a cabo
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en los laboratorios de la Universidad de Barcelona. Las personas que hemos
colaborado en este trabajo son Jordi Soriano, Aurora Hernandez Machado y
Jordi Ortin, de la Universidad de Barcelona, y Miguel Angel Rodriguez y yo
mismo, de la UC-CSIC.

Introduccién

Los experimentos con interfases de fluidos suelen realizarse en el interior de
camaras con paredes transparentes y que han sido previamente rellenadas con
materiales de diversos tipos. Estas impurezas, que pueden estar compuestas
por bolas de diversos tamanos, arenas o arcillas, pistas de cobre, ... etc,
tienen como fin el crear un medio desordenado a través del cual el fluido
pueda moverse. Cuando el liquido se encuentra con una zona estrecha (un
poro) de ese medio, su velocidad se ve incrementada por las fuerzas capilares,
hecho que lleva a la creacién de un frente rugoso.

En la literatura, hay una buena cantidad de experimentos que se ocupan
del estudio de los frentes de fluidos. Se puede ver un resumen en la tabla de
la pagina 15. Sus resultados, en lo referente a los exponentes medidos, son
dispares. Esta diversidad puede ser entendida por las diferentes modalidades
de operacién que estos experimentos poseen. El fluido puede ser impulsado
a presion constante, en cuyo caso su velocidad media va a decrecer con el
tiempo, debido a la viscosidad, hasta pararse; o puede ser inyectado a volu-
men constante, con lo que su velocidad media se mantiene, aunque la presién
en el frente oscile. Los exponentes para ambos tipos de frentes no tiene
por qué ser los mismos, como tampoco lo son en los modelos con desorden
congelado en las proximidades del punto critico. Algunas de las propuestas
tedricas para explicar estos experimentos apuntan precisamente en direccién
a esos modelos. El DPD fue propuesto inicialmente para explicar experimen-
tos de mojado de papel, en los que el fluido ascendia a presiéon contante por
una hoja de papel hasta que se detenia a una cierta altura. Aunque, este
tipo de modelos locales estan siendo ahora muy cuestionados debido a que la
conservacion de la masa impone una condicién global que no se puede incluir
en ellos.

Nuestros experimentos tratan con una configuracién mucho mas sencilla.
No pretendemos estudiar los frentes en un medio completamente heterogéneo,
sino en uno con desorden columnar. La situacion es similar a la que se da
cuando el fluido asciende por un solo tubo capilar, sélo que ahora existe
un conjunto de capilares en contacto unos con otros. Con esa configuracién
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esperamos simplificar el problema, y hacerlo mas sencillamente abordable
desde el punto de vista tedrico.

Descripcién del experimento

La camara del experimento se compone de dos placas de cristal paralelas de
19 x 55 cm?, que estdn separadas por una distancia que puede variar para
distintos experimentos, y que es utilizada como un pardmetro de control ex-
terno. Entre ellas se coloca una base para circuitos electronicos. La distancia
entre la base y la placa superior es el parametro de control b. Sobre la placa
para circuitos se distribuyen al azar pistas de cobre, cada una de las cuales
tienen un grosor de 0.06 mm, una anchura de 1.5 mm y que recorren, a lo
largo, toda la camara. El nivel de ocupacion de la cadmara por las pistas
se fija en el 35 %. Seguidamente, se inyecta a flujo constante un aceite de
silicona con una densidad de p = 998 kg/m?, una viscosidad v = 50 mm?/s
y una tensién superficial para aceite—aire de ¢ = 20.7 mN/m en condiciones
estdandar. La celda de Hele-Shaw se encuentra sobre una mesa. En la vertical
al experimento se sitia camara CCD, con la que se graban los frentes.

Analisis de los resultados experimentales

Los frentes grabados por la camara CCD son luego cuidadosamente analiza-
dos. La primera magnitud considerada fue la velocidad. La velocidad media
de los frentes es constante, como corresponde a un experimento realizado a
un ritmo constante de inyecién de fluido, sin embargo presenta importantes
particularidades locales. Las fuerzas capilares aumentan la velocidad del
aceite sobre las pistas de cobre, empiezan a desarrollarse asi una serie de
columnas (dedos) que inicialmente crecen de forma independiente. Pasado
un tiempo, la tension superficial del fluido retarda el crecimiento de esas
columnas (que coinciden con las pistas de cobre) y acelera el crecimiento en
el resto de zonas. El estado final es una velocidad contante para todo el frente
v, que se corresponde con la velocidad producida por la inyeccién del fluido.
Un seguimiento detallado de la evolucién de la velocidad del fluido sobre las
pistas v, y sobre el resto de zonas v_, puede encontrarse en la Figura 6.3.
De estos datos se deduce que la velocidad local va como vy = v £ at'/2.

En este experimento los frentes empiezan desde una configuracén casi
plana (en la parte inferior de la cdmara hay una pista perpendicular al resto,
y que hace planas las interfases), lo que permite estudiar la evolucién de
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la anchura en el tiempo. En la Figura 6.4 se representa la evolucién de la
anchura local promediada sobre diversas realizaciones del desorden. Si el
escalado de las interfases fuese FV, la anchura deberia saturar antes para
las escalas mas pequenas. Para saber cual es el tipo de escalado, hemos
representado en esa figura dos escalas diferentes, una de [, = 18 cm casi tan
grande como todo el sistema (19 cm), y otra tan pequena como nos permitia
la resolucién, [; = 1.4 mm. La escala pequena no satura, al menos no hasta
que lo hace la grande, sino que muestra un crecimiento en ley de potencias
con el tiempo con un exponente xk = 0.26 = 0.03. La escala mas grande crece
a st vez como ~ t9, con B = 0.52 + 0.02. El que exista un exponente & # 0,
implica que el escalado es de tipo anémalo, y ademés k = (@ — ayee)/ 2.

Para poder encontrar el valor de uno de esos exponentes de rugosidad
utilizamos las correlaciones altura-altura. La evolucion temporal de esa mag-
nitud, ademds de su comportamiento para diferentes escalas en saturacién,
se puede ver en la Figura 6.5. En esa grafica, encontramos que este sistema
tiene multi-escalado, sus exponentes son diferentes dependiendo del momento
estadistico de sus interfases que se considere. Este es un hecho importante
porque puede estar relacionado con el escalado anémalo. El exponente de ru-
gosidad local que medimos (para el momento de segundo orden) es o, = 0.6.

Como tultima comprobacién del escalado, y de los exponentes medidos,
estudiamos la evolucién del espectro de potencias de los frentes. Se puede
encontrar una serie de estos espectros en la Figura 6.6. Utilizando los expo-
nentes « = 1 y z = 2 conseguimos un buen colapso de los datos experimen-
tales para el espectro.

Una vez caracterizados los frentes para un determinado valor de la sepa-
racion entre placas, podemos estudiar que sucede cuando se varia b. El origen
del escalado anémalo reside en la diferencia de velocidades iniciales que el
fluido tiene sobre las zonas con pistas de cobre y en las que no las tienen.
Dicha diferencia provoca, ademas de que crezca la anchura del frente, que se
incremente también la pendiente promedio de la interfase, (|Vh|) ~ t*. Este
comportamiento continua hasta que la velocidad de todo el frente alcanza
la velocidad nominal v, que es fijada por el ritmo de inyeccién, y al mismo
tiempo llega a la saturacion. Como ya se comento en al seccién B.2, el que la
anchura de las escalas pequenas ((|Vh|) es en realidad la dispersién para una
escala [ — 0) sature al mismo tiempo que las grandes (la global) es una de
las propiedades fundamentales del escalado anémalo. Con el pardmetro b lo
que se controla es la velocidad inicial que tiene el fluido sobre las zonas con
y sin pistas v, + (vp = v, ). El escalado anémalo aparece entonces cuando
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Uo+ > U, por tanto variando b se puede conseguir que v, = v lo que lleva
a la desaparcién de ese tipo de escalado. Con los datos obtenidos en varios
experimentos donde hemos estudiado el escalado de los frentes para varios
valores de b y v, hemos realizado el diagrama de fases de la Figura 6.7.

Un modelo tedrico

Con los resultados mencionados en la seccion previa hemos tratado de desar-
rollar un primer marco teérico. Hemos buscado la maxima sencillez posible,
por tanto, el modelo es local. La interaccion entre columnas consecutivas,
aquellas con pistas de cobre y sin ellas, se introduce mediante difusion. El
término de ruido se toma de tal forma que reproduzca lo mas posible el desor-
den del experimento: es un ruido dicotémico, toma sélo dos posible valores
+1 y —1, y es columnar, sélo depende de la coordenada x. Para simular
la distribucién de las pistas, el ruido es constante dentro columnas cuya an-
chura sigue una distribucién de tipo P(l) ~ e~/%. Esta es la distribucién
que se observa también en los experimentos. El ruido no esta correlacionado
entre columnas diferentes. Por otro lado, con el fin de incluir la forma en
que la diferencia de v, y v_ evoluciona, la amplitud del ruido varia en el
tiempo como (vy; —v) t*/2. Juntando todos estos ingredientes, el modelo que
proponemos es

é&;? = VD(z)Vh(z,t) + v+ (vy —v) t 2 n(z) . (B.14)

El que la interaccién entre columnas sea difusiva origina un valor de z = 2,
muy cercano al encontrado para el experimento, z = 2.0 = 0.2. Cuando la
difusibidad D(x) es constante, el resto de exponentes para este modelo son
a=1y [ =1/2, ademéds de z = 2, que se corresponden con los exponentes
globales medidos en el experimento. Sin embargo, el tipo de escalado no es
anomalo, sino FV, lo que implica que o, = 1. Para reproducir también el
escalado local, es necesario tener en cuenta que los frentes experimentales
son casi planos dentro de cada columna, tenga pista o no (esto se puede ver
en la Figura 6.1). Esta caracteristica se puede incluir en el modelo mediante
una D(z) que no sea constante. La forma maés simple para hacerlo, es que
tras cada paso de tiempo se tome como altura del frente en cada columna
el promedio de las alturas dentro de dicha columna. Tras implementar eso
en el programa, se encuentra que el escalado se convierte en anémalo, que
los frentes presentan ahora multi-escalado, que los exponentes globales se
mantienen y, finalmente, que oo = 1/2.
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Conclusiones

En el sexto capitulo de la tesis se describen una serie de experimentos con
frentes de fluidos. Hemos realizado el primer estudio experimental de las
interfases de un fluido inmerso en un desorden columnar. Hemos encontrado
que su escalado es de tipo anémalo con unos exponentes a ~ 1, z ~ 2
Vv e ~ 0.55. Ademds, proponemos una explicacién para la presencia de
ese tipo de escalado y hemos explorado como el cambio de los parametros
experimentales le afectan. Finalmente, proponemos un modelos teérico que
consigue reproducir los resultados experimentales.
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Comment on “Macroscopic Equation for the
Roughness of Growing Interfaces in Quenched
Disordered Media”

In a recent Letter [1] Braunstein and Buceta introduced
a “macroscopic” equation for the time evolution of the
width of interfaces belonging to the directed percolation
depinning (DPD) universality class [2]. From numerical
simulations of the DPD model, they inferred an ansatz
[Eq. (1) in Ref. [1])] for the time derivative of the
interface width (called DSIW in Ref. [1]) at the depinning
transition. Braunstein and Buceta found that their formula
fitted the numerical data at the depinning transition, for
q. = 0.539 and B = 0.63, with the appropriate election
of some arbitrary constants.

Here we argue that, contrary to what is claimed in
Ref. [1], Braunstein and Buceta’s formula does not
describe the macroscopic behavior of the interface. The
formula proposed in Ref. [1] for the DSIW is an approxi-
mation to the very short times regime (when less than one
layer has been completed), which is not significant for
the description of the surface dynamics at large scales.
We obtain analytically the short time behavior of the
DPD model, which is valid for any ¢ and explains the
appearance of an exponential term in the formula of
Ref. [1] for the DSIW.

Let us consider the DPD model in a system of size
L and a density ¢ of blocked cells (p = 1 — ¢ density
of free cells). We are interested in the very short
times regime when the first monolayer still has not been
completed, i.e., the number of growth attempts N is
N < L (this corresponds to times t = N/L < 1). In
this regime, the probability of having a column i with
height h; > min(h;—y, h;+;) + 2 is negligible and the
columns are growing almost independently. The growth
at this early stage can be seen as a random deposition
(RD) process [3] in which every column grows in one unit
with probability p/L. The short time regime of the DPD
model is then like RD, which is solvable exactly, but with
the additional ingredient of a density ¢ of blocked sites.

One can see that, within this approximation, the proba-
bility of having a column with height A after N growth
attempts is given by

N

Nsp)' s (NS s
P(N,h) = T Ns 4 gph :%rl—r! e™. @

where s = 1/L is the probability of attempting to grow
a column and the usual approximation s"(1 — s) "N/
[(N = r)!r!] = (Ns)" exp(—Ns)/r! has been made.

From the probability (1), one can calculate the interface
width W2 = (h2) — (h)® and then the time derivative,
whose leading terms are

—qt
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FIG. 1. Numerical results for the DPD model in a system of

size L = 2" for ¢, = 0.539 (circles) and ¢ = 0.3 (squares).
Continuous lines correspond to Eq. (2) and fit the data for
t < 1. For larger times our approximation is not valid any
longer and the power law >~ takes over with 8 = 0.623
and B = 0.3 for g. = 0.539 and ¢ = 0.3, respectively (dashed
lines).

where t+ = Ns = N/L is the time in the units used in
Ref. [1]. This formula gives the exact time evolution
of dd—”: for any ¢ (not only at ¢, = 0.539) and is valid
for times + << 1. For times ¢ > 1 differences between
neighboring columns are likely to be larger than 2
resulting in horizontal correlations and the breakdown of
(2). A comparison of Eq. (2) with numerical simulations
of the DPD model is presented in Fig. 1.

Our calculation suggests that the exponential term in
the ansatz of Ref. [1] is actually produced by the usual
random depositionlike dynamics, which occurs in any
growth model [3] for short times.
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Generic Dynamic Scaling in Kinetic Roughening
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We study the dynamic scaling hypothesis in invariant surface growth. We show that the existence of
power-law scaling of the correlation functions (scale invariance) does not determine a unique dynamic
scaling form of the correlation functions, which leads to the different anomalous forms of scaling recently
observed in growth models. We derive all the existing forms of anomalous dynamic scaling from a new
generic scaling ansatz. The different scaling forms are subclasses of this generic scaling ansatz associated
with bounds on the roughness exponent values. The existence of a new class of anomalous dynamic

scaling is predicted and compared with simulations.

PACS numbers: 68.35.Fx, 05.40.—-a, 05.70.Ln

The theory of kinetic roughening deals with the fate of
surfaces growing in nonequilibrium conditions [1,2]. In a
typical situation an initially flat surface grows and rough-
ens continuously as it is driven by some external noise. The
noise term can be of thermal origin (such as, for instance,
fluctuations in the flux of particles in a deposition process)
or a quenched disorder (such as in the motion of driven in-
terfaces through porous media). A rough surface may be
characterized by the fluctuations of the height around its
mean value. So, a basic quantity to look at is the global
interface width, W(L, 1) = ([h(x,1) — h]?)!/2, where the
overbar denotes average over all x in a system of size L
and the brackets denote average over different realizations.
Rough surfaces then correspond to situations in which the
stationary width W(L, t — o) grows with the system size.
Alternatively, one may calculate other quantities related
to correlations over a distance / as the height-height cor-
relation function, G(I,t) = (h(x + 1,t) — h(x,t)]?), or
the local width, w(l, 1) = ([h(x,1) — (h)2))/2, where
(---); denotes an average over x in windows of size /.

In the absence of any characteristic length in the problem
growth processes are expected to show power-law behavior
of the correlation functions in space and time, and the
Family-Vicsek dynamic scaling ansatz [1-3],

W(L,1) = 1*FFf(L/E()), @

ought to hold. The scaling function f(«) behaves as

u® ifu<xl1

flw) ~ {const ifu>1, @
where « is the roughness exponent and characterizes the
stationary regime, in which the horizontal correlation
length &(r) ~ 1'/% (z is the so called dynamic exponent)
has reached a value larger than the system size L. The
ratio B8 = a/z is called growth exponent and character-
izes the short time behavior of the surface. As occurs in
equilibrium critical phenomena, the corresponding critical
exponents do not depend on microscopic details of the
system under investigation. This has made it possible to

0031-9007/00/84(10) /2199(4)$15.00

divide growth processes into universality classes according
to the values of these characteristic exponents [1,2].

A most intriguing feature of some growth models is
that the above standard scaling of the global width differs
substantially from the scaling behavior of the local inter-
face fluctuations (measured either by the local width or the
height-height correlation). More precisely, in some growth
models the local width (and the height-height correlation)
scales as in Eq. (1), i.e., w(l,1) = tPf4(1/£(z)), but with
the anomalous scaling function

uve ifu <1
falu) ~ ’const ifu>1, @

where the new independent exponent . is called the
local roughness exponent. This is what has been called
anomalous roughening in the literature, and has been found
to occur in many growth models [4-10] as well as experi-
ments [11-15]. Moreover, it has recently been shown
[16,17] that anomalous roughening can take two different
forms. On the one hand, there are super-rough processes,
i.e., a > 1, for which always aj,. = 1. On the other hand,
there are intrinsically anomalous roughened surfaces, for
which ajoc < 1 and a can actually be any @ > ajq.

Anomalous scaling implies that one more independent
exponent, aj,., may be needed in order to assess the uni-
versality class of the particular system under study. In
other words, some growth models may have exactly the
same « and z values seemingly indicating that they be-
long to the same universality class. However, they may
have different values of a),. showing that they actually be-
long to distinct classes of growth. As for the experiments,
only the local roughness exponent is measurable by direct
methods, since the system size remains normally fixed.
Fracture experiments [14] in systems of varying sizes have
succeeded in measuring both the local and global rough-
ness exponents, in good agreement with the scaling picture
described above.

In this Letter we introduce a new anomalous dynamics
in kinetic roughening. We show that, by adopting more

© 2000 The American Physical Society 2199
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general forms of the scaling functions involved, a generic
theory of dynamic scaling can be constructed. Our theory
incorporates al the different forms that dynamic scaling
can take, namely, Family-Vicsek, super-rough, and intrin-
sic, as subclasses and predicts the existence of a new class
of growth modelswith novel anomal ous scaling properties.
Simulations of the Sneppen model (rule A) [18] of self-
organized depinning (and other related models) are pre-
sented as examples of the new dynamics.

First, let us consider the Fourier transform of the height
of the surface in a system of size L, which is given by
h(k,t) = L™V2Y [h(x,1) — h(r)]exp(ikx), where the
spatial average of the height has been subtracted. The
scaling behavior of the surface can now be investigated by
calculating the structure factor or power spectrum,

S(k.1) = (k. )h(~k. 1)), )
which is related to the height-height correlation function
G(l, 1) defined above by

G,1) =% s

27 /L<k=m/a

[1 — cos(kl)]S(k,t)

w/a dk

0(/ —[1 — cos(k)]S(k,1),  (5)
2w/l 27

where a is the lattice spacing and L is the system size.

In order to explore the most general form that kinetic
roughening can take, we study the scaling behavior
of surfaces satisfying what we will cal a generic dy-
namic scaling form of the correlation functions. We
will consider that a growing surface satisfies a generic
dynamic scaling when there exists a correlation length
&(r), ie, the distance over which correlations have
propagated up to time ¢, and £(z) ~ ¢'/%, z being the
dynamic exponent. If no characteristic scale exists but
¢ and the system size L, then power-law behavior in
space and time is expected and the growth saturates
when ¢ ~ L and the correlations [and from Eq. (5)
aso the structure factor] become time-independent.
The global roughness exponent « can now be calcu-
lated in this regime from G(I = L,t > L%) ~ L*® [or
W(L,t > L*) ~ L“]. In general, as we will see below,
the scaling function that enters the dynamic scaling of
the local width (or the height-height correlation) takes
different forms depending on further restrictions and/or
bounds for the roughness exponent values. These kinds
of restrictions are very often assumed and not valid for
every growth model. For instance, only if the surface were
self-affine, saturation of the correlation function G(1, 1)
would also occur for intermediate scales [ at times ¢t ~ ¢
and with the very same roughness exponent. However,
the latter does not hold when anomal ous roughening takes
place, as can be seen from the scaling of the local width
in Eqg. (3).

Our aim hereisto investigate all possible forms that the
scaling functions can exhibit when solely the existence of
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generic scaling is assumed. So, if the roughening process
under consideration shows generic dynamic scaling (in the
sense explained above), and no further assumptions (such
as, for instance, surface self-affinity or implicit bounds for
the exponent values) are imposed, then we propose that the
structure factor is given by

Sk, 1) = k=G Dg(ks1/7) (6)
where the scaling function has the general form

ulema) if > ]

s(u) {uz”‘H ifu<kl, @)
and the exponent «; iswhat wewill call the spectral rough-
ness exponent. This scaling ansatz is a natural generali-
zation of the scaling proposed for the structure factor in
Refs. [16,17] for anomalous scaling.

In the case of the global width, one can make use of

1 dk
W2(L,1) = 7 ; S(k,t) = f Es(k,t), ®

to prove easily that the global width scales as in Egs. (1)
and (2), independently of the value of the exponents «
and «y.

However, the scaling of the local width is much more
involved. The existence of a generic scaling behavior
such as (7) for the structure factor aways leads to a
dynamic scaling behavior,

w(l, 1) ~ /G, 1) = tPg(1/§), )

of the height-height correlation (and local width), but the
corresponding scaling function g(u) is not unique. When
substituting Egs. (7) and (6) into (5), one can see that the
various limits involved [a — 0, &(t)/L — «, and L —
] do not commute [16,17]. This results in a different
scaling behavior of g(u) depending on the value of the
exponent ;.

Let us now summarize how all scaling behaviors re-
ported in the literature are obtained from the generic dy-
namic scaling ansatz (7). We shal also show how a
new roughening dynamics naturally appears in this scal-
ing theory. Two major cases can be distinguished, namely,
ay < 1 and a; > 1. On the one hand, for a; < 1 thein-
tegral in Eq. (5) has aready been computed [16,17] and
one gets
const ifu>1. (10)
So, the corresponding scaling function is g, <1 ~ fa and
as; = o, .., the intrinsic anomalous scaling function
in Eqg. (3). Moreover, in this case the interface would
satisfy a Family-Vicsek scaling (for the local as well as
the global width) only if @ = a, were satisfied for the
particular growth model under study. Thus, the standard
Family-Vicsek scaling turns out to be one of the possible
scaling forms compatible with generic scaling invariant
growth, but not the only one.

On the other hand, a new anomalous dynamics shows
up for growth models in which a; > 1. In this case, one

% ifu<xl1
S P
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finds that, in the thermodynamic limit L — <o, the integral in agreement with previous simulations [18]. We have

Eq. (5) has a divergence coming from the lower integra-
tion limit. To avoid the divergence one has to compute
the integral keeping L fixed. We then obtain the scaling
function

ifu<xl

ifu>1. (1

u
8a,>1(u) {const

So in this case one always gets aj,c = 1 for any a, > 1.
Thus, for growth models in which « = «;, one recovers
the super-rough scaling behavior [16,17].

However, it is worth noting that neither the spectral ex-
ponent «; nor the global exponent « are fixed by the scal-
ing in Egs. (7) and (11) and, in principle, they could be
different. Therefore, growth models in which a,; > 1 but
a # a;, could aso be possible and represent a new type of
dynamicswith anomalous scaling. The main feature of this
new type of anomalousroughening isthat it can be detected
only by determining the scaling of the structure factor.
Whenever such a scaling takes place in the problem under
investigation the new exponent a; will show up only when
analyzing the scaling behavior of S(k, r) and will not be de-
tectable in either W(L, t), w(l,t), or G(I,t). In fact, aswe
have shown, the stationary regime of a surface exhibiting
this kind of anomalous scaling will be characterized by
W(L) ~ L* and w(l,L) ~ \/G(I,L) ~ IL*~'; however,
the structure factor scales as S(k, L) ~ k~Ga:+Dp2Aa—a),
where the spectral roughness exponent «; is a new and
independent exponent. We can summarize our analytical
results as follows:

a; = a = Family-Vicsek
ay # a = intrinsic

a; = a = super-rough
ag;#a = new class.  (12)

if a;, <1 = . =ay {
ifa,>1= aj.=1 {

In the following we present simulations of a one-
dimensional growth model that is a nice example of the
new dynamics. We have performed numerical simula-
tions of the Sneppen model of self-organized depinning
(model A) [18]. We have found that this model exhibits
anomalous roughening of the type described by Eq. (7)
for a; > 1 and @; # «. In this model the height of the
interface h(i, r) is taken to be an integer defined on a one-
dimensiona discrete substrate i = 1,...,L. A random
pinning force n(i, k) is associated with each lattice site
[, h(i)]. The quenched disorder %(i, k) is uniformly dis-
tributed in [0, 1] and uncorrelated. The growth algorithm
is then as follows. At every time step ¢, the site iy with
the smallest pinning force is chosen and its height A (i, ¢)
is updated h(ig,t + 1) = h(ip,t) + 1 provided that the
conditions |h(ig,t) — h(ip = 1,1)] < 2 are satisfied.
Periodic boundary conditions are assumed. We have
studied the behavior of the model in systems of different
sizes from L = 2° up to L = 2'3. From calculations of
the saturated global width W(L) for various system sizes,
we find a global roughness exponent & = 1.000 = 0.005

checked that the scaling of the global width is given
by Eq. (1) with a scaling function such as (2). Also in
agreement with previous work [18], we find that the time
exponent «/z = 0.95 = 0.05. The local width w(l,r)
scales as w(l, 1) = 1*/2g(1/£) where the scaling function
is given by Eq. (11), and also aj. = 1.

From these simulation results, one could conclude that
the behavior of the Sneppen growth model is rather triv-
ial and that the exponents & = aj,c = z = 1 describeits
scaling properties. Quite the opposite, this model exhibits
no trivial features that can be noticed when the structure
factor is calculated. In Fig. 1 we show our numerical re-
sults for the structure factor S(k,t) in a system of size
L = 2048. Note that in Fig. 1 the curves S(k, ¢) for dif-
ferent times are shifted downwardsreflecting that o < a;.
This contrasts with the case of intrinsic anomalous rough-
ening [16,17] where a; = ajo and ajoc = 1. The slope
of the continuous lineis —3.7 and indicates that a new ex-
ponent a; = 1.35 enters the scaling. This can be better
appreciated by the data collapse shown in Fig. 2, where
one can observe that, instead of being constant, the scal-
ing function s(u) has anegative exponent =7 for u > 1.
The exponents used for thedatacollapsearea = 1,z = 1
and the scaling function obtained isin excellent agreement
with Eq. (7) and a spectral exponent «; = 1.35 = 0.03.

The interface in the Sneppen model A is formed by
facets with constant slope *=1 [18]. The vaue of the
exponents a = aj. = 1 and «; = 1.35 is related to
the faceted form of the interface at saturation. It is easy
to understand how the anomalous spectral roughness
exponent appears due to the faceted form of the interface.
For the simpler (and trivial) case of a faceted interface
formed by a finite number of identical segments, N, of
constant slope, *=m, one can show analytically that the

10.0

— t=7.8125

e t = 3 X 7.8125

---- t=8x78125

———1t=20x7.8125
—-—-t=100x 7.8125

5.0

log,, S(k.t)

0.0

-3.0 -2.0 -1.0 0.0 1.0

log,, k

FIG. 1. Structure factor of the Sneppen model for interface
depinning at different times. The continuous straight line is a
guide to the eye and has a slope —3.7. Note the anomalous
downwards shift of the curves for increasing times.
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FIG. 2. Data collapse of the graphs in Fig. 1. The exponents
used for the collapse are « = 1.0 and z = 1.0. The straight
lines have slopes —0.7 (solid) and 3.0 (dashed) and are a guide
to the eye. The scaling function is given by Eq. (7) with a
spectral roughness exponent «; = 1.35 = 0.03. The deviations
from the scaling for large values of the argument k¢'/* are due
to the finite lattice spacing.

global width W(L) ~ m>L?*/N?, and the height-height
correlation function G(I) ~ I?m*> — Nm?I*/L, which
leads to @ = @y, = 1, while the spectrum S(k,L) ~
k™*L™' as k— 0. A simple comparison with the
anomalous scaling form for the stationary spectrum
S(k,L) ~ k~@as+Dp2e=a) |egds to a, = 1.5. Actualy,
the facets occurring in the Sneppen model are not formed
by identical segments, but rather follow a random distri-
bution [19], which leads to a spectral exponent different
from the trivia case.

In summary, we have presented a generic theory of
scaling for invariant surface growth. We have shown that
the existence of power-law scaling of the correlation func-
tions (scale invariance) does not determine a unique form
of the scaling functions involved. This leads to the dif-
ferent dynamic scaling forms recently observed in growth
models [4-10] and experiments [11-15] exhibiting
anomalous roughening. In particular, interface scale
invariance does not necessarily imply Family-Vicsek
dynamic scaling. We have derived al the types of scaling
(Family-Vicsek, super-rough, and intrinsic anomalous)
from a unique scaliing ansatz, which is formulated in
the Fourier space. The different types of scaling are
subclasses of our generic scaling ansatz associated with
bounds on the values that the new spectral roughness
exponent a; may take. This generalization has allowed

2202

us to predict the existence of a new kind of anomalous
scaling with interesting features. Simulations of a model
for self-organized interface depinning have been shown
to be in excellent agreement with the new anomalous
dynamics. It has recently been shown [20] that anomalous
roughening stems from a nontrivial dynamics of the mean
local slopes ((Vh)?). In contrast, the new anomalous
dynamics can be pinned down to growth models in which
the stationary state consists of faceted interfaces.
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Interface depinning in the absence of an external driving force
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We study the pinning-depinning phase transition of interfaces in the quenched Kardar-Parisi-Zhang model as
the external driving force F goes towards zero. For a fixed value of the driving force, we induce depinning by
increasing the nonlinear term coefficient N, which is related to lateral growth, up to a critical threshold. We
focus on the case in which there is no external force applied (F=0) and find that, contrary to a simple scaling
prediction, there is a finite value of \ that makes the interface to become depinned. The critical exponents at
the transition are consistent with directed percolation depinning.

DOI: 10.1103/PhysRevE.64.066109

I. INTRODUCTION

The dynamics of random interfaces in the presence of
noise is an interesting example of critical phenomena and
generic scale-free behavior in systems far from equilibrium.
In the case of surface growth dominated by thermal fluctua-
tions, the Kardar-Parisi-Zhang (KPZ) equation [1] has been
very much studied for it represents a whole universality class
of growth, which includes many well-known discrete com-
puter models [2]. In many experimental situations, however,
interface motion is affected by the existence of random pin-
ning forces (see [2] and references therein). In this case, the
simplest way to model interface roughening is to replace the
noise term 7(x,t) in KPZ by a quenched disorder »(x,h),

dh
E:VV2h+)\(Vh)2+F+ n(x,h), (1)

which is often referred to as the quenched Kardar-Parisi-
Zhang (QKPZ) equation. The first term on the right-hand
side describes the smoothening effect of surface tension, F is
the driving force that pushes the interface through the disor-
der, and the term A(Vh)? comes from lateral growth and
represents the nonlinear most relevant correction. The
quenched  disorder  has  short-range  correlations
(n(x,h)p(x’,h")y=8(x—x")A(h—h’"), where the cor-
relator A(u) is a very rapidly decreasing function of |u| and
is the term actually responsible for the pinning of the inter-
face. This equation is expected to describe interface rough-
ening in many disordered systems, including the nonequilib-
rium dynamics of magnetic domain walls in disordered
materials [3-6], an elastic chain in a quenched disorder [7],
fracture cracks propagation [8], etc. Its applicability to de-
scribing luid-fluid displacement in porous media might be
less justified though [9].

The QKPZ model described by Eq. (1) exhibits a continu-
ous phase transition at a certain critical value F of the ex-
ternal driving force F. For F larger than F., the interface

*Electronic address: ramasco@ifca.unican.es
Electronic address: lopez@ifca.unican.es

1063-651X/2001/64(6)/066109(5)/$20.00

64 066109-1

PACS number(s): 05.70.Ln, 47.55.Mh, 68.35.Fx, 05.40.—a

moves with a finite velocity. However, the interface remains
pinned by the disorder for F<F. The critical point F=F,
is known as depinning transition. The interface velocity
scales as v~(F—F.)? near and above the transition and
plays the role of an order parameter.

The value of the critical force depends on the parameters
of the model, in particular, it depends on the value of the
coefficient N of the nonlinear term. Therefore, by keeping
constant the rest of the equation parameters, one may find a
critical line F,=f(\) separating the pinned from the de-
pinned phase. Alternatively, we can see this critical line the
other way around and let A= f ~1(F) be the critical value of
the KPZ nonlinearity above which the interface gets de-
pinned. The driving force F favors the advance of the inter-
face and thus, the lower the driving force is, the larger the
critical value \ . of the nonlinearity that is needed in order to
get the interface depinned. Indeed, one would expect that as
F—0 depinning becomes more and more difficult until
eventually, at F=0, the threshold A;— < and depinning be-
comes impossible. This intuitive picture can be justified by
means of a simple scaling argument as follows. Consider a
typical region of size | pinned by the disorder. Equation (1)
applied to that region reads

vhl =2+ \h?1 "2+ F— A(0)¥2~92=0. @

If one supposes that the nonlinear term dominates over the
diffusion, the interface remains pinned whenever Aa?l 2
<A(0)Y2792 where a is the lattice spacing in the growth
direction. This defines a characteristic length, |
=[\%a*A(0)]*~9, such that for |<I the interface gets
pinned. Now to estimate the critical force that is necessary to
depin a region of typical size I, one equates the force term
with the disorder in Eq. (2) to get to an expression for the
critical line, Fe~A(0)?“-D(Na?)~¥“=9  |nverting the
latter, one finds

E —(4—d)/d (3)

A(o)Z/d
)\c~72

©2001 The American Physical Society
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for the critical line of the depinning transition [10]. In 1
+1 dimensions for instance, Eq. (3) predicts a diverging
Ne~F % asF—0 [11].

In this paper, we show that, contrary to this scaling pic-
ture, there is always a finite critical value \. of the KPZ
nonlinearity such that the interface gets depinned even for
F=0. Our conclusions are based upon numerical integration
of Eq. (1) in d=1. We numericaly caculate the critical line
and find that A .(F=0)=3.60=0.01 (in natural units) for the
QKPZ equation. Our results support the somehow counterin-
tuitive conclusion that an interface may get depinned in the
absence of the external driving force by the sole effect of
nonlinearities.

II. NUMERICAL RESULTS

In order to numericaly integrate Eq. (1), the equation
parameters can easily be rescaled to have only two indepen-
dent tuning parameters—namely, the nonlinear KPZ coeffi-
cient N and the driving force F. We have used a standard
finite-difference scheme for integrating the QKPZ equation
given (in natural units) by

h(i,t+At)=h(i,t) + AtF+Aty[i h(i,0) ]+ At [h(i + 1)
+h(i—1,H)—2h(i,1)]

. i Py
A h(|+1.t)2h(| 1t) ‘ @

where the lattice spacing has been set to unity. We start our
simulation from a flat initial condition h(x,0)=0 and peri-
odic boundary conditions, i.e., h(0t)=h(L,t) and h(L
+1t)=h(1t), are imposed on the interface. Ti(i,t) stands
for the integer part of h(i,t), and the quenched disorder is
Gaussian distributed and has correlations ( 7(i,h) 7(j,h’))
=6;,j0n - Simulations with different time steps were car-
ried out, and the scheme proved to be stable and well be-
haved for atime step A=0.01 (or smaller) for the range of
tuning parameters simulated. Following Newman and Bray
[12], who found some numerica instabilities when numeri-
caly integrating KPZ, we took special care in checking that
no numerical instabilities appear (i.e., surface cusps are ef-
fectively smoothened by the Laplacian term) even for the
large values of A used here.

We caried out simulations in systems of size L
=128,256, . . .,8192. For each value of the of the nonlinear
coefficient X, we computed the critical value of force needed
to get the interface depinned. Our results are summarized in
Fig. 1. As expected, we find that as the driving force is
smaller, the critical value A of the nonlinear coefficient re-
quired in order to depin the interface becomes larger. How-
ever, as anticipated above, the critical point \. aways re-
mains finite, even for F=0. At a purely phenomenological
level, we find that the critical line can be fitted very nicely by

Y 23 23
(bi) "

F
b,

=1, (©)
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FIG. 1. Critical line \;=f(F) for the QKPZ equation. Symbols
are points obtained from numerical simulations in a system of size
L=1024. Thelineis afit according to Eq. (5). Note that A . remains
finite, even at F=0.

where the constants b, =4.31+0.04 and b, =0.81+ 0.03 (see
Fig. 1). To our knowledge, this is the first formula for the
critical line and demands theoretical explanation.

In the following, we focus on the case in which no exter-
nal driving F=0 pushes the interface and depinning is due
solely to nonlinear lateral growth. We have studied the criti-
cal behavior in the vicinity of A\ (F=0)=3.60+0.01 in or-
der to address the problem of the nature of the critical point.
First, we have computed the scaling behavior of the station-
ary interface velocity at F =0 asthe transition is approached.
InFig. 2 (inset) we plot v vs\ for F=0 and asystem of size
L =8192 showing that the transition is continuous. The criti-
cal behavior of the order parameter v is shown in Fig. 2. We
find that close to the depinning threshold, the interface ve-
locity scales as v~(A—\¢)? with a critical exponent
=0.635+0.007.

The depinning mechanism for F=0 is the following.
Starting from a flat initial condition h(x,t=0)=0, al the

0.40

log,, v
N
@

-0.5 0.0 0.5
log,, (A-2)

FIG. 2. Interface velocity vs coefficient X for the QKPZ equa-
tion at F=0 (inset) close to the threshold A (F=0). The critical
behavior of the velocity v ~ (N —\)" is shown in the main panel. A
straight line is found for A .= 3.60=0.01 and the slope corresponds
to the velocity critical exponent »=0.635+0.007.
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FIG. 3. In the main panel, we plot the global width for different
distances (as shown) e=(\—\)/\. to the threshold for F=0 in a
system of size L=8192. The crossover from t%7 to t%° occurs at
times that scale as t.~ e~ ¥ with the distance to the threshold. Inset
shows a data collapse according to Eq. (8) of the sets shown in the
main panel. A good collapse is found for the exponents By,
=03, k=057, and y=1.57.

terms in Eq. (1) are zero except for the disorder. At time t
=0, the quenched random term 7(x,h) generates inhomo-
geneities in the front, which in turn produce a finite value of
(Vh)2. For small values of \, these inhomogeneities smear
out and the interface gets pinned by the disorder at one of the
infinite pinning paths. However, for A >\ . these initial inho-
mogeneities are effectively amplified by the nonlinearity and
the interface gets moving with a finite velocity.

As occurs in the standard case of depinning driven by an
externa force, we find that the depinned phase A>\ is
rough and belongs to the universality class of KPZ. This can
be seen by studying the scaling behavior of the the global
width W(L,t) =[(h(x,t)2)—(h(x,1))?]Y2, where the aver-
age is over al x and different realizations of disorder [13].
We obtain that the globa width scales as [14]

th o if
Lo if

t<ty

WL.D~ t>t
X

(C)

with a time exponent 8= 0.33=0.01 and a roughness expo-
nent «=0.50+0.01 in agreement with the KPZ class of
growth.

However, when approaching the depinning transition
from above, e=(A—\)/\.—0", the scaling of the global
width is affected by the existence of a diverging correlation
length &~ ¢~ ". This is the typical size of the fluctuations of
the majority phase, i.e., the characteristic size of connected
regions formed by pinned sites. As we show in Fig. 3, the
global width (and similarly, the local width) displays a cross-
over from ~t%7 to KPZ-like behavior ~t°%%, More precisely,
one can seein Fig. 3 that the width approximately behaves as

theere if
tPkoze™ " if

t<t,

W(t,e)~ -
o

@
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where k., in view of the dependence of the curves on e,
must be very small. These two regimes are separated by a
crossover time t. that depends on e. Indeed, following
Kertesz and Wolf [15], near a roughening phase transition,
one expects the crossover time to scale with the distance to
the threshold ast.~ &~ e~ 7, where y=zy. Direct examina
tion of Fig. 3 immediately suggests the scaling ansatz

W(t,e)~tProze g(t/t,), 8)

which is characteristic of systems close to a roughening tran-
sition [15-17]. The scaling function is given by

uPe Pz if u<l
g~ const. if u>1, ©
and the scaling relation
Kt K= (B Bip) ¥ (109
among critical exponents must be fulfilled so that both re-

gimes match.

In Fig. 3 (inset) we show a data collapse of
t~ProzeW(t,€) vs €”t. A good data collapse is obtained for
the exponents By, =0.3, k=057, and y=1.57, the error in
estimating these exponents being of about 10%. From the
scaling relation (10), one also gets B8.=0.73 in good agree-
ment with our previous estimate.

The value of the critical exponents is consistent with
those of the DPD model [18,19] just above the transition
[16,2]. We thus conclude that the lateral growth-driven de-
pinning point at F=0 and A =\, aso belongs to the univer-
sality class of DPD.

111. DISCUSSION

Our results indicate that in the absence of any external
driving field, an interface may get depinned by increasing the
nonlinear term \ in Eq. (1) up to its critical value. From the
experimental point of view, this implies that, assuming the
parameter A is tunable in the laboratory, an interface could
become depinned even when no external driving force is
applied. In the following, we discuss the role of anisotropy
of the background random medium in generating the KPZ
term \(Vh)?2, and how this mechanism may be used to raise
the value of N in experiments by increasing the degree of
disorder anisotropy.

The QKPZ equation for =0 is known as the quenched
Edwards-Wilkinson (QEW) equation and has been much
studied in recent years. The critical exponents at the depin-
ning transition have been well determined by several authors
[20-23,7]. In (1+1)-dimensions one finds a~1.25 and B
~0.85 at the threshold F=F, and «=1/2 and 8= 1/4 in the
moving phase for F>F ., where the disorder 7(x,h) may be
replaced by 7(x,vt) and the exponents of the EW universal-
ity class [2] are recovered. The QEW equation arises natu-
rally as the Langevin equation for the Hamiltonian H
=[dx[ 1+ (Vh)%+V(x,h)] describing the dastic energy
of an interface in a disordered potential V(x,y) [3-5]. The
term A (Vh)? cannot be deduced as a variation of any Hamil-

066109-3



158

RAMASCO, LOPEZ, AND RODRIGUEZ

tonian and is added as the most relevant nonlinear correction
[2]. Geometrically, it accounts for growth in a direction lo-
cally normal to the interface and is referred to as nonlinear
lateral growth term.

In the past, the physical origin of the KPZ nonlinearity in
interface depinning has been found to be related to two dis-
tinct mechanisms for different models [24]. On the one hand,
in the spirit of the original work of KPZ [1], the A term may
have a purely kinematic origin, so that Acv [20,24]. In this
case, the term \(Vh)? goes to zero at the depinning transi-
tion, F=F,, and the system thus belongs to the QEW uni-
versality class. On the other hand, there are models [24] for
which A remains finite at the transition [25]. These models
have exponents that correspond to the DPD universality class
[20,26]. Tang, Kardar, and Dhar [27] have shown that this
finite N term may arise in some models because of an under-
lying anisotropy in the random medium, i.e., models that
have a growth direction determined by the random medium.
A further numerical step on this direction has recently been
achieved by Park, Kim, and Kim [28] by studying a model
with an anisotropic disorder correlator. The effect of anisot-
ropy on real experiments has also been successfully tested by
Albert et. al. [29]. Experiments on fluid flow in a random
medium formed by packed glass beads [30] are now known
to belong to the isotropic QEW universality class [29]. How-
ever, the scaling exponents obtained for paper wetting
[19,31,32] are close to the prediction of the anisotropic DPD
universality class. A definite identification of paper wetting
with DPD is still an open question though [9,33]. In paper-
wetting experiments, a sheet of paper is vertically suspended
over areservoir of liquid (usually black ink). The fluid then
wets the paper and the interface between wet and dry phases
rises until it eventually stops. The interface grows upwards
because of capillary forces in the paper pores. Notice that
there is no external driving force. The anisotropic paper fiber
distribution determines the quenched disorder term. Disorder
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in these systems is thus highly anisotropic. Pressure differ-
ence between the reservoir and the paper pores leads to a
coarse-grained effective nonlinear term, which depends on
viscosity of the invading fluid and microstructure of the me-
dium. Whenever the effectively generated A term is large
enough to be above \., depinning of the wetting front oc-
curs.

In summary, we have studied the QKPZ equation focusing
on the case in which there is no externa driving force (F
=0). We have shown that there exists a depinning transition
for afinite value of the KPZ coefficient A=\ (F=0) and
that transition belongs to the DPD universdity class. More-
over, we find that the interface velocity scales as v~ (\
—\¢)? with a critical exponent #=0.635+0.007, which is
identical to the scaling in the case of depining driven by an
external force. This seems to indicate that the A term upon
renormalization gives rise to a constant term in a linear fash-
ion that makes the role of afinite driving force. A finite value
of the nonlinear coefficient N appears in systems with aniso-
tropic disorder, such as for instance in paper wetting experi-
ments. In this system, there is no external driving force and
depinning occurs due to local capillary forces, which drive
the interface through the anisotropic lateral growth term
AM(Vh)?2. We conclude that by varying the anisotropy degree
of the corresponding random medium in other experimental
systems, depinning is possible even with no external driving.
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Anomalous roughening of Hele-Shaw flows with quenched disorder
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The kinetic roughening of a stable oil-air interface, moving in a Hele-Shaw cell which contains
a quenched columnar disorder (tracks) has been studied. Capillarity is responsible for the dynamic
evolution of the resulting rough interface, which exhibits anomalous scaling. The three independent
exponents needed to characterize the anomalous scaling are determined experimentally. The scaling
anomalies are explained in terms of the initial acceleration and subsequent deceleration of the
interface tips in the tracks coupled by mass conservation. A phenomenological model that reproduces
the measured global and local exponents has been introduced.

PACS: 47.55.Mh, 68.35.Ct, 05.40.-a

Viscous fluid fronts in porous media can be good pro-
totypes of rough growing interfaces in disordered media
[1]. The motion of oil or water through soils has in-
teresting practical applications in oil recovery, aquifer
contamination or isolation of nuclear waste. The char-
acterization of the statistical properties of a roughening
front has been usually done in terms of the rms inter-
facial width. Recently, a generic ansatz [2] has been
proposed to derive all the existing forms of dynamic
scaling, e.g. the standard Family—Vicsek (FV) dynamic
scaling and several forms of anomalous dynamic scaling
in which the scaling of the global width differs substan-
tially from the scaling of the local interface fluctuations.
In this latter case, three independent exponents, instead
of two as in the FV case, are necessary to characterize
the anomalous behaviour. This fact makes the analy-
sis of experiments difficult and questions the validity of
other approaches performed in the past. Recently, some
experiments on molecular beam epitaxy [3], sputtering
[4], fracture mechanics [5-7], and electrodeposition [8]
have been discussed in terms of anomalous scaling, but
its physical origin remains poorly understood.

In this Letter we report the first observations of anoma-
lous scaling in experiments of Hele-Shaw flows with
quenched disorder. We consider an initially flat front
of oil and air at rest, or with a small constant average
velocity, in a horizontal Hele-Shaw cell with columnar
disorder. The columnar quenched disorder consists of
continuous copper tracks on a fibre—glass substrate in the
advancing direction of growth and randomly distributed
in the perpendicular direction, as can be seen in Fig.
1. In this situation, the correlation of the disorder in
the advancing direction is infinite and the local motion
relative to the average interface position is driven by cap-

illarity. This effect is caused by the different curvatures
of the advancing front in the third dimension, depend-
ing on whether the oil is on a copper track or in the
fibre-glass substrate, and is responsible for the resulting
rough interface. We characterize the anomalous scaling
by the presence of a vertical shift in the experimental
power spectra at different times. An analysis of the rms
width at short- and long-length scales plus a collapse of
the power spectra enables an independent determination
of the three exponents characteristic of anomalous scal-

ing.
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FIG. 1. Sequence of typical oil air interfaces. The sili-
cone oil moves upwards in the picture, and the disorder pat-
tern is represented in grey. The experimental parameters are
b=0.36 mm and v = 0.04 mm/s.

We associate the anomalous roughening with the ini-
tial acceleration and subsequent deceleration of the liquid
on the copper tracks, caused by capillary forces, and the
coupling of the motion over tracks and over fibre-glass
due to mass conservation. The anomaly effect decreases
as the externally imposed average velocity increases, and
disappears when the velocity is large enough to override
the local acceleration and deceleration [9]. To explain
the experimental results, we propose a phenomenological
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model which gives global and local exponents in good
agreement with the experimental exponents.

The roughening process of an initially flat inter-
face is described in terms of the interfacial root-mean-
square width w;, measured in windows of size [ < L.
In the anomalous scaling theory [10]: w(l,t) ~ t#
for t < t, w(l,t) ~ [%t? for t; < t < ty, and
w(l,t) ~ 1%0c [¥=%eoc for ty < t. The local time t; ~ [1/%,
and the saturation time ¢, ~ L/, Here 8 and #* are the
growth exponents, a and aj,. the roughness exponents,
and z the dynamic exponent. They satisfy the scaling
relations @ = z/3 and a — . = z/3*. Since there are five
exponents and two scaling relations, we need three in-
dependent exponents to characterize the dynamics. The
roughness exponents are usually determined through the
power spectrum, which is less sensitive to finite size ef-
fects, and scales as S(k,t) = k~(2a+)s, (kt'/?), where
54 obeys sa(u) ~ u?*t! when u < 1 and sy (u) ~ u?®
when u > 1. Here § = a — a;,.. The anomalous scal-
ing leads to the usual FV scaling when § = 0 and 3* = 0.

The experiments have been performed in a horizontal
Hele-Shaw cell, 190 x 550 (L x H) mm?®, made of two
glass plates 20 mm thick. The copper tracks on the sub-
strate are randomly distributed along z, with a filling
factor f = 35%. The tracks are d = 0.06 £ 0.01 mm
high and have a lateral size of 1.50 & 0.04 mm. The
distance between the top plate and the substrate defines
the gap spacing b, which has been varied in the range
0.16 < b < 0.75 mm. We have used 4 different disorder
configurations and carried out 2 identical runs per dis-
order configuration. A silicone oil (kinematic viscosity
v = 50 mm?/s, density p = 998 kg/m?, and surface ten-
sion oil-air & = 20.7 mN/m at room temperature) was
injected into one side of the cell at constant volumetric
injection rate. The oil completely wets the glass plates,
the substrate, and the copper tracks. The evolution of
the interface at average velocity v was monitored using
two CCD cameras with a resolution of 0.38 mm/pixel.
Further details of the experimental set-up can be found
in [11].

In Fig. 2 we present the results for the interfacial
width as a function of time at long (I = L) and short
(I = L/128) scales. We obtain clear power law de-
pendencies that last for three decades in time, with
B =052+ 0.02 and #* = 0.26 + 0.03 respectively. No-
tice that having a growth exponent §* # 0 is a sign of
anomalous scaling. The temporal evolution of the power
spectrum is presented in Fig. 3(a). At very short times we
observe a regime with S(k) ~ k=34, It is a super-rough
transient regime created when the fluid on the tracks
reaches its maximum velocity after coming into contact
with the disorder. The main regime appears further on,
with S(k) ~ k=21, and a vertical shift that progressively
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decreases with time and disappears at saturation (¢ 2 450
s). The vertical shift of the power spectra is a sign of in-
trinsic anomalous scaling, in which the spectral exponent
[2] can be identified with the local roughness exponent,
so that aj,. = 0.554+0.10.

or ©
E T 1 1

E £ Y
; 1 E— § 0.26 —E
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FIG. 2. Experimental determination of 8 (main plot) and
B3* (inset). We plot W (t) = [wz(L, t) — w2(L‘O)T/2 to mini-
mize the influence of the initial condition. The experimental
parameters are b = 0.36 mm and v = 0.08 mm/s.

Using the above set-up, the three independent expo-
nents 3, 5%, aj,. have been obtained directly from the
experiments. The other two exponents «a, z can be ob-
tained from the scaling relations. In order to verify the
whole scaling, however, we prefer to determine the crit-
ical exponents by performing the best collapse of the
spectra compatible with the experimental results. The
collapse, presented in Fig. 3(b), leads to the following set
of scaling exponents:

B#=05+0.04, 5 =0.25+0.03,
a=104+0.1, ape =05+0.1, 2=2.0+0.2. (1)

We have also looked into the possibility of multiscaling
[12] through the scaling of the generalized correlations of
order ¢, of the form {(h(z +1,t) — h(z,1))1}/7 ~ [%.
Different exponents for a,: as ~ 0.6, gy ~ 0.4, and
ag ~ 0.2 were obtained, which confirm the existence of
multiscaling in the experiment.
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FIG. 3. (a) Temporal evolution of the power spectrum for

the same experiments as Fig. 2. The vertical line gives the

value of k associated with the spatial scale of the disorder.

(b) Collapse of the experimental power spectra for ¢ > 10

s. (c) Collapse of the power spectra obtained from numerical
simulation of the phenomenological model.

To understand the origin of anomalous scaling, we
should look at interfacial dynamics in greater detail. An
initially flat oil-air interface, moving at a nominal av-
erage velocity v, experiences local accelerations at those
points that touch a copper track for the first time. The
local velocity of these points jumps to a maximum in
a characteristic time of 1 s, and then relaxes as ¢~'/2
to the nominal average velocity. The maximum veloc-
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ity reached in a given track increases with track width
and decreases with gap spacing. As can be observed in
Fig. 4, the average velocity over copper tracks, vy, and
fibre glass substrate, v_, follows v+ = v & (vj — v)t=1/2,
where vy is the maximum of the average velocity over
tracks. This functionality varies slightly with gap spac-
ing due to the increasing correlation between neighbour-
ing tracks. However, for gap spacings above b, ~ 0.6 mm
is not reached. This behaviour of different velocities over
copper and fibre-glass tracks is an important ingredient
for anomalous scaling. At very short times the difference
in velocity is maximum, thus giving a maximum shift be-
tween spectra. Close to saturation the velocity over cop-
per tracks and fibre-glass almost equals the nominal ve-
locity, and the vertical shift disappears. When we inhibit
the relaxation of the velocity over copper tracks by either
injecting at velocities v > vy or using large gap spacings,
the anomalous scaling disappears. This scenario has been
studied experimentally by exploring different gap spac-
ings and velocities, and the results are summarized in
Fig. 5, where we show a phase diagram representing the
regions where the anomalous scaling is present (grey re-
gion, 6 # 0) or not (white regions, # = 0). The solid line
represents the function vr(b), and the vertical line the
limit between strong and weak capillary forces.
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FIG. 4. Local interface velocity over copper tracks (v4) and
over fibre-glass tracks (v_), for b = 0.36 mm and v = 0.08
mm/s.

The critical exponents of the anomalous scaling de-
pend on gap spacing and velocity, We have seen that
the anomalous exponent # tends to § = 0 as we increase
either the velocity or the gap spacing. This exponent
is particularly sensitive to variations of the gap spacing.
For b 2 0.6 mm, § = 0 at any velocity. The experimental
parameters b = 0.36 mm and v = 0.08 mm/s, deep in the
grey region of Fig. 5, give the appropriate conditions to
fully characterize the anomalous scaling experimentally.
Smaller gap spacings mean that the correlation length
in the z direction cannot grow to scales larger than the
average track width, and larger gap spacings give too
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: —1/2
weak an anomalous scaling because the ¢=1/2
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FIG. 5. Phase diagram v(b) indicating the regions where
the anomalous scaling is observable. The symbols represent
the different regions explored experimentally, and the arrow
indicates the parameters used in the paper.

Finally, we have developed a phenomenological model
based on the interplay of capillarity with a local diffusive
coupling between columns that reproduces experimental
behaviour. We first write an analytical model showing
this interplay as

O¢h(z,t) = 0, D(x)0-h(z,t) + v+ (var — 1*)t’1/277(z),
()

, where 77(:6) is a dichotomous noise, with values +1 and
—1, which model the geometry of the columnar disorder.
The diffusive coupling is introduced to obtain the dy-
namics with z = 2 found in experiments, and the other
two terms account for the behaviour of vy observed ex-
perimentally. Although the term t=1/2 introduces some
nonlocality in the model, this is essentially different from
non-local models [11,13,14] introduced recently to ac-
count for mass conservation. By dimensional analysis
of the simplest version (D = constant), one obtains the
same global exponents found in experiments: o = 1,
B = 0.5, z = 2. The local exponent 3* can be de-
duced from the evolution of the local slopes 0,h(z,t)
[15], resulting in $* = 0, so that aj,c = @ = 1. Hence
this model reproduces global behaviour, but not local
behaviour. In order to recover local scaling, the fact
that the interface is almost flat inside each track, easily
observed in Fig. 1, must be introduced in our model
as well as the fact that fluctuations occur only between
tracks. Analytically this is imposed in Eq. 2 through an
inhomogeneous diffusion coefficient D(z). Numerically,
we have introduced this effect by spatially averaging the
interface inside each track once each n time steps. We
thus recover interfaces that are morphologically analo-
gous to experimental interfaces. The exponents derived
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from the scaling of the power spectra shown in Fig. 3(c),
and the multiscaling exponents, reproduce the values
determined experimentally. It is remarkable that the
simulated spectra, averaged over 50 experimental runs,
and the measured spectra, averaged over only 4 exper-
imental runs, have comparable dispersions. This is due
to the lack of self-averaging in this problem with persis-
tent disorder. In summary, our phenomenological model
enables the relevant effects in the experiment to be both
identified and calibrated.

In conclusion, we have presented the first experimental
evidence of anomalous scaling in the dynamic roughening
of a fluid interface in a Hele-Shaw cell with quenched
disorder, and we have studied the experimental condi-
tions for the appearance of the observed anomaly. The
exponents 3, 3%, and a,. have been measured indepen-
dently and their value has been refined by imposing the
scaling relations through a collapse of the power spectra.
Finally, we have introduced an interfacial equation which
models the capillary phenomena observed in the experi-
ment at a phenomenological level. The model reproduces
both the morphology of the interfaces and the values of
the anomalous scaling exponents.
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