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Abstract. We use a discrete model to study the non-equilibrium dynamics of
a slowly driven elastic string in a two-dimensional disordered medium at finite
temperatures. We focus on the local activity statistics to show that it can be
related to global observables like the average interface velocity and the temporal
correlations of the velocity fluctuations. For low temperatures the string exhibits
typical creep motion and the activity statistics follows a power law, consistent
with an exponential distribution of energy barriers. However, we find that the
activity statistics is essentially different when the temperature is low enough,
suggesting a different relaxation mechanism as T → 0. We argue that this is
due to the generic non-equilibrium nature of our model in the absence of thermal
fluctuations.
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1. Introduction

The physics of elastic manifolds in disordered media has received much attention in
the last two decades. This interest is mainly due to the relevance of the problem for
understanding nonlinear collective transport in many disordered systems. Applications
include those in the dynamics of charge density waves [1], vortex lines in type-II
superconductors [2, 3], domain walls in magnetic [4]–[7] and ferroelectric materials [8, 9],
and crack propagation [10].

The dynamics of a driven elastic string is the result of the interplay between the
quenched disorder and the elastic interaction among the interface degrees of freedom.
At zero temperature there is a threshold driving force fc such that for f < fc random
impurities are able to pin the interface in one of the very many static configurations
(pinned phase). For f > fc, however, random pinning forces are overcome by the external
driving and the average position of the front moves at a finite velocity (flow phase). The
system undergoes a critical depinning transition at f = fc with a diverging correlation
length ξ ∼ (f − fc)

−νdep as f → f+
c . The critical exponent is νdep = 1/(2 − ζdep), where

ζdep is the roughness exponent of the pinned interface at f = fc.
In the presence of thermal fluctuations the picture outlined above changes

considerably. At any finite temperature the depinning transition is washed out and a
finite velocity exists for any driving force. For low temperatures and well below the
zero-temperature depinning threshold, f � fc, there is a slow creep regime where the
interface dynamics can be described by thermally activated jumps of spatially correlated
regions over the energy barriers separating different metastable states. In the creep
regime the stationary interface velocity is finite but extremely low, which can be used to
formulate a surprisingly successful scaling theory [11, 12] based on the physical properties
of the system at equilibrium (f = 0). This approach gives the stationary creep velocity
v∞(f, T ) ∼ exp[−(fc/f)μUc/T ], where Uc is a microscopic energy scale and the exponent
μ = (d − 2 + 2ζeq)/(2 − ζeq) in d + 1 dimensions. The functional renormalization group
approach has confirmed and expanded the conclusions of the scaling theory [13]–[15]. The
recent introduction of algorithms that converge fast [16, 17] to reach the steady state has
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allowed us to test the validity of the creep velocity with great accuracy [18]. The surprising
conclusion of these numerical studies is that the theoretical values μ = μeq and ζ = ζeq

are only attained at moderately low temperatures. In contrast, strong violation of the
creep formula occurs for ultra-low temperatures [18]. The creep velocity law was found
to be still valid, but the exponents μ and ζ clearly deviate from their equilibrium values
as T → 0.

The dynamics of the string in the moderate and low temperature regime exhibits
glassy features [18]–[20]. This includes extremely slow relaxation times, toward the
stationary state. While the stationary state of such systems has been the focus of
many studies, the nonsteady dynamics, although experimentally relevant, has received
less attention. Understanding such nonstationary physics is clearly crucial since it gives
complementary information on the barriers and, for experiments, is needed to describe
the many systems that are quenched in the glassy state and then have to relax (e.g.,
by changing the temperature rapidly). Theoretical attempts to tackle this problem have
been made using mean field and renormalization group approaches [21]–[23]. However,
direct application of these results (valid close to the critical dimension) to one-dimensional
domain walls is difficult. Numerical studies in low dimension provide hints as regards this
difficult problem, although they are also difficult since they have to deal with ultra-long
timescales. Recently, Schehr and Le Doussal [23] investigated the relaxation regime for an
initially flat interface by analyzing two-time correlation functions, as f → fc, showing by
functional renormalization group methods that the transient dynamics displays universal
behavior. This strongly suggests that some degree of universality is also present in the
intermediate nonsteady regime.

In this paper we consider the non-equilibrium relaxation of the one-dimensional forced
elastic string in random-field disorder for driving forces very far below the T = 0 depinning
force. The dynamics in this regime is expected to be very different from the finite
temperature dynamics just below the depinning threshold [19]. We carry out a novel
type of study by focusing on the local activity statistics as the temperature is varied.
At variance with most existing studies of the creep regime of the elastic line, the model
that we consider does not allow for backward movements of the interface. This up/down
asymmetry is relevant in some kinds of experimental systems, for instance in forced fluid
imbibition, paper wetting, advancing cracks in solids, and flux lines in superconductors
when an electric field is applied. This asymmetry could also illustrate the dynamics of an
elastic string on ratchet-like potentials, which facilitate movement in a preferred direction.

Our numerical model for the elastic string is discrete, which allows us to characterize
the activity properly. The lack of up/down symmetry is responsible of new phenomenology
at very low temperatures, which is different from the equilibrium-like behavior typically
observed in previous studies of the zero-temperature limit of the driven string.

A key quantity that we look at is the return probability, Pr(τ), for the activity to be
back at a particular site after a time τ . We show that this probability is directly connected
with the interface velocity, the power spectrum S(ω) ∼ 1/ωα of velocity fluctuations, and
the structure of avalanches of activity. Our analysis provides global dynamical information
from a local observable, which may be useful in experiments. By means of scaling
arguments we show that local activity statistics in the region of moderate temperatures can
be interpreted as thermally activated jumps of spatially correlated regions over the energy
barriers separating different metastable states. However, as temperature is decreased this
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picture breaks down, since our model is a system that is genuinely out of equilibrium in
the limit T → 0.

2. The discrete model for elastic manifolds

Our model is inspired by a cellular automaton first proposed by Leschhorn [24] for the
string at zero temperature. We study the one-dimensional case; generalization to higher
dimensions is straightforward. We consider a semi-infinite square lattice, L×∞, and the
string position hi at each point i takes integer values. A random pinning force ηi(hi) is
assigned to each lattice site. As corresponds to random-field disorder, η is an uncorrelated
Gaussian variable with zero mean and unit variance. The surface height is a single-
valued integer function hi(t) and the model is evolved at a fixed temperature T as follows.
Starting from a flat initial state, the function

vi(t) = κ(hi+1 + hi−1 − 2hi) + Δ1/2ηi(hi) + T 1/2εi(t) + f (1)

is evaluated at time t > 0 for all sites i = 1, . . . , L. Site i moves forward, hi(t + 1) →
hi(t) + 1, if and only if vi(t) > 0; otherwise it remains pinned. Periodic boundary
conditions in the substrate direction, hL+1 = h1 and h0 = hL, are used. After evaluation
of equation (1) for all i, the update is carried out in parallel for the whole front. Note
that backward movements are not permitted.

Following [24], both stiffness κ and noise strength parameters are chosen to have the
same order of magnitude, so the interface can become rough on length scales of the order
of the lattice spacing. We fix κ = 10 and Δ1/2 = 20. To analyze the slowly driven regime
we employ a very small applied force f ≈ 5 × 10−3 × fc(T = 0), although other values
have also been tested. The equation of motion can be rescaled and the dynamics of the
system can be described in terms of the dimensionless temperature T̃ = T (κ/Δ2)1/3. Our
results are typically averaged over 100–500 independent disorder realizations.

3. Interface velocity: dynamical regimes

In figure 1, we plot the average instantaneous velocity v(t) = 〈∂th〉 for different values of T .
These temperatures are representative of the three different dynamical regimes that can
be identified: high, low, and ultra-low temperatures. At high temperatures, the system
rapidly relaxes towards a steady state where v(t) becomes constant (see figure 1(a)).
Lowering the temperature the relaxation time of v(t) becomes longer, eventually diverging
in our limited time window simulations. This leads to another regime in the range of
temperatures 0.15 � T̃ � 0.40, where the instantaneous average velocity decays toward
the stationary velocity v∞(f, T ) as a power law v(t)−v∞ ∼ t−θ(T ) as shown in figure 1(b).
We find the velocity exponent to be θ = 0.82(4), 0.76(4), and 0.72(3) for T̃ = 0.20, 0.24
and 0.28, respectively. Finally, when T is lowered even further (T̃ � 0.15) the interface
velocity exhibits a change of behavior. We observe a series of plateaus separated by
well defined and sudden drop-offs at certain typical times where the interface motion is
rapidly slowed down (cf figure 1(c)). The time evolution of this latter regime strongly
resemblances the dynamics described by Sibani [29] for several discrete glassy systems. It
is important to note that this distinct ultra-low T regime is absent in the continuous model
of the driven string, the so-called quenched Edwards–Wilkinson (QEW) equation [18].
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(a)

(c)

(b)

Figure 1. Interface velocity averaged over 500 runs for a system of size L = 16384.
Different dynamical regimes are shown. (a) The high temperature regime for
T̃ = 2 (yellow), 1.2 (green), 0.8 (red), and 0.6 (black). (b) The low T regime for
T̃ = 0.28 (green), 0.24 (red), and 0.20 (black). Curves are vertically shifted
for clarity. The dashed line has a reference slope −0.85. (c) The ultra-low
temperature regime for T̃ = 2 × 10−2 (red) and 4 × 10−3 (black). The relative
error of the velocity data is v̄/σ ∼ 10−2 at any temperature.
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Figure 2. Structure factor for a system of size L = 4096 after t = 106 Monte Carlo
time steps. Different dynamical regimes are shown: the high temperature regime
(left) for T̃ = 2 (red) and 1.2 (black); the low temperature regime (middle) for
T̃ = 0.28 (green), 0.24 (red) and 0.20 (black); the ultra-low temperature regime
(right) for T̃ = 2×10−2 (red) and 4×10−3 (black). Lines with exponent −(2ζ+1)
are plotted as a guide to the eye with ζth = 0.5 (solid), ζeq = 1 (dashed), and
ζ = 0.75 (dot–dashed).

In order to better characterize these dynamical regimes we can look at the roughness
of the interface. We employ the structure factor, that is defined in one dimension as
S(q, t) = 〈ĥ(q, t)ĥ(−q, t)〉, where ĥ(q, t) is the Fourier transform of the interface profile,
and it should scale as S(q) ∼ q−(2ζ+1) with a roughness exponent ζ . Figure 2 shows S(q)
for typical temperatures within the three dynamical regimes in the long time limit.

At high temperatures we obtain a fully stationary structure factor S(q) due to the fast
convergence to the system toward the steady state. It scales with a roughness exponent
ζ = ζth ≈ 0.5 corresponding to the so-called Edwards–Wilkinson universality class [25],
dominated by thermal noise. This agrees with the expected behavior of the system at
high temperatures, as thermal fluctuations wash out the effect of quenched randomness
and the front moves freely through the disordered medium.

In the low temperature regime, random forces are able to locally pin the interface and
the relaxation time increases considerably, giving rise to a nonstationary S(q, t) in the time
span considered. However thermal fluctuations are able to equilibrate the line at short
scales. From figure 2 we observe that at large q > q∗(t, T̃ ) the height–height correlations
are well described with the equilibrium random-field exponent ζ = ζeq = 1. This seems
to indicate that for moderate temperatures the quasi-equilibrium picture might hold for
such scales when the interface activity is significant. These two regimes and roughness
exponents, i.e. roughness ζ = 1/2 and ζ = 1 for high and low temperatures, respectively,
are also observed in the continuous QEW model.

This picture changes in the ultra-low temperature regime, where the structure factor
scales with a roughness exponent ζ ≈ 0.75 	= ζeq. Note that the range of scaling that
we can obtain in this case is quite short and thus this value should be treated with some
caution. In this regime the movement of the interface is so slow that the discreteness of
the model and the lack of up–down symmetry of the front motion in our model become
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Figure 3. Activity patterns for a single realization of a system of size L = 4096
at three different temperatures: T̃ = 1.2 (left), T̃ = 0.24 (center) and T̃ = 0.04
(right). The plots are x–t maps where the active sites are marked in black. For
the lowest temperature, T̃ = 0.04 on the right, the moments at which the system
describes the characteristic drop-offs are signaled by the horizontal black lines.

relevant. Therefore, in the ultra-low T regime, the behavior of the system is not expected
to be described in terms of quasi-equilibrium relaxational dynamics.

4. Activity statistics

The main advantage of the discrete model is that the activity can be directly examined.
Any given site i is active at time t if vi(t) > 0. The activity is therefore a binary variable
taking values 1 (moving) or 0 (resting) at each site. Three of these activity maps are shown
in figure 3 for the values of temperature T̃ = 0.04, 0.24 and 1.2, each one corresponding to
a different dynamical regime. The activity patterns show a very particular shape which
leads us to the use the following theoretical framework.

In order to characterize the local spatiotemporal activity we calculate the first-return
time probability density, Pf(τ), that stands for the probability of a site becoming active
again after a period of inactivity τ . This probability describes the time intervals separating
subsequent return points of activity in figure 3 at any given site and can be related to the
average number of returns n(τ) in a time interval τ as follows. In the long time limit we
can write n(τ) ∼ τD, where 0 ≤ D ≤ 1 is the fractal dimension of the set of return points
at any given site. For D → 1 activity returns become dense in time, while for D → 0
returns rarely occur. In the case of a scale-invariant (fractal) activity the asymptotic
(τ � 1) distribution of first-return times is a power law, Pf(τ) ∼ τ−βf , and the scaling
relation [26]

D = βf − 1, (2)

connecting the fractal dimension of return points with the distribution of inter-event times,
can be obtained. Another important quantity is the all-times return probability Pr(τ). It
is defined as the conditional probability of having returning activity at time t = τ given
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that the site was active at t = 0 (not necessarily for the first time). By definition, since
n(τ) is the average number of all returns of activity in a time interval of length τ , we have
Pr(τ) = n(τ + 1) − n(τ). For a fractal activity profile this probability also shows scaling,
Pr(τ) ∼ τ−βr, and one immediately obtains the relation [26]

βf + βr = 2. (3)

Note that a fractal activity implies an infinite average return time 〈τ〉 =
∫ ∞
1

sPf(s) ds.
Also note that, even in situations where no pure power law behavior is attained,
the return probabilities are functionally related. Since the balance equation n(τ) =
τ − n(τ)

∫ τ

1
sPf(s) ds is always fulfilled, we have

Pr(τ) ∼
[

1 +

∫ τ

1

sPf(s) ds

]−1

. (4)

The activity statistics is directly connected with the average instantaneous velocity:
v(t) ∝ [n(t+1)−n(t)] ∼ Pr(t). This allows us to identify θ = βr whenever the distribution
Pr(t) is a genuine power law, i.e. v∞ → 0. In our case v∞ is expected to be small but finite
and, as we shall see below, the equality becomes only approximate, θ(T ) ≈ βr(T ) for v∞ �
1. Finally, the Fourier transform of the velocity is v̂(ω) ∝

∫ ∞
−∞Pr(τ) exp(2πiωτ) dτ and

the power spectrum S(ω) ∝ 〈v̂(ω)v̂(−ω)〉 ∼ ω−2(βf−1) describes the velocity correlations
in the case of fractal activity. In the more general case of an exponential decay of the
first-return statistics as Pf(τ) ∼ τ−βf exp(−τ/τ×), we have

S(ω) ∝ 〈v̂(ω)v̂(−ω)〉 ∼
{

ω−2(βf−1) if ω � ωc

ω−2(βf−1)
c if ω � ωc,

(5)

where the cut-off frequency is ωc ∼ τ−1
× . These scaling relations link the statistics of the

local waiting times to the global dynamics. In the following we describe our numerical
results concerning the local activity and the global velocity of the interface in the different
dynamical phases.

We plot the first-return time probability density and the return probability functions
for typical temperatures within the three different dynamical regimes discussed in figure 4.
At high temperatures, where the front asymptotically reaches a constant velocity and
thermal fluctuations dominate the dynamics, the inter-event times show an exponential
decay preceded by a power law at short times, Pf(τ) ∼ τ−βf exp(−τ/τ×), where βf and τ×
vary with temperature (cf figure 4(a)). We find that βf varies from 1.3 to 1.5 for T̃ = 0.6
to 2. The extent of the approximate power law regime is bounded by τ× and enlarges
with decreasing T . This distribution implies the existence of a finite average waiting
time 〈τ〉 ∝ τ× for the activity to return at any given site. Since the two probability
distributions are related, we can analytically calculate the asymptotic return probability,
which becomes a temperature dependent constant Pr(τ) ∼ [1+τ×(T )]−1 (cf figure 4(b)) in
the τ � τ× limit. This in turn implies θ = 0, and an exponential relaxation to a constant
velocity. According to equation (5), the interface velocity is expected to exhibit long-
range temporal correlations in this regime of temperatures, S(ω) ∼ 1/ω2D for ω above a
characteristic frequency ωc(T ) ∼ 1/τ×(T ). This regime eventually crosses over to a purely
thermal behavior, S(ω) ∼ ω0, at large enough frequencies (cf equation (5)). In figure 5
we plot S(ω) for several temperatures in the high temperature regime. All the spectra
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Figure 4. Activity statistics collected from 100 disorder realizations in a system
of size L = 4096. Pf(τ) is shown in the left panels and Pr(τ) in the right ones.
((a), (b)) High temperature regime for T̃ = 2 (yellow), 1.2 (green), 0.8 (red), 0.6
(black). ((c), (d)) Low temperature regime for T̃ = 0.28 (green), 0.24, (red), 0.20
(black); curves are vertically shifted for clarity. The dashed lines with slope −1.1
in (c) and −0.8 in (d) are drawn for reference. ((e), (f)) Ultra-low temperature
regime for T̃ = 2 × 10−2 (red) and 4 × 10−3 (black).

are obtained for temporal ranges in which the signal is already stationary. The results
show a good agreement with the theoretical prediction in equation (5). The existence of
a 1/ω2D velocity spectrum with 2D ≈ 0.7–1.0 within a range of temperatures above the
depinning temperature has already been observed in simulations of the QEW continuous
model [20]. These long-range temporal correlations were argued to be produced by the
merging of local temperature-induced avalanches of depinning events [20]. Our present
analysis of activity statistics connects the 1/ω noise spectrum with the recurrent activity
at any given site and the avalanche distribution of active sites.

The pattern of activity is different when the temperature is decreased. For our
simulation parameters, temperatures within the range 0.15 � T̃ � 0.40 (intermediate
regime) lead to a first-return time distribution that exhibits a power law tail over several
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Figure 5. Spectral density S(ω) of the velocity signal for a system of size L = 4096
in the flowing regime at temperatures T̃ = 2 (yellow), 1.2 (green), 0.8 (red), and
0.6 (back). Curves are vertically shifted for clarity. The dashed line has slope
−1.

decades in time Pf(τ) ∼ τ−βf (T ), with an exponent 1 < βf(T ) < 2 that depends linearly on
the temperature within this regime (cf figure 4(c)). This in turn implies that the return
probability Pr(τ) also decays as a power law (cf figure 4(d)) and the scaling relation (3)
must hold. For instance, for typical temperatures within this dynamical phase we obtain
βf = 1.12(5), 1.13(2), 1.15(1) and βr = 0.88(5), 0.86(6), 0.80(7), for T̃ = 0.20, 0.24, 0.28,
respectively. These values fulfil the scaling relation βf + βr = 2.0(1). They are also in fair
agreement with (but slightly different from) our direct numerical estimate of the velocity
exponent θ for the same values of the temperature, as expected due to the existence of a
small but finite asymptotic velocity (see the discussion after equation (4)).

The activity statistics changes even further at ultra-low temperatures, T̃ � 0.15,
where the local return time probabilities show rapid declines at certain characteristic
times (see figures 4(e) and (f)). This behavior, similar to the one observed for other
discrete glassy systems [29], is to be compared with that observed for the average velocity
in figure 1(c), which is indeed expected to be the same, v(t) ∝ Pr(t). For this ultra-low
temperature the space–time activity patterns reveal that the spatial distribution of events
becomes very narrowly localized around a few sites that are co-active at the same time
instant. In this case the discreteness of the model becomes relevant at any scale due to
the sluggish dynamics of the front. The typical creep picture [14] of coherent advances
of regions Lc up to certain equilibration length L(t) is not applicable here. The system
stays out of equilibrium at all scales and the activity statistics is dominated by these very
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local events, giving rise to the characteristic downward jumps observed in figures 1 and 4.
The plateaus observed in the average velocity and the return time statistics are due to
a progressive freezing of the coherent moving parts of the interface. The typical scale of
this pinning region is consistent with the correlation length of the order of �× ∼ 10–12
sites, as can be seen in the structure factor plot in figure 2 (right panel). These regions
move coherently at constant velocity until they become, one by one, eventually pinned
by the disorder. Each time one of these regions becomes pinned there is a drop in the
average velocity. The dynamics is extremely slow and the time required for a full test of
the interface is far beyond our available computing time.

5. Scaling theory

A scaling theory can be developed to explain the activity statistics in our model at
least for the region of moderate temperatures. For low temperatures, T � Uc, one
would expect the dynamics to be governed by thermally activated jumps over the energy
barriers U(�) that have to be overcome to equilibrate the system up to the length scale
�, which is the mechanism leading to the characteristic creep motion. The average
waiting times in these metastable configurations at a given temperature T are given by an
Arrhenius law, 〈τ(�)〉 ∼ τ0 exp [U(�)/T ], where τ0 is a microscopic timescale. The activity
statistics can then be calculated as Pf(τ) ∼

∫
dUρ(U)〈τ(�)〉−1e−τ/〈τ(�)〉, where ρ(U) is

the distribution of barriers. Extreme statistics arguments [27] lead to an exponential
distribution, ρ(U) ∼ exp (−aU/Uc), where Uc is the minimum average energy barrier
between neighboring metastable configurations at the Larkin microscopic pinning length
scale Lc, and a is some dimensionless constant (see however [18]). With this choice for
ρ(U) one then arrives at

Pf(τ) ∼ T
(τ0

τ

)1+aT/Uc

, (6)

where we can identify βf = 1 + aT/Uc. This linear variation with T is consistent with our
numerical results at low temperatures (figures 4(c) and (d)).

A distribution of first-return times as (6) would imply that the average return time
〈τ〉 is infinite for βf < 2, i.e. for the low temperature regime. However, as was observed
by Vinokur et al in [27], one can assume that there exists a cut-off of the first-return
time distribution arising from the elastic nature of the problem. The creep behavior
is controlled by the characteristic length scale Lopt = Lc(fc/f)1/(2−ζeq) corresponding
to the optimal excitation that minimizes the free energy cost of nucleating such a
perturbation [14, 27]. This typical length scale separates scales controlled by thermally
activated motion (L � Lopt) from large scales (L � Lopt) that slide freely. In other words,
Lopt gives us the upper bound above which thermally activated processes are no longer
relevant. Therefore, during creep motion the average first-return time of the activity
distribution is bounded from above by τmax ∼ τ0 exp[U(Lopt)/T ], where the maximal
energy barrier U(Lopt) = Uc(L/Lc)

μeq . We then have 〈τ〉 ∼
∫ τmax

1
sPf(s) ds, where Pf(s)

at temperature T is given by equation (6). The stationary velocity can then be obtained
as v∞ ∼ 〈τ〉−1.

The physics behind Lopt (and its by-product, the maximal first-return τmax) can also
be invoked to explain why for low temperatures (cf figures 4(c) and (d)) Pr(τ) and Pf(τ)

doi:10.1088/1742-5468/2009/07/P07009 11

http://dx.doi.org/10.1088/1742-5468/2009/07/P07009


J.S
tat.M

ech.
(2009)

P
07009

Activity statistics of a forced elastic string in a disordered medium

are not ‘pure’ power laws, but must exhibit a cut-off at τmax. This in turn leads to the
observation (in agreement with our simulations) that the interface velocity v(t) cannot
decay as a power law unless the asymptotic velocity v∞(f, T ) is subtracted. On the
other hand, in the high temperature regime the energy barrier scale Uc is expected to be
renormalized by the thermal fluctuations [15, 28]. One can define a depinning temperature
Tdep ≈ Uc(Tdep)/a separating the high temperature and the low temperature regions. Now
the average first-return time 〈τ〉 is always finite and the distribution (6) becomes bounded
for T � Tdep, independently of the value of Lopt.

This scaling argument allows us to understand the local activity statistics (first-return
probability density and velocity) in the low and high temperature regimes and leads to
conclusions consistent with our numerical results. However, the argument based on energy
barriers breaks down at ultra-low temperatures due to the up/down asymmetry that
causes our model to be generically out of equilibrium in the absence of thermal fluctuations
(T → 0). Unfortunately, at this point we do not have a theoretical understanding of
the dynamics in the ultra-low temperature regime. We claim that the dynamics of our
model in this regime is similar to that observed for other discrete disordered systems with
glassy behavior by Sibani and co-workers [29], which is still poorly understood on general
grounds.

6. Conclusions

We have introduced a discrete model to study the local activity statistics of a forced
elastic interface in heterogeneous media at a finite temperature. The model presents
an up/down movement asymmetry that renders the model out of equilibrium in the
limit of zero temperature. The model presents three dynamic regimes, two of which
are equivalent to the ones observed in the QEW continuous elastic model. Thanks to the
discrete character of our model, the activity becomes a binary variable and can be precisely
tracked in space and time. The model shows significant differences in activity patterns in
the three regimes, those of the intermediate and low temperature regimes being especially
interesting. In order to analyze these activity patterns in a quantitative way, we defined
the first-time and all-times return probabilities. We find that these probabilities show a
power law decay in the intermediate regime with exponents that depend on temperature.
Simple scaling arguments based on an exponential distribution of energy barriers lead us
to propose an expression for the probability distributions of activity in good agreement
with simulations. The non-equilibrium character of the model becomes relevant as the
temperature is decreased toward zero and the quasi-equilibrium arguments fail to describe
the dynamics. In this ultra-low temperature regime the activity statistics is similar to that
observed in certain discrete glassy systems [29].

One of our main results concerns the novel approach of studying the problem of the
relaxation of the driven elastic string in terms of the local activity and avalanche statistics.
We show that the activity statistics is directly connected to the interface velocity, the
power spectrum S(ω) ∼ 1/ωα of velocity fluctuations, and the structure of avalanches
of activity. Our analysis provides global dynamical information from a local observable.
We expect this to be useful in experiments, in particular in those cases where only local
probes can be used to obtain information about the position of the interface.
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