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Growth with Surface Diffusion. 

D. E. WOLF ana J. VILLAIN(*) 
Institut fur Festkorpe$orschung, KFA Julich - POB 1913, D-5170 Julich, FRG 

(received 22 June 1990; accepted 24 August 1990) 

PACS. 05.70L - Nonequilibrium thermodynamics, irreversible processes. 
PACS. 05.40 - Fluctuation phenomena, random processes, and Brownian motion. 
PACS. 68.55 - Thin film growth, structure, and epitaxy. 

Abstract. - A simple growth model is investigated where particles are deposited onto a 
substrate randomly and subsequently relax into a position nearby where the binding is 
strongest. In space dimension d = 2 the surface roughness exponent and the dynamical exponent 
are C =  1.4 iO. l  and z = 3 . 8 f 0 . 5 .  These values are larger than for previous models of 
sedimentation or ballistic deposition and are surprisingly close to the ones obtained from a linear 
generalized Langevin equation for growth with surface diffusion. A scaling relation 2< = 
= x - d + 1 is proposed to be valid for a large class of growth models relevant for molecular beam 
epitaxy. 

Kinetic roughening [l, 21 has attracted a lot of attention over the last few years not only 
because of its practical importance for the growth of solid films, but also as an example for a 
dynamical mechanism that drives a system into a spatially and temporally scale invariant 
state (.self-organized criticality. [3]). Most of the models of kinetic roughening studied so 
far can be described by the Kardar-Parisi-Zhang (KPZ) equation [41 

where h(x, t )  is the height of the surface at  time t above the substrate site specified by the 
d'-dimensional vector x. d' = d - 1 denotes the surface dimension. The two h-terms 
determine the average growth velocity which may depend on the tilt of the surface. v has a 
smoothening effect on the surface, while the white noise ~ ( x ,  t )  due to fluctuations in the 
growth rate makes the surface rough. 

In this note growth processes which cannot be described by (1) will be studied. Indeed (1) 
is not adequate for describing growth by molecular beam deposition if desorption and the 
formation of defects in the film may be ignored [5-71. Then one should have 

(*) D.R.F./M.D.N., Centre d'Etudes Nuclbakes de Grenoble, 85X, F-38041 Grenoble Cedex, 
France. 
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where V j  is the divergence of the &-dimensional surface current parallel to the substrate. 
This rules out the A,-term in (1). 

From AI = 0, eq. (1) reduces to the sedimentation model first studied by Edwards and 
Wilkinson [8]. In this model, A. is the deposition rate of particles that fall down at  constant x 
until they meet the surface atom at height h(x,  t). If there is no neighbouring column with 
smaller h the incoming particle sticks, i .e.  h(x) is increased by 1. Otherwise it relaxes to the 
lowest site in a given neighbourhood thereby lowering its potential energy in a gravitational 
field. In this case the Laplacian term in (1) has a simple physical meaning. It describes mass 
conservation during the relaxation process, since it may be written as - V j  with the 
downhill current 

j =  - v V h .  (3) 

The driving force for this current is the potential difference in the gravitational field. 
For vapour deposition of solid films gravitational forces are so minute compared to the 

binding at the surface that they can be neglected. Nevertheless the Laplacian term may be 
present, e.g., due to desorption [91. Even if no particles can leave the surface, a current of 
kind (3) would be expected, if the momentum component parallel to the surface is not 
immediately thermalized when the particles touch the surface. Other mechanisms have been 
conceived which also lead to a Laplacian term in (1)) however with a negative v [7,101. 
(Formally this would imply that any periodic perturbation of an initially horizontal surface 
grows exponentially if higher-order terms are not taken into account.) If by contrast one 
assumes that the surface current is driven by differences in the surface chemical potential ,U 
(as in the absence of deposition), j x  - Vp, and that ,U is proportional to the surface 
curvature V2h, one has to replace (3) by[5,7,91 

j = KV(V2h) .  (4) 

In the following we investigate a model without desorption (which is therefore described 
by (2) in the continuum approximation) and in which the current of freshly landed atoms is 0 
on a planar surface independently of its slope, so that v should be 0 in (3). For simplicity let 
us consider a square lattice: the height variable h and the substrate coordinate x are 
integers. All sites with h < 0 are occupied and form the substrate. The growth proceeds in a 
strip of infinite length and finite width, 1 < x d L,  with periodic boundary conditions. In 
every time step a particle is added on top of a column of occupied sites with a randomly 
chosen substrate coordinate x. Then it looks around among the surface sites at the nearest- 
neighbour coordinates, x & 1 and x, which one offers the strongest binding, i . e .  the most 
occupied neighbours. The particle moves to this site and sticks there (see fig. lb)). This is 
intended to simulate surface diffusion at  not too high temperatures where the particles move 
only a short distance t o  find a favourable growth site before other particles are deposited on 
top of them. If there are as many bonds at x as next t o  x, the particle stays a t  x. If two sites 
next to x are equally preferable, one of them is chosen at random. The growth rule can be 
generalized straightforwardly for higher dimensions. 

This model is very similar to the one by Edwards and Wilkinson [8,11], where the 
particle moves to the lowest surface site in the neighbourhood (fig. la)) instead of the one of 
maximum number of bonds. However the two models produce drastically difference surface 
morphologies (fig. 2). Whereas in the Edwards-Wilkinson model the surface looks basically 
flat from the distance, it develops deep valleys with high steps perpendicular to the 
substrate in our model. 
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a) I 

Fig. 1. - Six possible moves of a freshly landed particle on the surface. In the Edwards-Wilkinson 
model [8,111 a) a particle that arrived on top of the column at x sticks at the lowest column among the 
nearest neighbours, x and x t 1. In our model b)  it chooses the column on top of which it touches the 
most occupied sites. In case of a tie the particle stays at  x if this column is among the favourable ones, 
or otherwise moves to either of the neighbour columns with equal probability. 

a) 

Fig. 2. - Surface configuration in the steady state a) of the Edwards-Wilkinson model [8,11], b) of our 
model. The deposits grew in a strip of width L = 120 with periodic boundary conditions starting from a 
flat substrate. The average height of the surfaces is = t = 220. Only the region close to the surface is 
shown. 

We have performed simulations by which we have measured the surface width 

where the bar denotes an average over x and (...) that over many independent runs 
(between 1300 runs for the smallest L-values and 50 for L=480). As in other growth 
models [l] the width increases initially with time according to a power law w - t p  and 
saturates after a time T - Lz (fig. 3). Time is identified with the average height. These 
power laws imply that the stationary value of the width scales with L according to  w, - Lr, 
with roughness exponent C = p x .  We obtain the effective exponents (fig. 3) 

Peff= 0.365 f 0.015, teff= 1.4 k 0.1, (6) 

and thus x e f f  = 3.8 f 0.5. As Peff c 1, the valley structure of the surface is confined to a 
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Fig. 3. - Surface width w vs. time t for L = 10 (o), 15 (*), 30 (x), 60 (*), 120 (0) and 450 (+). Statistical 
error bars are about the size of the symbols. The solid line has slope Pes = 0.365. The inset shows the 
stationary values w, vs. L. The solid line has slope Teff= 1.4. 
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rextively narrow growth zone compared t o  the film thickness. The dynamics is extremely 
slow compared to previous growth models where z d 2. This makes it difficult to investigate 
the stationary regime for large systems. On the IBM 3090 we were able to measure w, with 
reasonable accuracy only up to L = 120. The effective roughness exponent given above is 
valid in this range. An exponent < larger than 1 means that the surface develops high steps 
which are responsible for a fluctuation amplitude increasing faster than the typical 
wavelength. Notice that in spite of < > 1 the surface has long-range orientational order. This 
is enforced by the deposition process which explicitly breaks rotational invariance. 

Obviously in our model the absence of shadowing of the deep valleys is essential for 
getting C> 1. If particles were allowed to  form overhangs at  the sides of high steps the 
surface part underneath would stop growing. The width of the active growth zone should 
then scale with a roughness exponent C = 1/2 as in two-dimensional ballistic deposition [12]. 
In any real growth process < should be d 1 for large system sizes and times. However < > 1 
may well describe the transient behaviour before the system reaches the asymptotic scaling 
regime. 

The above exponents are close t o  the ones obtained analytically [7,13] assuming that the 
time evolution of the surface is described by (2), using the expression (4) for the current 
along the surface. It is easy t o  show that this equation yields 

z = 4  and C=(5-d)12 (7) 

for space dimensions d 6 5 and nonconserved white noise. This agreement actually comes as 
a surprise. The linear equation can only be expected to  hold if the surface does not develop 
arbitrarily high steps. Therefore C = 312 already disqualifies eqs. (2) and (4) for describing 
the long-wavelength behaviour of any generic growth model. Nonlinear terms must be 
taken into account. As in our model the deposition rate A. determines the average growth 
velocity (there are no holes in the deposit), the space integral of all possible nonlinear terms 
added to (2) must vanish. This rules out a nonlinearity of the type occurring in the KPZ- 
equation. The simplest nonlinear term consistent also with the symmetry x+ - x is 
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V2(Vh)2. Simple power counting shows that this term is a relevant perturbation in any 
dimension d < 5 which is also true for other nonlinear terms. Therefore the exponents should 
change. Why do we then observe effective exponents so close to the ones obtained from (4)? 

In our model the amplitude A in wm = &<eff is rather small: A = 0.04. Hence in order to 
get a surface width w of the order of L one has t o  study substrate sizes larger than L = 600 
which would take a prohibitive amount of computation time. For our L-values it may 
therefore be that one sees effective exponents determined by the linear theory, and that the 
crossover to the asymptotic scaling can only be observed for much larger systems. 

The following argument suggests that for any model described by the continuum equation 
(2) the exponents C and x should obey the hyperscaling relation 

provided d = d' + 1 is not larger than the upper critical dimension d,. This is in marked 
contrast to  the scaling relation C + x = 2 found in models described by the KF'Z-equa- 
tion [14]. 

The values of the individual exponents as well as d, will depend on the form of the 
current. For instance, i f j  is given by (3) one has [8,11] x = 2 and < = (3 - d)/2 with an upper 
critical dimension d, = 3, while the current (4) leads to the exponents (7) with d, = 5. In both 
cases (8) is fulfilled, and our simulation results (6 )  also agree. 

The physical picture behind the scaling relation (8) is very simple: starting from a flat 
substrate it takes a time 

tat;" (9) 

until the surface has become rough up to horizontal distances of order E .  Within the area Ed' 
the surface has already been shaped and fluctuates over a vertical distance w(t), whereas 
fluctuations of the height averaged over this area are yet to be developed. In every time 
step Ld' particles are deposited. For models described by an equation of type (2) this means 
that the average height increase vE in the area Ed' is 1 with a variance 

This fluctuation in the local growth velocity is statistically independent of the pre-existing 
surface fluctuations so that one expects 

w2(t + 1) = ~ ' ( t )  + AV? (1la) 

or with (9), (10) 

- dw2 t -d ' iz  

dt 

The scaling relation (8) is obtained.by inserting w - t! with ,O = Clx into ( l l b ) .  For times much 
larger than L" the correlation length E becomes equal to L,  and w does no longer increase 
since AvL = 0. 

In the case of the KPZ-equation this argument breaks down because the growth velocity 
fluctuations (10) are also influenced by the gradients in the surface. Hence the statistical 
independence required for (11) is not guaranteed. 

In conclusion we have demonstrated in a simple growth model that one can get effective 
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roughness exponents larger than 1. The surface fluctuations seem to be fairly well described 
by a linear theory for surface diffusion at least for small samples. In two dimensions 
roughness exponents smaller than 1 are always due to other effects like nonlinear 
contributions to the current. No matter what the current looks like, we expect the scaling 
relation (8) to hold for growth processes without desorption and formation of defects in the 
film. 
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