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Forced Thermal Ratchets
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%'e consider a Brownian particle in a periodic potential under heavy damping. The second law forbids
it from displaying any net drift speed, even if the symmetry of the potential is broken. But if the particle
is subject to an external force having time correlations, detailed balance is lost and the particle can ex-
hibit a nonzero net drift speed. Thus, broken symmetry and time correlations are su%cient ingredients
for transport.

PACS numbers: 05.40.+j

There are situations in which an ambient noise cannot
be reduced; for instance, sufficiently small "machines"
immersed in water at room temperature, such as proteins.
In this Brownian realm, all laws of thermodynamics still

apply but the theoretical constructs through which we

learned to understand and interpret them may no longer
be valid. We will address one such case, inspired by mo-

tor proteins.
Proteins are unlike the technologies we are familiar

with; for instance, the size of the elementary unit, the
amino acid, is fixed. Whenever some higher amount of
complexity is needed, it becomes necessary to increase
overall size. This becomes clear when we look at prokari-
otic and eukariotic cells. Prokariotes are "primitive" cells
without a nucleus (mostly bacteria), while eukariotes (the
cells in all multicellular organisms) are more sophisticat-
ed and complex cells; they are also an order of magnitude
larger. Size increases pose a problem, for if al1 transport
mechanisms are entirely diA'usion driven then diAusive

scaling implies that increasing the size of a cell by a fac-
tor of 20 entails slowing down its metabolism by a factor
of 400. Nature solved this problem most elegantly by en-

dowing the interior of eukariotic cells with a network of
highways (made of polymerized proteins such as tubulin
and actin). On these highways, certain protein motors
can move and transport vesicles containing chemicals
(kinesin and dynein walk on tubulin; myosin walks on ac-
tin) [1]. These molecules consume energy while walking.

They not only walk but also exert forces, like the
myosin-actin structures in our muscles; they also consume

energy in order to exert a force.
When attempting to understand these motors, we must

take into account that they live in the Brownian domain.
This domain can be unintuitive. We are accustomed to
our macroscopic world, where the energy barriers used to
impose constraints and forces are much larger than the
thermal energy; the "escape times" for thermal activation
to permit jumps across these energy barriers are eA'ec-

tively infinite. But in the Brownian domain these barrier
heights are a few times kT and the escape times are quite
finite. The consequences are strange. In the macroscopic
world, energy need not be spent to support a force; any
object resting on a table is an obvious example. But in

the Brownian domain, a hypothetical microscopic object
on a microscopic table will not rest but rather dance
around until it reaches the end of the table and falls off.
If we wish to confine this object to the table top, we are
obliged to pick it up from the Aoor and place it again on

the table, thereby spending some energy. This is of
course not a permanent solution: the object will keep fal-

ling. In order to exert a force, energy needs to be spent
constantly. This means that constructions such as the
Carnot cycle are meaningless in this domain; pistons can-
not be pushed quasistatically without continuously spend-

ing energy, for the handle of the piston will constantly
slip oA our grasp. In order to understand biological mo-

tors it seems desirable to devise some simple scheme that
can serve as a benchmark, much like the Carnot cycle
serves our understanding of actual car motors.

I wi11 propose now one such scheme, an extension of the
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"ratchet and pawl" engine which Feynman used, in his
Lectures, to illustrate the meaning of the second law [2].
Feynman shows that the core of the second law is that
such a ratchet machine will not provide work or net
motion when immersed in a single thermal bath. I will

show that this only happens for an ideal thermal bath,
one in which time correlations are negligible, and that the
ratchet can extract energy (for free) out of the time
correlated pieces of a colored (nonwhite) thermal bath.
The ratchet works as a mechanical diode, capable of rec-
tifying an input; it cannot, however, rectify "white"
thermal noise alone.

It is worth noting that in the mesoscopic domain
thermal noise will be correlated on times smaller than the
Smoluchowski time [3], but since the damping terms will

not be local in time, detailed balance, and thus the second
law, can still be kept, as shown in [4]. But in our situa-
tion, barrier heights are order 10kT, and hence not really
mesoscopic. For proper comparison, time scales for mo-

tor proteins are around 10 s, while the Smoluchowski
time is ( 10 ' s. The behavior of a motor protein is
Brownian but not mesoscopic, and hence the appropriate
Langevin equation is first order (local) in time. We will

assume this context throughout this Letter; our results
are invalid outside it.

We will call a "ratchet" a periodic potential V(x)
which has a broken parity symmetry, together with a
Langevin equation of the form

x =f(x)+g(t)+F(t), (1)
where x (a cyclic coordinate) describes the state of the
ratchet, f(x) —= —B„V(x) is a force field due to the poten-
tial, g(t) is Gaussian noise obeying (g(t)((s)) =2kT8(t
—s), and F is a "driving force" which may be stochastic.
There is a large body of theory which has been devoted to
the dynamics of Langevin equations and their associated
Fokker-Panck equations [3,5-7] and to their behavior in
the presence of external forces [8,9] or colored noise
sources l4, 10].

In the absence of thermal noise, this system behaves
the way we expect a ratchet to behave. If we attempt to
"advance" the ratchet, there will be a minimum force
necessary to overcome the barriers. A large enough force
in the opposite direction will also move it. Hence there
are two characteristic forces: one to make the ratchet

V

X
FIG. l. A plot of the piecewise linear potential V(x) as a

function of position x. The width of each segment is called A, ~

and X2. The period of the potential is A, =A, &+X2 and the sym-
metry breaking amplitude is h, =X,

&

—12.

move in its preferred direction, and one to make it move
in the opposite direction. More formally, under a simple
force like F(t) =csin(cot), there will be two threshold
values for the amplitude 2, equal to max„f(x) and—min„f(x). The role of symmetry breaking is to make
these values diA'erent. When A lies below these two, the
ratchet will not move. When it lies between them, the
ratchet will work as we intuitively expect it to: to one
side only. When the second threshold is exceeded, we are
overdriving the ratchet which will then backslide, reduc-
ing its efticiency.

In the presence of the thermal source, the probability
densities induced by the above equation obey a Fokker-
Planck equation in the form of a conservation law for
probability [3,7]: 8,P+ 8„J=0, where P(x, t) is the
probability density of the state being at x at time t, and
J(x,t) is a probability current obeying

2J = —kTd„P+ (f+F)P . (2)

If we request stationary solutions when F is a constant,
we can choose the potential V to be piecewise linear (see
Fig. 1), and the equation above can be solved analytically
for J as a function of F, because Eq. (2) becomes piece-
wise linear. Assuming a value of the probability density
at the left of one period of the ratchet, we can propagate
this to the right edge through this equation; requiring
that the solution at the end of the period be equal to that
at the beginning of the period we obtain an equation for
Pn/J; requiring the solution to be normalized we can solve
for J to get

T)
k T)I —(1/Q )P i P2 sinh (XF/2k T)

T, the average current will be

of amplitude A as the even part of Eq. (3):

P sinh(XF/2kJF =
kT(X/Q) [cosh [(Q AF/2)/kT] —cosh(X—F/2

r ' 2F P 1
AF A,F

4 Q
'

2Q 2Q

If we think of forcing with a slow forcing F(t) of period
f TJ„„=—„J(F(t))dt .

This can be calculated analytically for a slow square wave

J.„=—,
' [J(~)+J(—~)] .

(3)
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We will employ three diff'erent types of forcing: a sine
wave F, (t) =csin(cut), a "synthetic noise" made by re-
cursively frequency modulating a carrier,

FFM(t) =A si n4ot+Bsi n[ropt+Bsin(top t+. . . )]},
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FIG. 2. Plot of Jsq, (A); low temperature (kT=0.01, full
lines) and medium temperature (kT-O. I, dashed lines).

Please see Fig. 2, where the solution is plotted for low and
medium temperatures.

We may also look at the above solution as a function of
temperature. For high amplitudes of the forcing, near
overdrive, the presence of temperature always degrades
the efticiency of the ratchet. However, for low and
moderate forcing, increasing temperature will result first
in a rise and then a fall in this efficiency (see Fig. 3).
There is a region of the operating regime where the
efficiency is optimized at finite temperatures around Q/6.

These are results for a particular ratchet in a particular
type of forcing. In order to establish that there is some
degree of robustness in the system, we will perform nu-
merical computations [I ll for a different ratchet in non-
quasistatic forcing. The ratchet we will use is

f(x) =e"""/Jo(ia) —I,
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which is a smooth approximation to a periodic set of
Dirac bs, with width a 't and period 2tr. We will set
a =16. 4. 5
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FIG. 3. Plot of J~, at fixed 2 = I as a function of kT/Q.

FIG. 4. Numerical data. (a) Sine forcing, (b) FM forcing,
(c) Brown noise. All data points were computed by averaging
over 400 random walkers, each of these evolved for 100
"periods" of the forcing. Notice that the curves are still quite
noisy.
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FIG. 5. Current vs kT for sine forcing. The other types of
forcing show essentially the same structure.
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and simple "brown" noise, defined through its own

Langevin equation

F = —coF +A g'(t), (&'(t)&'(0)) =8(t),

and set 2P= J5 —1, B=1, and to=2tr/100. The results
are always qualitatively the same, as shown in Fig. 4; the
main difference is that brown noise always makes the
ratchet work for any nonzero amplitude, even in the ab-
sence of temperature; for it has a nonzero probability of
having an arbitrarily large amplitude for an arbitrarily
long time. A minor difference is that the sine forcing, be-
ing strictly periodic, forces a quantization of the number
of wells the particle can jump per period in the zero-
temperature case. This results in a staircase that is rap-
idly smoothed out by temperature. We still see a "peak"
in performance for nonzero A in the moderate forcing re-
gime (Fig. 5). The forcing we have used here is "slow"
in comparison with the natural relaxation time scales of
the ratchet; we have not explored the "stochastic reso-
nance" regime [8] or any issue related to "resonant ac-
tivation" [9].

Finally, we want to make an observation on time corre-
lated thermal sources. Let us write together the equa-
tions for the particle and the forcing:

x =f(x)+F(t)+&(t),
F =g (F)+g'(t) .

We note that this can be written as a single two-
dimensional Langevin equation forced with white noise

x =h (x,y) +&(t), h„(x,y) =f(x) +y,
y =by(x, y)+&'(t), hs(x, y) =g(y),

but the vector field h is not curl-free, since B~h—tl„h~ =1 —0=1 and hence this is not potential flow.
There is an active decoupling of the equations involved
here, since the forcing kicks the particle but the particle

cannot aA'ect the forcing; the flow is thus not potential
[12].

In summary, we have shown that all that is needed to
generate motion and forces in the Brownian domain is

loss of symmetry and substantially long time correlations.
This mechanism is robust enough to survive the ambient
"temperature" noise, even, in certain forcing regimes, be-
ing helped by it. Whether this principle can be applied to
the motion of motor proteins is still under investigation.
Even though an equation like (1) is certainly too naive to
be of use for purposes of detailed modeling, its features
seem to be present: both the biopolymers on which the
motors walk and the geometry of motor attachment are
heavily symmetry broken, and the biochemistry induces
time correlations since (for instance) when adenosine tri-
phosphate (ATP) or adenosine diphosphate (ADP) are
attached to the motor, no other ATP can be bound.
Thus, even though the arrival times of ATP molecules is
a Poisson process, many of these molecules will not bind
to the motor because the motor socket is already occu-
pied; the binding times will be a Poisson process with
"hard cores" (a sharp high frequency cutofl); rough esti-
mates indicate [131 that under physiological conditions
this hard core time represents a non-negligible fraction of
the total time.

On the physics side, we have shown that a driving force
with substantial time correlations (much beyond the
Smolowchowski time) can destroy detailed balance and
hence the second law. This is not because of "technical"
issues, like obtaining a formidable-looking integrodif-
ferential Fokker-Planck equation [7] or not being able to
use certain inequalities [14). It has a simple and definite
physical meaning: symmetry breaking allows the system
to extract energy out of the time-correlated pieces of the
bath without "paying" for it.

I would like to thank Adam Simon, Albert Libchaber,
and Mitchell Feigenbaum for many discussions on the
subject, and Stan Leibler and George Oster for helpful
discussions on the possible biological relevance of these
systems.
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