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Abstract

Multi-state probabilistic cellular automata are de-
veloped for forest fire modeling. We propose a forest
fire dynamics model considering intensities of fires
as multiple states and having the probability that
fire spread depends on the states of the neighboring
cells. Furthermore, the idea of percolation threshold
is introduced to characterize the strength of the fire
propagation. Specifically, we propose a new method to
derive the critical probability, below which forest fires
do not expand to infinitely large area, using percolation
theory and mean-field approximation.

1. Introduction

Forest fires occur in various regions in the world and
yield serious harm. In global, hundred thousands of for-
est fires emerge, and more than 20 million hectares of
forests are charred by spreading fires. In order to mini-
mize damages caused by the forest fires, various kinds of
researches have been conducted such as forest monitor-
ing or fire discovering by using multiple aerial vehicles,
forest fire modeling, and so on.

Accurate forest fire modeling to expect fire spreading
is one of the most important tasks to fight forest fires.
In these days many models to express forest fire spread-
ing are proposed with several approaches (see [1, 2] as
overview). Specifically, in [3, 4] forest fire models using
Huygens principle approaches are proposed. By adopt-
ing Huygens principle where fires spread in a short time
∆t in a circle pattern from each point on the border of
fires at time t, the spread of fires are formulated. In
[5, 6], forest fire models using reaction-diffusion equa-
tions are proposed. In addition, in [7–9], forest fire
modeling with cellular automata are proposed. In the
cellular automata models, forest is separated into small
lattices (celled cells) and each cell takes a state. Fire
spread is expressed by giving each cell deterministic or
probabilistic dynamics depending on neighboring cells,
such that if neighboring cells of a cell A make the cell A
ignite.

Some researches propose percolation models for mod-
eling forest fires. In [10–12], the critical probability that

fire spread infinitely is discussed when trees exist at each
site of the forest with a given probability. Percolation
model is used not only for modeling the spread of forest
fires but also for water penetration and disease spread.
Specifically, characterization of the critical probability
that a medium spread infinitely is one of the most im-
portant issues.

In this paper, we consider probabilistic cellular au-
tomata (PCA) as a forest fire model. Using PCA and re-
garding the spread of fire as a probabilistic phenomenon,
we formulate the model of forest fires. Specifically, as we
express intensities of fires with n states that each cell can
take, we propose more practical forest fire model. The
new model is discussed in Section 2. Next, in regard to
the proposed model, we derive the critical probability
that fire spreads infinitely by using mean-field approxi-
mation and percolation theory. Percolation theory and
the derivation of the critical probability are discussed in
Sections 3 and 4, respectively. In Section 5, we show nu-
merical results to verify the effectiveness of our method.

2. Problem Setting

2.1. Representation of Probabilistic Cellular Au-

tomata

In this section we introduce 2-dimensional 2-state
probabilistic cellular automata (PCA), which are used
for forest fire modeling. In the 2-dimensional PCA, infi-
nite square lattice is considered and each lattice is called
a cell. For forest fire modeling, the square lattice corre-
sponds to forest that sweeps away infinitely.

We consider two states 0 and 1 that each cell takes.
For the case of forest fires, state 0 represents green (no
fires) and state 1 represents the burning state. Further-
more, the state of each cell changes according to the
states of the neighboring cells. In particular, define 4
adjacent cells of the cell A as the neighbors of A. Cells
with state 1 make the neighborsf states be 1 with prob-
ability p. Concerning forest fire, p is equivalent to the
probability that fire spreads.

PCA is used to model systems in which the propaga-
tion of media is difficult to analytically represent (e.g.,
epidemic behaviour or chemical penetration). Specifi-
cally, by employing PCA overall state transitions of sys-
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tems with respect to time can be seen easily.

2.2. Multi-State Probabilistic Cellular Automata

In this section we propose 2-dimensional multi-state
PCA as a model of forest fire, extending the 2-
dimensional 2-state PCA introduced in the previous sec-
tion. Now, consider the 2-dimensional square lattice
and denote the location of each cell as x ∈ R

2 with
the continuous-time index t.

In the 2-dimensional 2-state PCA, the probability p
that fire spreads to the neighbor cell is constant. In con-
trast, the probability that fire spreads in reality differs
depending on the fire intensities. Thus, we consider a
multi-state cell automaton so that each cell takes one of
the values in S = {0, 1, 2, . . . , n} depending on the fire
intensities.

Cells with state 0 are assumed yet to be burning, and
the states with state n are assumed to be completely
burnt out, otherwise burning. That is, cells with state
i ∈ Sburn , {1, 2, . . . , n− 1}) are burning cells. Here we
describe the state of the cell x at time t as s(x, t) ∈ S.

Next, we focus on the probability that fire spreads
from the cell with s(x, t) = i into unburned cells in a
short time dt. Since the probability that fire spreads into
unburned cells depends on the fire intensity, we define
the probability that fire moves from the cell x into its
neighbors at time t as

p(s(x, t)) =

{

0, if s(x, t) = 0 or n,
pidt, if s(x, t) = i, i ∈ Sburn,

(1)

where pi ∈ [0, 1] is a constant.

While the cell with s(x, t) = 0 is unburned, the prob-
ability that fire spreads is also 0. Equivalently, since the
cell x with s(x, t) = n is completely burnt, the proba-
bility that fire spreads is also 0. Furthermore, the cell
with s(x, t) = 0 becomes s(x, t + dt) = 1 when fire is
transferred. That is, s(x, t) = 1 is assumed to be the
early stage of burning states. Thus, it follows that

P{s(x, t+ dt) = 1|s(x, t) = 0} =

n
∑

i=0

p(i)ni(x, t), (2)

P{s(x, t+ dt) = i|s(x, t) = 0} = 0, i ∈ S{0, 1},(3)

where P{s(x, t + dt) = j|s(x, t) = i} represents the
conditional probability that the state of the cell with
s(x, t) = i changes to j in a short time dt and ni(x, t)
represents the number of the neighbors of the cell x, the
states of which are i at time t. The cells with s(x, t) = i
have effects only on the cells with the state of 0. Fur-
thermore, once a cell begins to burn, the fire intensity of
the cell fluctuates without any effects from the neighbor
cells. Thus, we describe the probability that the state

of the cell with state i ∈ Sburn) changes to j (6= i) in a
short time dt as

P{s(x, t+ dt) = j|s(x, t) = i} = aijdt,

i ∈ Sburn, j ∈ S\{0, i}, (4)

where aij ∈ [0, 1] is a constant.

Finally, as the state of the cell with s(x, t) = n would
be unchanged anymore, the following equation holds

P{s(x, t+ dt) = i|s(x, t) = n} = 0, i ∈ S\{n}. (5)

In Sections 3 and 4 below, the critical probability of
the proposed multi-state PCA that fire spreads infinitely
is discussed.

3. Percolation Theory

Percolation theory is the theory that determines if a
medium that emerges at a certain point, such as wa-
ter or disease, spreads infinitely or not [13]. Percolation
is classified broadly into two types: the site percola-
tion where intermediates exist at each site of a given
area with probability q and the bond percolation where
each couple of neighboring sites connects with probabil-
ity q. Figures 3.1, 3.2 show the 2-dimensional square lat-
tice site percolation and bond percolation, respectively,
where sites (small circles in these figures) correspond to
cells of PCA. Furthermore, the connected set of sites is
called a cluster, which corresponds to the set of sites
surrounded by the dotted lines in the figures.

In percolation theory, the critical probability that a
medium spreads infinitely is one of the main focuses and
is defined according to the following. First, we consider
the cluster C0 that contains the origin. Then, for a given
probability q we define θ(q) as

θ(q) = Pq(‖C0‖ = ∞), (6)

where ‖C0‖ denotes the number of the sites contained in
C0. The function θ(q) given by (6) describes the proba-
bility that the cluster having infinite number of sites ex-
ists. In other words, θ(q) represents the probability that
a medium, such as water or disease, spreads infinitely.
Furthermore, by using θ(q) we define the critical proba-
bility that a medium spreads infinitely as

qc = inf{q ∈ [0, 1] : θ(q) > 0}. (7)

The critical probability qc represents the probability q
above which there is a possibility of existence of the clus-
ter having infinite amount of sites. That is, a medium
does not spread infinitely with probability q that satis-
fies q < qc.

In the 2-dimensional square lattice bond percolation
case, the critical probability is proven to be qc = 0.5
analytically. Moreover, in the case of site percolation,
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Figure 3.1: Square lattice site percolation

Figure 3.2: Square lattice bond percolation

qc is known to be 0.592746 approximately [14]. In the
next section, we derive the critical probability of the
multi-state PCA that we propose.

4. Critical Probability for Spreading the Fire

In comparison to percolation theory that deals with
problems which have static properties, [15] applied per-
colation theory to dynamical systems. In [15] the dy-
namical epidemic problem, where people having diseases
recover after a certain period of time, is replaced by a
3-dimensional percolation where a temporal dimension
is added to two spatial dimensions. Since the percola-
tion that [15] discussed has a directivity with respect to
temporal axis, it is called directed percolation.

Although some methods to derive the critical prob-
ability of PCA replacing to the 3-dimensional directed
percolation are proposed, two problems would emerge
if we considered to apply those methods to the multi-
state PCA. First, it is known to be difficult to derive the
critical probability of directed percolation analytically.
Second, due to the consideration of multiple states it is
impossible that we convert our proposed PCA into the
3-dimensional percolation. In this paper, we derive the
critical probability using mean-field approximation and
the 2-dimensional percolation theory.

4.1. Mean-Field Approximation to PCA

In this section, we introduce the notion of mean-field
approximation that is used in this paper. Mean-field ap-
proximation is used to derive the dynamics of the pro-
portion of cells with a specific state, such as burning or
disease, with respect to the systems expressed by the
PCA such as forest fire or epidemic propagation. For
example, in [16,17] useful methods regarding to cure to
protect epidemic propagation is proposed using mean-
field approximation.

Applying procedure of mean-field approximation to
PCA and getting the dynamics of the proportion of cells
with each state, it is possible to derive time responses
with any given initial conditions.

Now, we define a binary variable δi(x, t) as

δi(x, t) =

{

1, if s(x, t) = i,
0, otherwise.

(8)

where i ∈ S. And we also define 〈f(x)〉 as the aver-
age value of the function f(x) of the overall cells x.
Then, the proportion of the cells with state i is described
by 〈δi(x, t)〉. In other words, the number of cells with
state i included in k cells chosen arbitrarily is written
by k〈δi(x, t)〉. Equivalently, the proportion of couples
of the cells with state i and the cell with state j is de-
scribed by 〈δi(x, t)〉〈δj(x

nb

k , t)〉 where xnb

k , k = 1, 2, 3, 4,
represent the 4 neighbor cells of the cell x. Moreover,
as we suppose that the states of arbitrary two cells are
independent of each other, it follows that

4
∑

k=1

〈δ0(x, t)δi(x
nb

k , t)〉 ≃ 4〈δ0(x, t)〉〈δi(xk, t)〉 (9)

where the coefficient 4 of the right-hand side stems from
the fact that the number of the neighbors of the cell x
is equal to 4. The above approximation is called mean-
field approximation [16].

Now, we derive the difference equation with respect to
the proportion 〈δi(x, t)〉 of the cells in state i in a short
time dt. The difference equation of 〈δi(x, t)〉 is given by

〈δi(x, t + dt)〉 − 〈δi(x, t)〉

=
n
∑

j=0,j 6=i

〈δj(x, t)P{s(x, t+ dt) = i|s(x, t) = j}〉

−

n
∑

j=0,j 6=i

〈δi(x, t)P{s(x, t+ dt) = j|s(x, t) = i}〉,

(10)

where the first term of right-hand side denotes the in-
creasing rate of the cells with state i and the second
term denotes the decreasing rate of the cells with state
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i. Substituting (2)–(5) into (10), it follows that

〈δ1(x, t+ dt)〉 − 〈δ1(x, t)〉

= 〈δ0(x, t)

n
∑

i=0

pini(x, t)〉

+

n
∑

j=2

(aj1〈δj(x, t)− a1j〈δ1(x, t)〉)dt, (11)

〈δi(x, t+ dt)〉 − 〈δi(x, t)〉

=

n
∑

j=1,j 6=i

(aji〈δj(x, t) − aij〈δi(x, t)〉)dt,

i ∈ Sburn\{1}, (12)

〈δn(x, t+ dt)〉 − 〈δn(x, t)〉

=

n−1
∑

j=1

ajn〈δj(x, t)〉dt, (13)

We omit the difference equation with respect to 〈δ0(x, t)〉
since 〈δ0(x, t)〉 is determined to satisfy the condition
given by

∑

i∈S

〈δi(x, t)〉 = 1. (14)

While the function ni(x, t) contained in the first term
of the right-hand side of (11) represents the number of
the neighbors with state i of the cell x, the function is
written as

ni(x, k) =

4
∑

k=1

δi(x
nb

k , t), (15)

and the first term of right-hand side of (11) is given

n
∑

i=0

pi〈δ0(x, t)ni(x, t)〉dt

=

n
∑

i=0

pi〈δ0(x, t)

4
∑

k=1

δi(x
nb

k , t)〉dt

=
n
∑

i=0

4
∑

k=1

pi〈δ0(x, t)δi(x
nb

k , t)〉dt. (16)

Furthermore, it follows from (9) and (16) that (11) be-
comes

〈δ1(x, t+ dt)〉 − 〈δ1(x, t)〉

=

n
∑

i=0

4pi〈δ0(x, t)〉〈δi(x, t)〉dt

+

n
∑

j=2

(aj1〈δj(x, t) − a1j〈δ1(x, t)〉)dt. (17)

Now we define 〈δi(x, t)〉 = yi(t) since 〈δi(x, t)〉 is a
function only of t. In this case, it follows from (12),

(13), and (17) that

dy1(t)

dt
=

n
∑

i=0

4piy0(t)yi(t) +

n
∑

j=2

(aj1yj(t)− a1jy1(t)),

(18)

dyi(t)

dt
=

n
∑

j=1,j 6=i

(ajiyj(t)− aijyi(t))dt, i ∈ Sburn\{1},

(19)

dyn(t)

dt
=

n−1
∑

j=1

ajnyj(t). (20)

The equations (18)–(20) describe the dynamics of the
proportions of cells with each state.

4.2. Derivation of Critical Probability

In this section, we derive the critical probability of
the 3-state PCA with n = 3 as the simplest case. By
using (14) and (18)–(20), the state equations in regards
to 3-state PCA are given by

y1(t) = 4p1y1(t)(1 − y1(t)− y2(t))− a12y1(t), (21)

y2(t) = a12y1(t), (22)

y0(t) + y1(t) + y2(t) = 1. (23)

The state variables y0(t), y1(t), and y2(t) represent the
proportions of the unburned cells, the burning cells, and
the burnt cells, respectively, at time t. The critical prob-
ability of 3-state PCA is defined as the probability that
fire spreads infinitely for each a12, which corresponds to
the probability of the state transition from the burning
cells to the burnt cells.

Now, let y(t) , [y1(t), y2(t)]
T. Figure 4.1 shows

the trajectories of the system given by (21)–(23) with
the initial condition y(0) = [0.0001, 0]T on y1-y2 space,
where a12 = 0.5 and p1 = 0.2, 0.4, 0.8, respectively. As
shown in the figure, the trajectories started from the
neighborhood of [y1, y2]

T = [0, 0]T converge to points
on y2 axis. That is, the number of burning cells eventu-
ally goes to 0.

The equilibrium point y∗ of the system (21)–(23) is
derived as

y∗ =





1− c
0
c



 , (24)

where c ∈ [0, 1] is a constant depending on the initial
condition. Now, let ỹ , y − [y∗1 , y

∗
2 ] and approximate

(21) and (22) linearly around the equilibrium point, then
it follows that

˙̃y(t) =

[

4p1(1 − c)− a12 0
a12 0

]

ỹ(t) , Ãỹ(t). (25)
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Figure 4.1: Several state trajectories on y1-y2 space

Note that the eigenvalues of Ã are λ1 = 0 and λ2 =
4p1(1 − c) − a12. Since one of the eigenvalues of Ã is
on the imaginary axis, stability of the system (21)–(23)
is analyzed by the center manifold theory [18]. If λ2 is
negative, that is

c > 1−
a12
4p1

, (26)

the hyperplane given as the center manifold exists in the
neighborhood of y∗, and the system trajectories (21)–
(23) with any initial states near the equilibrium point
converge to the center manifold. Consequently, the equi-
librium point that satisfies (26) is proven to be stable.

As shown in Figure 4.1, the trajectories starting from
the neighborhood of [0, 0]T, which is the unstable equi-
librium point, reach the stable equilibrium points given
by (26). Thus, the system trajectories starting from
the neighborhood of [0, 0]T converge to a stable equilib-
rium point on y2-axis if [0, 0]T is the unstable equilib-
rium point.

By using the value of the critical probability qc of
the square lattice site percolation and comparing it to
y2(t) as the proportion of burnt cells, we can determine
whether the probability that fire spreads infinitely ex-
ists. Furthermore, in the case of square lattice site per-
colation, the critical probability qc approximately equals
to 0.592746. Thus, if the converging point with respect
to a given initial condition

lim
t→∞

y(t) = yinf =
[

yinf1 , yinf2

]

, (27)

is precisely known, then the critical probability can be
derived to be yinf2 = 0.592746.

In what follows, we calculate the value of yinf . By
using (21) and (22), it follows that

dy1
dy2

=
4p1
a12

(1− y1 − y2)− 1, (28)

so that

αy1 +
dy1
dy2

= −αy2 + (α− 1), (29)
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Figure 5.1: Comparison of the analytical and numeri-
cal results

where α , 4p1/a12. Note that (29) is an inhomogeneous
linear differential equation so that the solution with the
initial condition y = [0, 0]T is given by

y1 = − exp(−αy2)− y2 + 1. (30)

With y1 = 0, it follows that

y2 =
1

α
lambertw(−αe−α) + 1, (31)

where w = lambertw(x) represents the solution of the
equation wew = x, is the solution for y2. Note that
letting β , lambertw(−αe−α) in (31), there are two so-
lutions for β; the trivial solution β = −α and the other
nontrivial solution describing the value of the converging
point with respect to y2 of the trajectory which starts
from the neighborhood of y = [0, 0]T, that is, yinf2 . If the
value of yinf2 is below the critical probability of square
lattice site percolation qc = 0.592746, then the prob-
ability that fire spreads is 0. Therefore, by denoting
αc = pc1/a12 where pc1 is the critical probability of the
3-state PCA, αc satisfies

1

αc

lambertw(−αce
−αc) = 0.592746. (32)

By solving (32), αc = 1.51552 is obtained so that con-
sequently

pc1 = 0.37888a12, (33)

is the critical probability for given a12.

5. Numerical Results

In this section, we compare the values of the critical
probability that we derived to the numerical results. In
the simulation, we suppose 100×100 square lattice and
the initial condition where the center cell of the lattice is
burning (state 1). Figure 5.1 shows the critical probabil-
ities pc1 as a12 moves from 0 to 1, where the horizontal
axis represents a12 and the vertical axis represents pc1.

Comparing our analytical result to the numerical re-
sult, the value of pc1 seems to be similar when a12 is
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below 0.1. In contrast, when a12 is above 0.1, there
is an discrepancy by around 0.1 between the values of
pc1. Furthermore, as shown in the figure the analytical
result is more conservative. These differences may be
caused by the approximation process of the model using
mean-field approximation.

6. Conclusion and Future Extensions

In this paper forest fire was modeled by using PCA.
Specifically, multi-state PCA is proposed to express for-
est fire more accurately, where intensities of fires are
expressed by multiple states and probabilities that fire
spreads depend on states of cells. Furthermore, we de-
rived the critical probability of PCA. By applying mean-
field approximation to the proposed PCA and by using
the critical probability analysis for square lattice site
percolation qc = 0.592746, we derived the critical prob-
ability of 3-state PCA as the easiest case of multi-state
PCA. Finally, we compared the critical probability that
we derived to the numerical results to verify the effec-
tiveness of our result.

For the future extensions, new field approximation
methods are needed to be introduced in order to approx-
imate PCAmore accurately and to improve the accuracy
of the critical probability. Furthermore, new approaches
or extensions of our approach are needed to derive the
critical probability of multi-state PCA. Although we de-
rived the critical probability of 3-state PCA in this pa-
per, we have to derive the critical probability of PCA
which has n states as general solutions.
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