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Moving and staying together without a leader
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Abstract

A microscopic, stochastic, minimal model for collective and cohesive motion of identical self-propelled particles is intro-
duced. Even though the particles interact strictly locally in a very noisy manner, we show that cohesion can be maintained,
even in the zero-density limit of an arbitrarily large flock in an infinite space. The phase diagram spanned by the two main
parameters of our model, which encode the tendencies for particles to align and to stay together, contains non-moving “gas”,
“liquid” and “solid” phases separated from their moving counterparts by the onset of collective motion. The “gas/liquid” and
“liquid/solid” are shown to be first-order phase transitions in all cases. In the cohesive phases, we study also the diffusive
properties of individuals and their relation to the macroscopic motion and to the shape of the flock.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The emergence of collective motion of self-propelled
organisms (bird flocks, fish schools, herds, slime
molds, bacteria colonies, etc.) is a fascinating phe-
nomenon which attracted the attention of (theoretical)
physicists only recently[1,2,4–6]. Particularly in-
triguing are the situations where no “leader” with
specific properties is present in the group, no medi-
ating field helps organizing the collective dynamics
(e.g. no chemotaxis), and interactions are short-range.
In this case, even the possibility of collective motion
may seem surprising.

However “simple” the involved organisms may be,
they are still tremendously complex for a physicist and
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his inclination will often be to go away from the de-
tailed, intricate, as-faithful-as-possible modeling ap-
proach usually taken by biologists, and to adopt “min-
imal models” hopefully catching the crucial, univer-
sal properties which may underlie seemingly different
situations.

In this setting, the organisms can be reduced to
points which move at finite velocity and interact with
neighbors. This is in fact what Vicsek and collabo-
rators did when introducing their minimal model for
collective motion.

2. Vicsek’s model

Vicsek’s model[2] consists in pointwise particles
labeled byi which move synchronously at discrete
timesteps�t by a fixed distancev0 along a direction
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θi. This angle is calculated from the current velocities
of all particlesj within an interaction ranger0, reflect-
ing the only “force” at play, a tendency to align with
neighboring particles:

θt+1
i = arg


∑

j∼i

�vtj


+ ηξti , (1)

where�vti is the velocity vector of magnitudev0 along
direction θi and ξti is a delta-correlated white noise
(ξ ∈ [−π, π]). Fixing r0 = 1, �t = 1, and choosing,
without loss of generality, a valuev0�t < r0, Vicsek
et al. studied the behavior of this simple model in the
two-dimensional parameter space formed by the noise
strengthη andρ, the particle density. They found, at
large ρ and/or smallη, the existence of an ordered
phase characterized by

V ≡ 〈|〈�vti〉i|〉t > 0, (2)

i.e. a domain of parameter space in which the particles
move collectively.

The existence of the ordered phase was later
proved analytically[7] via a continuous model for
the coarse-grained particle velocity and density. Vic-
sek et al. devoted most of their effort to studying the
transition to the ordered phase[2]. They found numer-
ically a continuous transition characterized by scaling
laws and they tried to estimate the corresponding set
of critical exponents.

3. Collective and cohesive motion

Vicsek’s model accounts rather well, at least at a
qualitative level, for situations where the organisms
interact at short distances but need not stay together.
This is for instance the case of the bacterial bath re-
cently studied by Wu and Libchaber[9]. In this ex-
periment,E. Coli bacteria are swimming freely within
a fluid film of thickness approximately equal to their
size. By seeding the system with polystyrene beads
and recording the trajectories of these passive tracers,
Wu and Libchaber showed that the bacteria perform
superdiffusive motion crossing over to normal diffu-
sion. We later argued that the superdiffusive behavior

is likely to be due to the onset of collective motion as
in Vicsek’s model[10,11].

When the situation to be described involves the
overall cohesion of the population, Vicsek’s model
needs to be supplemented by a suitable feature. In-
deed, an initially cohesive flock of particles will dis-
perse in an open space. In other words, no collective
motion is possible in the zero-density limit of this
model. In the following, we extend Vicsek’s model to
account for the possible cohesion of the population of
particles.

The above remark is by no means new. Early models
for the collective motion of “boids” (contraction of
“birdoid”, a term used by computer animation graphics
specialists) do include a two-body repulsive–attractive
interaction[3]. More recent works by physicists also
included this ingredient, but they either comprised an
extra global interaction[4], or the actual interaction
range used extended over the whole flock for the sizes
considered, making it effectively global[5]. Another
encountered pitfall, from our point of view at least, is
to enforce the cohesion by the confinement to a rather
small, close, space[6].

Here we want to be, in a sense, in the least-favorable
circumstances for observing collective motion: no
leader in the group, strongly noisy environment and/or
communications, strictly local interactions, and no
confinement at all. The “minimal” model presented
below is one of the simplest possible ones satisfying
these constraints.

4. A minimal model

In addition to the possibility of achieving cohesion,
we also want to confer a “physical” extent to the par-
ticles, a feature absent from Vicsek’s point-particles
approach. Adding a Lennard–Jones-type body force�f
acting between each pair of particles within distance
r0 from each other offers such a possibility.

Eq. (1) is then replaced by

θt+1
i = arg


α∑

j∼i

�vtj + β
∑
j∼i

�fij


+ ηξti , (3)
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whereα andβ control the relative importance of the
two “forces”. The precise form of the dependence of
the body force on the distance between the two parti-
cles involved is not important. It is enough to ensure a
hard-core repulsion at distancerc and an “equilibrium”
preferred distancere.

In the following, we use

�fij = �eij




−∞ if rij < rc,

1

4

rij − re

ra − re
if rc < rij < ra,

1 if ra < rij < r0

(4)

with rij the distance between boidsi andj, �eij the unit
vector along the segment going fromi to j, and the
numerical valuesrc = 0.2, re = 0.5 andra = 0.8.

We have also tested other types of noise term in
the model. In particular, considering the noise as the
uncertainty with which each boid “evaluates” the force
exerted on itself by theNi neighboring boids leads to
changeEq. (3) to

θt+1
i = arg


α∑

j∼i

�vtj + β
∑
j∼i

�fij + Niη�uti


 , (5)

where�uti is a unit vector of random orientation. There
are delicate issues related to the choice of the noise
term, in particular with respect to the critical prop-
erties of the transition to collective motion[12]. We
mostly considered, in the following, the noise term as
prescripted inEq. (5). A detailed analysis of the influ-
ence of the nature of the noise is left for future studies,
but we are confident that the results presented here
hold generally, at least at a qualitative level.

Finally, in order to ensure that each particle only
interacts with its “first layer” of neighbors (within dis-
tancer0), we calculate, at each timestep, the Voronoi
tessellation of the population[14]—this has the addi-
tional advantage of providing a natural definition of
the “cells” associated with each particle. The inter-
acting neighbors are then restricted to be those of the
particles within distancer0 which are also neighbors
in the Voronoi sense.

Table 1
Fixed-value parameters used in the simulations

�t v0 r0 ra re rc η

1.0 0.05 1.0 0.8 0.5 0.2 1.0

5. Typical phases

One can easily guess the “phases” that the above
model can exhibit for a fixed noise strengthη (η =
1.0 in the following, for a summary of parameters see
Table 1). We now present them in a qualitative manner.
The results presented below were all obtained in the
two-dimensional case, but most of them hold in three
dimensions. When the body force is weak (smallβ

values), the cohesion of a flock cannot be maintained.
In a finite box (finite particle densityρ), one is left with
a gas-like phase (not shown). An arbitrarily large flock
in an infinite space disintegrates, eventually leaving
isolated random-walking particles.

For large enoughβ, we can expect the cohesion to
be maintained.Fig. 1shows such cohesive flocks. The
internal structure of the flocks depends also onβ: for
large body force, positional quasi-order is present, and
the particles locally form an hexagonal crystal (Fig. 1a
and b). For intermediate values ofβ, no positional
order arises, and the flock behaves like a liquid droplet
(Fig. 1c and d).

The influence of the alignment “force” is manifested
by the global motion of the flock: for large enough
α values, the flock moves (V > 0). Depending onβ,
one has then either a “moving droplet” (Fig. 1d) or a
“flying crystal” (Fig. 1b).

6. Order parameters

Order parameters have to be defined to allow for a
quantitative distinction between the phases described
above.

The limit of cohesion separating the “liquid” phases
from the “gas” can be determined by measuring the
distribution of the sizes of particles clusters, thanks
to an implementation of the Hoshen–Kopelman[15]
algorithm. A cohesive flock is then one for whichn,
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Fig. 1. Cohesive flocks of 128 particles in a square box of linear size 32 with periodic boundary conditions (for parameters seeTable 1).
(a) Immobile “solid” atα = 1.0 andβ = 100.0 (20 timesteps superimposed). (b) Three snapshots, separated by 120 timesteps, of a “flying
crystal” atα = 3.0 andβ = 100.0. (c) Fluid droplet (α = 1.0, β = 2.0, 20 consecutive timesteps). (d) Moving droplet (α = 3.0, β = 3.0,
20 consecutive timesteps). In (b) and (d), the arrow indicates the (instantaneous) direction of motion.

the size of the largest cluster, is of orderN, the to-
tal number of particles. Below, we use the criterion
n/N = 1/2 to define the transition. Increasingβ, n/N
sharply rises to order-one values (Fig. 2a).

The “liquid/solid” transition takes place whenβ is
large enough so that cohesion of the population is en-
sured. To determine this onset of positional quasi-order
within a finite but arbitrarily large cohesive flock, we
first observe that, whether in the collective motion re-
gion or not, the “liquid” and “solid” phases can be
distinguished by the fact that particles diffuse with re-
spect to each other in the “liquid”, whereas neighbor-
ing particles always remain close to each other in the
“solid” (Fig. 3). To be more precise, in the “liquid”,
initially close-by particles remain so for some trap-
ping time τ (which can be defined or used to col-
lapse the curves ofFig. 3). Approaching the “solid”

phase (by increasingβ), τ diverges. In addition, since
we are not dealing with a translation-invariant sys-
tem, we should also distinguish between the diffusion
properties of the particles depending on their relative
position within the flock. We have thus defined differ-
ent “sectors” (“core”, “head”, “tail”, “sides”) as ex-
plained inFig. 4. If all sectors are roughly equivalent
in non-moving droplets (at least sufficiently far from
the “liquid/solid” transition), some differences are ob-
served within moving droplets: the outer regions and
in particular the head are more active, whereas cohe-
sion is stronger in the core (Fig. 5). Thus, in princi-
ple, different trapping timesτ can be defined for the
different regions of a (moving) flock. But the depth
of the outer, “more liquid”, layer does not depend on
the flock size (if it is big enough), so that, in large
flocks, most of the population behaves as the core.



G. Grégoire et al. / Physica D 181 (2003) 157–170 161

Fig. 2. Order parameters atρ = 1/16, L = 128, α = 1.0. (a) “Gas/liquid” transition, inset: cluster mass distribution at the coexistence
point β = 1.0. (b) “Liquid/solid” transition, inset: pdf of order parameter∆ for the “liquid/solid” transition,β = 36 solid line (“liquid”
phase),β = 48 dotted line andβ = 60 dashed line (“solid” phase). Other parameters as inTable 1.

Consequently, the relative diffusion averaged over the
whole flock suffers from finite-size effects, but they
disappear in the large-size limit (see below). To sum
up, the trapping timeτ (measured on all particles of

Fig. 3. Mean square distance between initially neighboring particles
vs. time for a flock of 10 000 boids (L = 400, ρ = 1/16) in
logarithmic scales. (a) Non-moving cohesive droplet (α = 1.0,
β = 25.0, 35.0, 45.0 and 150.0 from top to bottom, the dashed
line has slope 1). (b) Moving cohesive flock (α = 3.0, β = 40.0,
55.0, 75.0 and 150.0 from top to bottom). Asymptotic transition
points were measured atα = 1.0, βLS = 45.3 and atα = 3.0,
βLS = 76.1 (see below). Other parameters as inTable 1. Insets:
data collapse from which the waiting timeτ can be estimated.

the flock) is a good quantity to track the “liquid/solid”
transition. However, instead of directly estimating of
τ, we measured∆, the relative diffusionover some
large time Tof initially neighboring particles:

∆ ≡
〈

1

ni

∑
j∼i

(
1 −

r2
ij (t)

r2
ij (t + T)

)〉
i,t

, (6)

where theni particlesj are the neighbors of particlei at
timet. TimeT is taken to be proportional to the volume

Fig. 4. Snapshot of a moving flock of 4096 boids (coordinates
centered on the position of the center of mass (CoM)). The arrow
indicates the instantaneous direction of motion of the flock. The
solid circle, centered on the CoM, has a radius equal to the
root-mean-square of all boids’ distances to the CoM. The circle
with four times smaller radius defines the “core” region (filled
circles near the CoM). The “head” contains all boids outside the
larger circle which are also within a cone of opening angleπ/4
centered on the direction of motion. The “tail” region is defined
in an opposite manner.
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Fig. 5. Growth of the mean square distance between initially
neighboring particles depending on their position within a cohesive
“liquid” flock of 10 000 boids (ρ = 1/16, β = 40). (a)α = 1.0,
cohesive non-moving droplet; (b)α = 3.0, moving droplet. Solid
line: all boids in flock, dotted line: core region, dashed line: head
region, dash–dotted line: tail region (as defined inFig. 4). Insets:
diffusion within flock head in linear scales, the solid line is just
a guide to the eye.

of the system, which ensures that∆ records, in the
large-size limit, an asymptotic property of the system
(becauseT 
 τ). Clearly, ∆ ∼ 1 in the “liquid”
phase for a large enough system, while∆ ∼ 0 in the
“solid” phase. Indeed, increasingβ,∆ falls off sharply
(Fig. 2b). The transition point is chosen to be at∆ =
1/2.

Finally, we must be able to distinguish the regimes
for which collective motion arises. To this aim, we use
the average velocityV , as defined in(2). Increasing
α, V reaches order-one values. The onset of collective
motion is chosen to be atV = v0/2. In the gas phase,
one expectsV = 0 independently of the strength of
the alignment force. Nevertheless, this phase is rather
sharply divided into two when studying the model at
finite particle density. The largest cluster size may then
be small (n � N), but it is (almost) always larger than
1. At any given time, thus,n > 1, and the collective
motion order parameterV can be defined restricted

to the particles belonging to the largest cluster. (Since
clusters merge and break, the particles involved gen-
erally change along time.)

7. Phase diagram

After a brief discussion of the nature of the transi-
tions involved, we first present the phase diagram of
our model for a finite density of particles in a large
and fixed box size. Then we estimate finite-size effects
on the location of the phase boundaries. Finally, we
argue that the phase diagram can also be defined in
the zero-density limit where an arbitrarily large flock
wanders in an infinite space.

7.1. Nature of the transitions

As expected in usual phase transitions, we found
that in our model the “gas/liquid” and “liquid/solid”
transitions are first-order. In insets ofFig. 2a and b,
we show the evolution of the probability distribution
function of the order parameter as one crosses these
transition lines. The bimodal character of these pdf at
the transition is typical of first-order phase transitions,
indicating the coexistence of two metastable states. At
the “gas/liquid” transition point, dispersed and aggre-
gated boids coexist and there are exchanges between
the two phases along time. At the “liquid/solid” tran-
sition point, cohesion is ensured and one observes the
quasi-frozen regions in an otherwise more “liquid”
flock. The quasi-solid parts are often located in the
core of the flock. (Fig. 6).

The nature of the transition for the onset of collec-
tive motion is a delicate issue in our model. Whereas
its second-order character is rather well established for
Vicsek’s core model, we recently discovered that, in
fact, the implementation of the noise term may change
the nature of the transition. The detailed investigation
of this, in particular in presence of the cohesive force,
will be presented in a future publication[12].

7.2. Fixed population and fixed box size

A systematic scan of the (α, β) parameter plane was
performed for a flock ofN = 2025 particles living
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Fig. 6. Short-time trajectories of freezing droplets ofN = 512
boids (5000 timesteps are shown, the motion of the CoM and
the solid rotation around it have been substracted). (a) In the
moving phaseα = 3.0, β = 70: the inner part appears more solid,
while the head is clearly more liquid (the arrow indicates the
instantaneous direction of motion). (b) In the non-moving phase
α = 1.0, β = 50: one can distinguish an outer liquid layer from
the almost solid core.

on a square surface of linear sizeL = 180 (ρ =
1/16) with periodic boundary conditions. Using the
criteria defined above, we obtained the phase diagram
presented inFig. 7.

For each parameter value, we used an initially ag-
gregated flock. We let the system evolve during a time
τ ∝ Ld , and then we recorded each order parame-
ter and its histogram along time. The transition points
were determined by dichotomy, the precision of which
is reflected in the error bars.

The basic expected features are found: the hori-
zontal “gas/liquid” and “liquid/solid” transitions are
crossed by the vertical “moving/non-moving” line.
Near this line, however, one observes a strong defor-
mation of the “gas/liquid” and “liquid/solid” bound-
aries. This cannot be understood without a careful
study of the collective motion transition[12].

Fig. 7. Phase diagram atρ = 1/16, L = 180 (other parameters as
in Table 1). S: solid, MS: moving solid, L: liquid, ML: moving
liquid, G: gas, MG: moving gas. Dashed line: transition line of
collective motion.

Note also that the “gas” phase itself is crossed by
the line marking the onset of collective motion, using,
as explained above, the average velocityV of the n

particles of the largest cluster as the order parameter.

7.3. Finite size and saturated vapor effects

We are ultimately interested in the possibility of
collective and cohesive motion for an arbitrarily large
flock in an infinite space. The phase diagram ofFig. 7
was obtained at a fixed system size and constant den-
sity. Thus both limits of infinite-size and zero-density
have to be taken to reach the asymptotic regime of
interest. Of course this is mostly relevant to the on-
set of cohesion (the “gas/liquid” transition). Here we
first study each limit separately, i.e. we investigate
finite-size effects at fixed particle density and expan-
sion at fixed particle number. Then we discuss the
double-limit regime of interest.

Performing such a task for the whole parame-
ter plane far exceeds our available computer power.
We restricted ourselves to three typical cases: in the
non-moving phase (α = 1.0), in the moving phase
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Fig. 8. Finite size effects on transitions at a fixed density or at fixed number of particles atα = 3.0 (moving phases). The dashed lines are
the asymptotic values determined by exponential fits (solid lines). (a) Variation of the “gas/liquid” transition pointβGL at ρ = 1/16 vs.
linear size. (b) Variation of the “liquid/solid” transition pointβLS at ρ = 1/16 vs. linear size. (c)βGL vs. inverse density 1/ρ for N = 4096.

(α = 3.0) and near the transition to collective motion
(α = 1.75 for the “gas/liquid” transition andα = 2.1
for the “liquid/solid” transition).

In simulations performed atρ = 1/16, varying
N and L, the transition pointsβρGL(N) and β

ρ
LS(N)

converge exponentially asL = √
N/ρ increases. In

Fig. 8, we show this for both the “gas/liquid” (a)
and the “liquid/solid” (b) transitions forα = 3 (mov-
ing phases). This allows to determine asymptotic
transition points. Note that exponentially decreas-
ing finite-size effects are typical of first-order phase
transition at equilibrium[16]. In the two other cases
(non-moving phase, and onset of motion), the results
are similar, with the asymptotic values being quickly
reached in the non-moving phase (α = 1) [13].

In simulations performed at fixedN varyingL, we
study instead the expansion of the system. The (finite)
spatial extent induces a confinement effect which in-
creases the pressure at the coexistence point. We thus
expect a displacement of the transition point. We find
that βGL(ρ) also converges exponentially, and thus
transition pointsβGL(N) are well defined. InFig. 8c,
we show this only for the “gas/liquid” transition at the
α values used inFig. 8a, since the “liquid/solid” tran-
sitions points were observed to be independent of the
box size.

7.4. Zero-density limit

The above results provide evidence that our model
possesses well defined, asymptotic phase diagrams at

either fixed particle density or at fixed number of par-
ticles. The double limit mentioned above can be ap-
proached in essentially three different ways.

One can take one limit after the other one, repeating
either the calculations ofFig. 8a at lower and lower
densities, or those ofFig. 8d at larger and larger flock
size. However, this straightforward program involves
very heavy numerical simulations. Therefore, we only
considered two cases (α = 1.75 andα = 3.0). As ex-
pected, the transition points converge (exponentially)
independently of the order with which the two limits
are taken, yielding estimates of the zero-density limit
(Fig. 9). These estimates are compatible with each
other. There are three different sources of error: statis-
tical and systematic errors when evaluating the order
parameters of each system, and then fitting errors when
determinatingβGL(N) andβGL(ρ). Forα = 1.75, we
find a 9% difference in the estimated asymptotic val-
ues whose origin is probably the statistical errors on
the larger flocks simulations.

7.5. Evaporation of a flock

There exists a third manner of approaching the
zero-density limit of the “gas/liquid” transition. It con-
sists in quenching a cohesive flock observed at large
enoughβ to a lowerβ value. If the flock is quenched
below the “gas/liquid” line, it will “evaporate”. The
largest cluster will progressively lose particles before
finally equilibrating in the gas phase. This transient
can be expected to be governed by an effective sur-
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Fig. 9. Zero-density limit of the cohesion transition for (a)α = 1.75
and (b) α = 3.00 (other parameters as inTable 1). Transition
points at zero-density for different system sizesN (circles), and
at infinite-size for different (inverse) densitiesρ−1 (squares). The
solid lines are exponential fits. Atα = 1.75, βGL(N) → 11.7 and
βGL(ρ) → 12.7; at α = 3.0, βGL(N orρ) → 5.6.

face tensionγ and the boundary of the largest cluster
should then be governed by Allen–Cahn law[17]:
vn = γκ, wherevn is the (local) normal velocity and
κ the local curvature. Assuming that the mass and the
surface of the main cluster remain proportional, in
the two-dimensional problem:n = ρlocπR

2, we can
integrate this equation, and we obtain the relation:

n = N − λt with λ = πρlocγ,

whereρloc is the local density: the size of a circular
flock should decrease linearly in time, with the pro-
portionality constant providing an estimate ofλ.

This is indeed what can be observed in our model
(Fig. 10a and b). In these experiments, an initially
large cohesive flock is prepared at someβ value above
the transition. The system size is taken so as be close
to the zero-density limit (ρ = 1/256 in Fig. 10). We
measuredTev, the time taken by the largest cluster to
reach a given normalized massn/N, as well as its sur-

face at the same mass/time. We thus checked the pro-
portionality between mass and surface and between
mass and time, after transients and before the system
approaches the equilibrium (Fig. 10a and b). Note that
due to the abrupt change of parameters the flock actu-
ally first expands after the quench before setting in the
“true” evaporation regime (Fig. 10b). This experiment
can, at first sight, be thought of being free of confine-
ment effects, and the Allen–Cahn law is expected to
be satisfied at all times.

Fig. 10c shows the dependence ofλ onβ: λ quickly
decays and reaches very small values forβ ∼ 0.8.
On a logarithmic scale (Fig. 10d), we can distinguish
two exponential regimes, on each side of this value,
which corresponds roughly to thefinite-sizethreshold
βGL(L) determined above (and is rather far from the
asymptotic threshold determined above to be around
1.5) A simple argument can account for this behavior:
consider a flock ofN boids and suppose there is no
short-time expansion (such as seen inFig. 10b). The
mass of the largest clustern(t), from then on, decreases
linearly with time until it reaches, at timeT∞, the
equilibrium valueneq. At every timet, we have:

N − n(t) = t

T∞
(N − neq) = λt. (7)

From the theory of first-order phase transitions of sys-
tems at equilibrium (see for instance[16]), we expect
the order parameterneq/N to behave like

neq

N
∼ 1

2
[1 + tanh(K1L

d(β − βGL))],

in the vicinity of the transition, whereK1 is a constant.
Moreover, we expect thatT∞ depends linearly onN
(seeFig. 10a, where results for two different system
sizes have been superimposed).

From a mean-field point of view,T∞/N can be
interpreted as the mean time required for a particle to
escape from the interaction of another boid. Given the
interaction we use (seeEq. (4)), we can assume that
the potential is harmonic, so that the escape time is
proportional to the exponential of the potential depth
β. Finally, we get

λ = N

T∞

(
1 − neq

N

)
or

λ ∝ exp(−K2β)[1 − tanh [K1L
d(β − βGL(L))]] .
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Fig. 10. Evaporation atρ = 1/256, α = 1.0 (other parameters as inTable 1). (a) Time vs. normalized cluster mass,L = 512, and 1024,
β = 0.2. (b) Surface vs. normalized cluster mass,L = 512, β = 0.2. (c) Surface tension vs.β, in linear scale. (d) Same as (c) in log–ln
scales. The dashed lines are only a guide to the eye.

Approximating tanh by(−1+exp) and(1−exp) suf-
ficiently far below and aboveβ = βGL(L), we find the
two exponential regimes mentioned above. More pre-
cisely, forβ < βGL(L), the surface tension should be
almost independent on system size, whereas forβ >

βGL(L), λ is governed by the finite size effects and its
slope increases likeLd . Quantitative agreements with
the above approximation would require too large nu-
merical calculations, but our partial data is consistent
with the above predictions.

A concluding remark to this investigation of the
effective surface tension governing the evaporation of
a flock is that, contrary to naive arguments, this method
does not offer much advantage over the double-limit
procedure presented inSection 7.4. Indeed, as shown
above, it only allows a rather easy determination of
βGL(L), while the finite-size effects remain hard to
estimate quantitatively.

8. Micro vs. macro motion

The existence of cohesive phases being now well es-
tablished, a natural question is that of the properties of
the trajectories of cohesive flocks (the “macroscopic”
motion) and it is interesting to compare those to the
trajectories of the individuals composing the flock
(“microscopic” motion). Postponing again the account
of what happens in this respect near the onset of col-
lective motion to a further publication[12], we stud-
ied, for the four possible cohesive phases, the mean
square displacement〈�r2(t)〉 of the CoM, as well as
of individual boids.

Our model being essentially stochastic, it is no sur-
prise that, at large times, we observe that〈�r2(t)〉 ∼ t,
i.e. the flock performs Brownian motion, in all cases
(Figs. 11 and 12). When in a moving phase (either
“liquid” or “solid”), this random walk may consist
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Fig. 11. Mean-square displacement of the CoM vs. time for a
cohesive droplet (solid lines) and for a crystal (dashed lines),
N = 32, ρ = 1/64, logarithmic scales. (a) In the non-moving
phase,α = 1, β = 40 (“liquid”) and 65 (“solid”). (b) In the
moving phase,α = 3, β = 40 (“liquid”) and 95 (“solid”). The
straight lines have slope 1 or 2.

of ballistic flights separated by less coherent intervals
during which the flock often changes direction. This
is testified by the ballistic part (〈�r2(t)〉 ∼ t2) of the
plots inFig. 11b and by the trajectories itself 12. The
moving and non-moving phases can also be distin-

Fig. 12. Trajectories of the CoM in the non-moving phase ((a)α = 1) and in the moving phase ((b)α = 3). Flock of N = 32 boids,
ρ = 1/256, β = 40.0. At long times (a, b) 105 timesteps. At short times (insets): 1000 timesteps shown.

Fig. 13. Mean square displacement of the CoM vs. time for a
moving droplet of sizeN = 1024, 256, 128, and 32 from top
to bottom (logarithmic scales,ρ = 1/64, α = 1.95, β = 40).
The solid lines have slope 2 and 1. The larger the flock the
more ballistic its motion at short times. The inset represents the
cross-over time between the ballistic and the Brownian motion.

guished by opposite finite-size effects: in the non-
moving phases, the diffusion constant of the macro-
scopic random walk decreases with system size (like
1/N), whereas the ballistic flights’ duration increases
with system size in the moving phases (Fig. 13).

Comparing the macroscopic motion of “liquid” and
“solid” flocks is not well defined since, in the phase
diagram, the line marking the onset of collective mo-
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Fig. 14. Internal mean-square displacement vs. time of the indi-
vidual boids of a cohesive droplet of 10 000 boids (ρ = 1/16,
β = 40, the motion of the CoM has been substracted). Lower
curve: non-moving case (α = 1), normal diffusion (the associated
dashed line has slope 1). Top curve: moving case (α = 3), su-
perdiffusion (the associated dashed line has slope 4/3, as predicted
by Toner et al.[8]).

tion is not straight. Nevertheless, at comparable dis-
tances from this line, one notices that ballistic flights
tend to be longer for flying crystals than for moving
droplets. Similarly, the diffusion constant of “solid”,
non-moving flocks is smaller than that of non-moving
droplets.

Finally, even though we have already considered
the mutual dispersion of initially neighboring boids
(seeFig. 3), we also studied the diffusive properties
of individual boids within cohesive flocks, substract-
ing out the translation motion of the CoM. In “solid”
flocks, one can hardly record any such motion. For
droplets (Fig. 14), on the other hand, this microscopic
motion depends on the macroscopic motion. When the
droplet is fixed, the diffusion is normal〈�r2〉 ∼ t,
whereas a boid which belongs to moving flock dif-
fuses as〈�r2〉 ∼ tα, with α ∼ 4/3. We interpret this
as being due to some mesoscopic “hydrodynamical”
structures within moving flocks (jets, vortices, etc.).
Toner et al.[8] have shown via a mesoscopic equation
that collective motion induces transverse correlations
even in a co-moving frame. Therefore, boid diffusion
must be faster than Brownian. They predicted an ex-

ponent equal to 4/3, with which our results are in good
agreement (Fig. 14, top line).

9. Summary and perspectives

We have introduced a simple model for the collec-
tive and cohesive motion of self-propelled particles.
We have described its various dynamical phases, de-
fined order parameters to distinguish them, and pre-
sented a typical phase diagram at large but finite num-
ber of particlesN and large but finite system sizeL
(Fig. 7). Even though we have provided evidence that
this phase diagram possesses well-definedN → ∞
andL → ∞ limits, these limit diagrams require too
heavy numerical simulations to be determined at this
stage.

We have also argued that the double limit of an ar-
bitrarily large flock evolving in an infinite space is
also well defined. Here also, the mapping of the phase
diagram in this limit is currently out of reach. But
the existence of cohesive phases in a model of noisy,
short-range interaction, identical particles is ensured,
which was one of our primary goals. Furthermore, we
can sketch the zero-density asymptotic diagram from
our partial knowledge (Fig. 15). A few remarks are in
order to explain the expected shape of the asymptotic
“gas/liquid” boundary: in the non-moving phase, this
transition is almost independent onα and size-effects
are negligible. We thus expect this line to be hori-
zontal, in agreement with mean-field arguments (see
Appendix A). Similarly, our preliminary study of the
onset of collective motion shows that one can go di-
rectly from a cohesive non-moving droplet to the in-
cohesive phase and that in this region the onset of col-
lective motion is roughly independent onβ, yielding
a vertical boundary.

More work should be devoted to the determination
of the asymptotic phase diagrams mentioned above, as
well as to a quantitative study of the onset of collective
motion. Even in the simplest case of the non-cohesive
Vicsek-type models, it can be second or first order,
depending on the nature of the microscopic noise in
the model[12]. In both cases, we have started to un-
cover a rich interplay between collective motion, crit-
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Fig. 15. Sketch of the asymptotic phase diagram in the zero-density
limit. Filled circles indicate points determined numerically as in
Section 7.4. See text for more details.

ical fluctuations, rotation modes, and shape dynamics
in the transition region.

Not even mentioning the study of our model in three
dimensions and its possible applications to particu-
lar real-world situations (e.g. biology, zoology, and
robotics) the work presented here is probably only
the beginning of the exploration of this new type of
non-equilibrium systems.

Appendix A. Mean-field approach

To understand the interplay between alignment and
body force, we simplify our system via a Hamiltonian
model. The total energy is the sum of kinetic energy,
two-body interaction energy, and a term related to the
velocity alignment “force”. We thus write

H= Nm

2
v2

0 + U(r1, r2, . . . , rN)

−α

N∑
i,j∼i

�vi · �vj − �h0 ·
N∑
i

�vi,

where we have introduced an external field�h0.

In the spirit of the mean-field approach, we assume
that the fluctuations are negligible so that each com-
ponent can be integrated independently and approx-
imated by its averaged value. Thus the contribution
from the two-body interaction becomes:

U(r1, . . . , rN) ∼ 1

2

∑
i∼j

u(|�ri − �rj|) ∼ N

2
U0,

U0 =
∫ +∞

Rc

βρu(r)ddr ∼ −2aρβ,

where a is a constant which depends on the po-
tential. The alignment energy is computed with the
coarse-grained velocity�ϕ = 〈�v〉 and the average
number of neighborsρπr2

0 = ρs:

α

N∑
i,j∼i

�vi · �vj + �h0 ·
N∑
i

�vi ∼ (�h0 + αρs�ϕ) ·
N∑
i

�vi.

In the following, we use�h0 + αρs�ϕ = �h.
Because of the separation of phase space variables,

each term of the Hamiltonian contributes a factor to
the partition function:

• the two-body coupling:

(S − bN)N exp

(
aNρ

β

kT

)
, (A.1)

whereb = (π/2)R2
c is the hard-core surface andS

is the whole surface;
• the alignment coupling:[

2πmv0I0

(
−hv0

kT

)]N
, (A.2)

whereI0 is a Bessel function. The free energy of
the system is thus written:

− F

NkT
= ln

(mv0

�

)
− mv2

0

2kT
+ 1 + ln(ρ−1 − b)

+ aρ
β

kT
+ ln I0

(
−hv0

kT

)
− ρsϕ2 α

2kT
.

Imposing to be at a minimum of the free energy,
we find that the average velocity is the solution of a
self-consistent equation:

ϕ

v0
= I1

I0

(
v0h

kT

)
, (A.3)
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and that the critical point is defined by

sv2
0ρα = 2kT. (A.4)

Collective motion thus emerges via a continuous phase
transition whose critical exponents are 1/2 for the order
parameter and 1 for its susceptibility, independently
of the cohesive force.

Furthermore, the necessary concavity of the free
energy function implies a first-order cohesion transi-
tion, since the second derivative of the free energy
has two zeros. Their positions define the phase co-
existence region. We determined the stability limit of
the gas phase. As positions and velocities are decorre-
lated, we studied two cases: first without any motion,
and then with collective motion. In the first case:

βGL = kT

2aρ(1 − bρ)2
, (A.5)

which means that the transition line does not depend
on the alignment parameter (Fig. 16). Note also that
there is no transition point in the zero-density limit of

Fig. 16. Phase diagram of a mean-field model. L: liquid, ML:
moving liquid, G: gas, MG: moving gas. Dashed line: transition
line of collective motion.

this model. We numerically solved the case with col-
lective motion and found a stabilization of the “liquid”
phase (Fig. 16). This is an effect of the assumption
that velocity fluctuations are negligible. At the onset
of motion, we expect that fluctuations of the macro-
scopic velocity diverge, leading to strong density fluc-
tuations. This could explain the de-stabilization of the
“liquid” phase (Fig. 15) and its stabilization in the
mean-field model 16, where such fluctuations are by
definition absent.
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